Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten

Page created by Darrell Lindsey
 
CONTINUE READING
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Radar-Crop-Monitor
Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten

Christiane Schmullius, Linara Arslanova, Nesrin Salepci, Felix Cremer, Clémence Dubois, Marcel
Urban, Carsten Pathe – Friedrich-Schiller-Universität Jena

Marcel Foelsch, Friedemann Scheibler – CLAAS E-Systems GmbH

                           Förderkennzeichen 50EE1901, Laufzeit 01.06.2019 – 31.05.2021          1 / 15
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Outline

 • Motivation & Objectives

 • Data sets and Study area

 • Methodology

 • Preliminary results

                              Schmullius et al., Radar-Crop-Monitor, 13. November 2019
                                                                                 2 / 20
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Motivation 1

               Schmullius et al., Radar-Crop-Monitor, 13. November 2019
                                                                  3 / 20
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Beispiele von Wildschweinschäden

Schwarzwild-Schäden im Umfeld des NLP Hainich, Fotos: P. Schmidt (BEAG), A. Klamm (NLP-Verwaltung)

               Martin Faber, 2016 : „Schadscan- Beurteilung von Schäden im Pflanzenbau“
           Einsatz der Drohnentechnologie in der Land- und Forstwirtschaft, TLUG, 18.Mai.2016
                                                                                                     4
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Räumlich-zeitliche Analyse des RVI* und NDVI bei Feldstörungen
* Kim et al., GERS, 2012

                                               NDVI      Abweichungskarte
                                             (Optisch)       (Radar)

                                          Störungskarten, basierend auf der
                                          Abweichung des Pixelwertes vom
                                          Feldmittelwert
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Motivation 2

 Table 1. Amount of Sentinel-1 and Sentinel-2 Images for site Friensted

           Sentinel-1 A + D          Sentinel-2 (
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Motivation 3

               8 / 20
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Objective 1: Investigate impacting factors on radar backscatter
    Objective 2: Supplement optical time series
                                                                                                                                               Vegetation
    Meteorological                             Geographical                                    Sensor specific
                                                                                                                                                related

-   Precipitation (dew, rainfall,     -      Soil composition/texture              -    Incidence angle associated with            -   Plant structure/crop
    snow)                             -      Spatial plant growth                       each beam mode                                 morphology
-   Temperature                              distribution                          -    Wavelength C-band/ penetration             -   Plant vitality
-   Wind speed                                                                          depth
                                                                                   -    Acquisition time (A/D)
                                                                                   -    Polarization (VV/VH)
                         -   Soil moisture

                                                                    -   Local incident angle                              -   Plant row direction

                                                                                           -     Surface roughness

                                                                -   Dielectric constant of the target

                                                                                                        Schmullius et al., Radar-Crop-Monitor, 13. November 2019
                                                                                                                                                           9 / 20
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
Study areas
A       Demmin, Mecklenburg-Vorpommern
B       Frienstedt, Thuringia
C       Markneukirchen, Saxonia

Data
• Sentinel-1, Sentinel-2 data => ESA Copernicus Open Access Hub Portal
 (https://scihub.copernicus.eu/)
• Meteorological data => DWD Temperature, Precipitation (qualitative and quantitative)
• Phenological data => DWD for 6 crop types: winter wheat, winter barley, spring barley, rapeseed,
 corn, sugar beet
• Observational data from individual farmers: planting dates, fertilization schedules, harvest and yield
• CLAAS CropView – 365FarmNet

                                                            Schmullius et al., Radar-Crop-Monitor, 13. November 2019
                                                                                                              10 / 20
Methodologie

               Schmullius et al., Radar-Crop-Monitor, 13. November 2019
                                                                 11 / 20
Preliminary Results 1

                                                               NDVI 2018 (mean)

           NDVI 2018 (standard deviation)
                                                I             II                  II          III

                                            2019.04.18   2019.05.06          2019.06.13   2019.07.07
Preliminary Results 2

                               9 - 15% moderate – strong slope
                               2019.05.06, field id = 36, winter barley

                  NDVI 2018 (mean)                                                         NDVI 2017 (mean)

          NDVI 2018 (standard deviation)                                      I             II                     III

                                                                          2019.05.06   2019.06.13             2019.07.07
Preliminary Results 3
Winter Wheat
• Slope classes
• VV 2017
• A/D

   East   North   South   West
To do …

          Schmullius et al., Radar-Crop-Monitor, 13. November 2019
                                                            16 / 20
Investigate
thoroughly
effect of interception
in different crop
canopies                 SB 2019.05.19   WW 2019.06.13   WB 2019.05.19            CR 2019.07.29

                         RA 2019.05.16                                      SB 2019.07.29

                                                               Name des Referenten, Funktion
                                                                                     17 / 20
Analysis of effects of local incidence angles (33A/42D)
   •   Select images with similar weather conditions (exclude days with any kind precipitation)
   •   maximum day difference is 1 day
   •   consider each phenological stage

                                                               III.

                                                     II.                III.      harvest 21 Jul – 01 Aug
          I. steam elongation

                                1 day        1 day            6 days           5 days                       1 day   1 day
Analysis of effects of row orientation
       Tab.1: Amount of fields with different row directions for
       ascending/descending acquisitions
2017
                         classes              asc                  des

        1      0 - 15°       166 - 180°        0                   5     5

        2     16 - 30°       151 - 165°        2                   1     3

        3     31 - 45°       136 - 150°        5                   0     5

        4     46 - 60°       121 - 135°        6                   0     6

        5     61 - 75°       106 - 120°        13                  1     14

        6     76 - 90°        91 - 105°        0                   19    19

                               Total:          26                  26    52

2018                     classes              asc                  des

        1     0 - 15°        166 - 180°        0                   10    10

        2     16 - 30°       151 - 165°        3                    2     5

        3     31 - 45°       136 - 150°        13                   0    13

        4     46 - 60°       121 - 135°        1                    0     1

        5     61 - 75°       106 - 120°        14                   1    15

        6     76 - 90°        91 - 105°        0                   18    18

                               Total:          31                  31    62
General observations for Frienstedt (KO+5)

 Slopes matter crop-dependent, BUT through
   phenology
 A/D acquisition times matters (aspect effects could
   not be found)
 Water films (interception on the plant canopy, dew,
   melted snow) => backscatter increases
 Heavy precipitation => radar backscatter
   decreases ..sometimes.. Hence, radar signals
   gathered from fields with varying types of
   wetnesses do not allow signal differentiation
   between classes
                                                   Schmullius, Arslanova, Salepci et al., Radar-Crop-Monitor, 13. November 2019
                                                                                                                         20 / 20
Thank you for your
attention !

                     Schmullius, Arslanova, Salepci et al., Radar-Crop-Monitor, 13. November 2019
                                                                                           21 / 20
You can also read