Sports Analytics Giuseppe Prencipe - Dipartimento di Informatica Università di Pisa - THESES 2019
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
MAIN SPORT-TECH CLUSTERS Athletic Fan Performance Experience Smart Club Arena Management Immersive E-Sports Media
MAIN SPORT-TECH CLUSTERS Athletic Fan Performance Experience Smart Club Arena Management Immersive E-Sports Media
PlayeRank data-driven performance evaluation ng r r r d ng i de e r ck de ck wa t wi ht w if el eld t ba fiel ba fo r lef id fi lef t ht rig m lef t h rig rig
Collaborations Injury Forecasting FC Barcelona Done: AI-based Injury Forecaster (IF) for Spain soccer players Ferencvárosi TC Ongoing: Explainable AI tool to help Hungary staff interpret predictions the IF Philadelphia 76ers Future work: Generator of injury-free USA training plans, based on Adversarial Learning and Generative Adversarial Univ of Connecticut USA Networks (GANs) PlayeRank
Collaborations Tactical Analysis UEFA Done: AI-based evaluators for teams Europe and players Fraunhofer Bonn, Germany Ongoing: Explainable AI tools for Northeastern Univ. forecasting career evolution of players Boston, USA and performance of teams Queen Mary Univ. London, UK Future work: FIGC ● Match simulators based on GANs Italy ● Optimal team formation ● Automatic commentator PlayeRank
11
Video analysis Live Stroke analysis Live AI data Social network & Heatmap interpretation
Problem 1: position tracking Video processing, with object detection + projection on the court, using keypoints to calibrate Problem 2: tracking arm’s movements with smartwatch Classification with supervised learning of the gesture (data from accelerometer and gyroscope) Problem 3: coaching Profile of the player and adaptive expert system for real-time strategic support
Ongoing & Future work: • Effective position tracking for double • Automatic calibration • Pose estimation and ML to track arm’s movements through video • Energy issues • Tackle other sports
E er tennis pla er s pet pee e is , Colpi nello smartwatch nderperforming d ring a game, for no l’app prototipo è italiana apparent reason, has this e er happened to Dall’Università di Pisa un nuovo passo avanti nel tennis connesso o ?Stampa Stampa senza immagine Chiudi J NE 3, 2016 17:47 Pag.22 Colpi nello smartwatch Anno XII - n.22 - 8 giugno 2016 l’app prototipo è italiana b FEDE ICO CO INI IE 6871 Dall’Università di Pisa un nuovo EA ABLE passo avanti nel tennis connesso Tenni , ar no mar a ch ad allenar i per il colpo Pag.22 NE M L IMEDIA ECHNIQ E RANKING LI E Nole moschettiere Garbine divina, Nole moschettiere Eperfe o er tennis pla er s pet pee e is Coppa Suzanne Lenglen alla Muguruza, Coppa Ldei nderperforming , d, ring a game, for no Moschettieri a Djokovic: Coppa Suzanne Lenglen imprese storiche : reason, has this e er happened to apparent Pag.4 e 8 o ? Stampa Stampa senza immagine Chiudi alla Muguruza, Coppa dei Peppe Aq a o Moschettieri a Djokovic: J NE 3, 2016 17:47 EA ABLE b FEDE ICO CO INI IE 6871 Tenni , ar no mar a ch ad allenar i per il colpo imprese storiche perfe o È scientifico: il tennis L , , non fa venire la scoliosi Pag.4 e 8 Lo dimostra uno studio pubblicato sulla rivista European Spine Journal : N Pag.15 Peppe Aq a o . Internazionali d’Italia H e Te i Ne O he Ne Tpra: amatori al Foro Arrivano in 600 per il SuperSlam a Roma: le immagini e i risultati .C E ' , Pag.16 -- ?I . E ! ' Sfida di rovesci: GLI ALTRI CONTENUTI Prima pagina: Amore e physique du role Pag.3 una mano contro due Confronto biomeccanico tra i due Terza pagina: Lilì de Alvarez, prima diva di Spagna Pag.7 - I numeri della settimana Pag.12 - Il tennis N ENNI COMMANDER: .M modi di colpire: vantaggi e svantaggi in TV Pag.14 - Paddle: un circuito... mondiale Pag.19 La regola del gioco: Dopo la sospensione, ,
contacts Giuseppe Prencipe Luca Pappalardo giuseppe.prencipe@unipi.it luca.pappalardo@unipi.it Paolo Ferragina Paolo Cintia paolo.ferragina@unipi.it paolo.cintia@isti.cnr.it References: • PlayeRank: data-driven performance evaluation and player ranking in soccer via a machine learning approach. L. Pappalardo et al. ACM TIST, 2019 • Explainable Injury Forecasting in Soccer via Multivariate Time Series and Convolutional Neural Networks. L. Pappalardo et al. BARÇA Sports Analytics Summit, 2019 • Who is going to get hurt? Predicting injuries in professional soccer. A. Rossi et al. In Proceedings of MLSA’17
You can also read