COVID, the e-bike city and the dilemma of transport policy making
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
ETH Library COVID, the e-bike city and the dilemma of transport policy making Presentation Author(s): Axhausen, Kay W. Publication date: 2022-01 Permanent link: https://doi.org/10.3929/ethz-b-000527626 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use.
Preferred citation style Axhausen, K.W. (2022) COVID, the e-bike city and the dilemma of transport policy making, MIT Urban Studies and Planning Seminar, Zoom, January 2022. MIT DUSP 22/01
COVID, the e-bike city and the dilemma of transport policy making KW Axhausen IVT ETH Zürich January 2022
Dilemma of transport policy MIT DUSP 22/01
Transport is a Normal (private) good i.e. it has a negative generalized cost elasticity MIT DUSP 22/01
Travel is a normal good e.g. in the 2019 Swiss MOBIS study an short run elasticity ≈ -0.3 with respect to a virtual pricing of its externalities Duranton and others report elasticities of 1 with respect to lane miles added MIT DUSP 22/01
COVID19 in Switzerland – Impressions MIT DUSP 22/01
Acknowledgements MOBIS-COVID panel ETH Zürich • J Molloy • C Tchervenkov • T Schatzmann • F Becker Universität Basel • B Hintermann • B Schoeman • N Lustenberger LINK • S Frenzel MIT DUSP 22/01
MOBIS COVID Sample • Earlier virtual mobility pricing study of car and transit users • French and German speaking Switzerland • 1100+ started out of about 3700 original ones • No incentives for COVID19 phase • Catch-a-day app (motion-tag, Berlin) MIT DUSP 22/01
MOBIS COVID Sample MIT DUSP 22/01
Share of mobiles since September 2019 100% 400 New confirmed hosptialized cases 75% 300 Mobile persons [%] MOBIS control group 50% COVID19 2020 200 COVID19 2021 Hospital cases 2021 Hospital cases 2020 25% 100 0% 0 0 28 56 84 112 140 168 196 224 252 280 308 336 364 Day of year MIT DUSP 22/01
Number of trips and size of the activity space 500 5.0 400 4.0 Number of trips/day Activity space [km2] 300 3.0 200 2.0 100 Weekday - Activity space 1.0 Weekend&holidays Weekday - Trips Weekend&holidays 0 0.0 02.03 02.05 02.07 02.09 02.11 02.01 02.03 02.05 02.07 02.09 02.11 Week starting with Monday MIT DUSP 22/01
PKm shares by mode and total PKm since fall 2019 100.00% 50.00 80.00% 40.00 Pre-COVID Bike - Transit - Car PKm mode share 60.00% 30.00 20 COVID Bike Total PKm - Transit - Car 40.00% 20.00 21 COVID Bike - Transit - Car 20.00% 10.00 Pre-COVID PKm 2020 PKm 2021 PKm 0.00% 0.00 0 28 56 84 112 140 168 196 224 252 280 308 336 364 Day of year MIT DUSP 22/01
PKm mode shares of the slow modes since fall 2019 10.00% 8.00% PKm mode share 6.00% Pre-COVID Bike 20 COVID Bike 21 COVID Bike 4.00% Pre-COVID Walk - 20 Walk - 21 Walk 2.00% 0.00% 0 28 56 84 112 140 168 196 224 252 280 308 336 364 Day of year MIT DUSP 22/01
Homeoffice impact on travel: Daily average pkm 50.00 Average daily person kilometres travelled 40.00 30.00 20.00 10.00 Home office distance Mixture distance At office distance 0.00 61 82 103 124 145 166 187 208 229 250 271 292 313 334 355 11 32 53 74 95 116 137 158 179 200 221 242 263 284 305 326 347 Day of year MIT DUSP 22/01
Innovation rates in mode+destination packages MIT DUSP 22/01
Innovation rates in mode+destination packages 0.70 0.60 Before 2020 0.50 2021 Weekly innovation rate 0.40 0.30 0.20 0.10 0.00 0 30 60 90 120 150 180 210 240 270 300 330 360 Day of the year MIT DUSP 22/01
Distance to new mode+destination packages in CH Mean km to new Swiss locations from home 40 30 20 Before 2020 2021 10 0 0 30 60 90 120 150 180 210 240 270 300 330 360 Day of year MIT DUSP 22/01
The dilemma of the given (urban) network MIT DUSP 22/01
Urban network capacity = Junction density, Lane miles density Betweenness centrality, Bus mileage density (Traffic control) MIT DUSP 22/01
Example mode allocation for the optimal speed MIT DUSP 22/01
A managed/co-ordinated one? Comparison of MOBIS GC 1.4 1.2 Generalized costs Car/PT 1 No-ST Leisure 0.8 ST - Leisure No ST - Shopping 0.6 ST - Shopping No ST - Work/Education 0.4 ST - Work/Education 0.2 0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 Mean Distance of decile [km] MIT DUSP 22/01
The dilemma remains MIT DUSP 22/01
The dilemma actually becomes sharper • Higher accessibility improves productivity and social capital • Underused off-peak capacity due to additional peak capacity to accommodate for population growth (roads, parking, transit) • Induced demand due to the lower GC of automated private and public transport • Induced sprawl due to lower GC • CO2 reduction need • Sprawl avoidance needed MIT DUSP 22/01
COVID19 adding to the dilemma? • «3 of 5» day weeks • Less commuting, but more leisure travel • Residential moves using the new freedoms • Fewer season tickets and transit pre-committment • Mistrust of strangers in (small) vehicles • Financial/political risks to public transport systems MIT DUSP 22/01
Which future did we discuss? MIT DUSP 22/01
Past radical dreams: Le Corbusier’s City radieuse MIT DUSP 22/01
Past radical dreams: Lloyd Wright’s Usonia MIT DUSP 22/01
Dr. Wolf Strache, Public domain, via Wikimedia Commons MIT DUSP 22/01 Past radical dreams: Motorways
Which future are we discussing? MIT DUSP 22/01
An • Automated one ? • Managed/co-ordinated one ? • A car free/reduced one? MIT DUSP 22/01
A managed/co-ordinated one MIT DUSP 22/01
A managed/co-ordinated one • Mobility pricing • Two-part tariffs for infrastructure • Option price • Pay-as-you-go for usage • Congestion pricing • (Demand responsive) parking pricing • CO2 pricing • Local emission pricing • MaaS MIT DUSP 22/01
An automated one? First robust cost estimates MIT DUSP 22/01
Structure of the pkm full costs for today’s usage levels MIT DUSP 22/01
A car free/reduced one, MIT DUSP 22/01
A car free/reduced one, • a 15 min city ? • a net-zero CO2 city ? • an e-Bike city ? MIT DUSP 22/01
A car free/reduced one: Would an e-Bike city deliver the current accessibility with? • 50% of current road space for (shared) micro-mobility • Improved pedestrian accessibility • Connectivity for emergency services • Large vehicle transit plus on-demand small vehicle transit • Rational pricing of the remaining road use and parking • P+R for sub/exurban connections • «Union»-delivery pick-up-locations within walking distance MIT DUSP 22/01
Questions? • www.ivt.ethz.ch • ivtmobis.ethz.ch/mobis/covid19 • www.ivt.ethz.ch/en/research/mobis-covid19 MIT DUSP 22/01
You can also read