AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)

Page created by Maurice Hardy
 
CONTINUE READING
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
AIM/PALS
 AIM Industry Days @ ESTEC
IRF, Uppsala & Kiruna       ICE-IEEC, Barcelona
ÅAC Microtec AB, Uppsala    KTH, Stockholm
DLR, Bremen

Emil Vinterhav
emil.vinterhav@aacmicrotec.com
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
Project Team
 Science
   IRF, Uppsala & Kiruna
   ICE-IEEC, Barcelona
   KTH, Stockholm
 System Analysis and Design
   ÅAC Microtec AB, Uppsala
 Mission Analysis
   DLR, Bremen
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
PALS
               Hugin & Munin
 PALS = Payload of Advanced Little
  Satellites
 Hugin and Munin are companions to
  Odin, the Norse god of wisdom
   Hugin (“thought”, “intuition”)
   Munin (“memory”, “common sense”)
 Hugin and Munin are ravens that fly over
  the world collecting information for Odin so
  that he can know all the secrets of the
  universe and create order from truth.
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
Payload
 Hugin:
   NAC: Narrow Angle Camera
   VCA: Volatile Composition Analyser
 Munin:
   VES: Video Emmision Spectrometer
   MAG: Fluxgate Magnetormeter (2m boom)
 Meeting and supporting AIM to meet primary and secondary
  science objectives
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
Possible Orbits inside the
       Binary System
 L4/L5 area are stable equilibrium points
 L1/L2 are instable equilibrium points and can be
  used for short transfers or flybys to the moon or as
  operations points where active control is necessary

 Close proximity operations to Didymoon (500 m) is
  not possible with standard keplerian orbits (like polar
  ones), to much perturbation from binary system and
  gravity field of the primary
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
Possible Orbits inside the
     Binary System
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
Mission Scenario
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
Detailed Mission Scenario
Phase   Activity            Duration   Platform                                        Payload
1       Commissioning,      4          Commissioning,                                  In orbit test
                                       Detumbling, Delta V correction,
2       Approach            1          Approach from >10 km, orbit insertion           Science
        L4/L5 Operations    10 days    station keeping                                 Science
3       Transfer to L1/L2   1 day      Manoeuvering
        L1/L2 Operations    10 days    Station keeping                                 Science
4       Impact              1 day      Forced motion transfer to and station keeping
5       L1/L2 Operations    20 days    station keeping                                 Science
6       Transfer to L4/L5   1 day      Manoeuvering
        L4/L5 Operations    10 days    station keeping                                 Science
Total                       58 days    ~30 days margin for extended mission
AIM/PALS AIM Industry Days @ ESTEC - IRF, Uppsala & Kiruna ÅAC Microtec AB, Uppsala DLR, Bremen - Indico at ESA / ESTEC (Indico)
Requirements & Constraints
 User requirements                      Mission Analysis requirements
   1U Payload / PALS Cubesat               Orbit navigation and
   Magnetically clean (
PALS spacecraft (1/3)
 Design philosophy
      COTS preferred (some modifications necessary)
      Aim for >TRL 6
      Single string equipment, redundancy on logical level (TMR)
      TID tolerant to 20 kRad

 Structure & Mechanisms
      2x 3U Cubesats named Hugin and Munin (less than 4,5 kg each)
      identical equipment, differ in accomodation of equipment and thruster orientation
      4 segments of deployable solar panels
      2m boom for MAG on Munin
PALS spacecraft (2/3)
 3-axis attitude stabilisation and 3 position nav and control
      startrackers and reaction wheels
      Optical sensors, laser altimeter, (s-band ranging) and Cold Gas thrusters

 Propulsion
      16 cold gas thrusters in two modules
      0.01 - 1mN @ 20 Hz
      Total ~12,5 m/s delta V

 Data handling
      2x OBC, (OBDH and position navigation) FPGA, TMR, RTEMS, SpW
      1x combined TM&TC and MM, 16 GB MM, EDAC , RTEMS, SpW, CCSDS, PUS
       stacks
      PUS for command distributuin, SpW for onboard data bus, CCSDS for ISL (TBC)
      Thumbnail data download selection for optimal use of link budget
PALS spacecraft (2/3)
 Communication
     ESA s-band ISL with ranging capability
     2x patch antennae giving full sphere coverage

 Power
     11W Average, 15 W maximum
     4x deployable solar panels and power storage for eclipse

 Thermal
     Surface treatment for hot side, and MLI for cold side
     Heaters (TBD)
PALS:Hugin

x
                 z

        y
PALS:Munin

x
         z

    y
PALS:Hugin
PALS:Munin
Schedule
   Team consolidation
     IRF, KTH, ICE-IEEC, DLR, ÅAC Mictorec

   Science definition
     Science objectives
     Instrument suite

   Mission Analysis
     Identification of constraints and possibilities

   System definition uin CEF
     Designing platform to support and payload requirements and science objectives

   System Consolidation
     Adress outstanding issues

   Preparation of system implementation plan
     Plan from here to delivery of system
Challenges & open issues
 AOCS with 2m boom
 Autonomy
 Position navigation and guidance
 Cubesat project in ESA inter-planetary mission context
Summary
 Strong project team
      Strong heritage from deep space and asteroid science and missions
      String heritage of deep space spacecraft operations
      Strong heritage of space system design

 Strong science case
      Supporting AIM to meet primary and secondary science objectives

 Advanced mission
      Highly autonomous
      High peformance AOCS
      Advancing the state of the art for Cubesats

 Strong technology
      State of the art payload with heritage from large scale missions
      Platform is COTS and TRL > 6
Thank you for your attention
                 Emil Vinterhav
       emil.vinterhav@aacmicrotec.com
You can also read