Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Radar-Crop-Monitor Extraktion landwirtschaftlicher Parameter mit Sentinel-1 Daten Christiane Schmullius, Linara Arslanova, Nesrin Salepci, Felix Cremer, Clémence Dubois, Marcel Urban, Carsten Pathe – Friedrich-Schiller-Universität Jena Marcel Foelsch, Friedemann Scheibler – CLAAS E-Systems GmbH Förderkennzeichen 50EE1901, Laufzeit 01.06.2019 – 31.05.2021 1 / 15
Outline • Motivation & Objectives • Data sets and Study area • Methodology • Preliminary results Schmullius et al., Radar-Crop-Monitor, 13. November 2019 2 / 20
Beispiele von Wildschweinschäden Schwarzwild-Schäden im Umfeld des NLP Hainich, Fotos: P. Schmidt (BEAG), A. Klamm (NLP-Verwaltung) Martin Faber, 2016 : „Schadscan- Beurteilung von Schäden im Pflanzenbau“ Einsatz der Drohnentechnologie in der Land- und Forstwirtschaft, TLUG, 18.Mai.2016 4
Räumlich-zeitliche Analyse des RVI* und NDVI bei Feldstörungen * Kim et al., GERS, 2012 NDVI Abweichungskarte (Optisch) (Radar) Störungskarten, basierend auf der Abweichung des Pixelwertes vom Feldmittelwert
Motivation 2 Table 1. Amount of Sentinel-1 and Sentinel-2 Images for site Friensted Sentinel-1 A + D Sentinel-2 (
Objective 1: Investigate impacting factors on radar backscatter Objective 2: Supplement optical time series Vegetation Meteorological Geographical Sensor specific related - Precipitation (dew, rainfall, - Soil composition/texture - Incidence angle associated with - Plant structure/crop snow) - Spatial plant growth each beam mode morphology - Temperature distribution - Wavelength C-band/ penetration - Plant vitality - Wind speed depth - Acquisition time (A/D) - Polarization (VV/VH) - Soil moisture - Local incident angle - Plant row direction - Surface roughness - Dielectric constant of the target Schmullius et al., Radar-Crop-Monitor, 13. November 2019 9 / 20
Study areas A Demmin, Mecklenburg-Vorpommern B Frienstedt, Thuringia C Markneukirchen, Saxonia Data • Sentinel-1, Sentinel-2 data => ESA Copernicus Open Access Hub Portal (https://scihub.copernicus.eu/) • Meteorological data => DWD Temperature, Precipitation (qualitative and quantitative) • Phenological data => DWD for 6 crop types: winter wheat, winter barley, spring barley, rapeseed, corn, sugar beet • Observational data from individual farmers: planting dates, fertilization schedules, harvest and yield • CLAAS CropView – 365FarmNet Schmullius et al., Radar-Crop-Monitor, 13. November 2019 10 / 20
Methodologie Schmullius et al., Radar-Crop-Monitor, 13. November 2019 11 / 20
Preliminary Results 1 NDVI 2018 (mean) NDVI 2018 (standard deviation) I II II III 2019.04.18 2019.05.06 2019.06.13 2019.07.07
Preliminary Results 2 9 - 15% moderate – strong slope 2019.05.06, field id = 36, winter barley NDVI 2018 (mean) NDVI 2017 (mean) NDVI 2018 (standard deviation) I II III 2019.05.06 2019.06.13 2019.07.07
Preliminary Results 3 Winter Wheat • Slope classes • VV 2017 • A/D East North South West
To do … Schmullius et al., Radar-Crop-Monitor, 13. November 2019 16 / 20
Investigate thoroughly effect of interception in different crop canopies SB 2019.05.19 WW 2019.06.13 WB 2019.05.19 CR 2019.07.29 RA 2019.05.16 SB 2019.07.29 Name des Referenten, Funktion 17 / 20
Analysis of effects of local incidence angles (33A/42D) • Select images with similar weather conditions (exclude days with any kind precipitation) • maximum day difference is 1 day • consider each phenological stage III. II. III. harvest 21 Jul – 01 Aug I. steam elongation 1 day 1 day 6 days 5 days 1 day 1 day
Analysis of effects of row orientation Tab.1: Amount of fields with different row directions for ascending/descending acquisitions 2017 classes asc des 1 0 - 15° 166 - 180° 0 5 5 2 16 - 30° 151 - 165° 2 1 3 3 31 - 45° 136 - 150° 5 0 5 4 46 - 60° 121 - 135° 6 0 6 5 61 - 75° 106 - 120° 13 1 14 6 76 - 90° 91 - 105° 0 19 19 Total: 26 26 52 2018 classes asc des 1 0 - 15° 166 - 180° 0 10 10 2 16 - 30° 151 - 165° 3 2 5 3 31 - 45° 136 - 150° 13 0 13 4 46 - 60° 121 - 135° 1 0 1 5 61 - 75° 106 - 120° 14 1 15 6 76 - 90° 91 - 105° 0 18 18 Total: 31 31 62
General observations for Frienstedt (KO+5) Slopes matter crop-dependent, BUT through phenology A/D acquisition times matters (aspect effects could not be found) Water films (interception on the plant canopy, dew, melted snow) => backscatter increases Heavy precipitation => radar backscatter decreases ..sometimes.. Hence, radar signals gathered from fields with varying types of wetnesses do not allow signal differentiation between classes Schmullius, Arslanova, Salepci et al., Radar-Crop-Monitor, 13. November 2019 20 / 20
Thank you for your attention ! Schmullius, Arslanova, Salepci et al., Radar-Crop-Monitor, 13. November 2019 21 / 20
You can also read