Analisi della quiescenza sismica che ha preceduto la sequenza dell'Italia centrale
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Analisi della quiescenza sismica che ha preceduto la sequenza dell’Italia centrale S. Gentili1, R. Di Giovambattista2, A. Peresan1 1 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale Centro Ricerche Sismologiche, Udine, Italy. 2 Istituto Nazionale di Geofisica e Vulcanologia Sezione di Roma, Roma, Italy. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 1
Central Italy earthquake • The devastating 2016-2017 central Italy seismic sequence is the largest recorded in Italy since the 1980 M 6.9 Irpinia earthquake. • It fell in a seismic gap between northern and central Apennines, between the 1997-1998 Umbria-Marche and the 2009 L’Aquila earthquakes • We applied the Region Time Length (RTL) (Sobolev et al., 1997, 1996) algorithm to study detailed property of the quiescence. (works on declustered catalogue) Gentili et al., PEPI, 272, 27‐33 (2017) Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 2
Extended seismicity decrease Number of earthquakes observed in the analyzed area Gentili et al., PEPI, 272, 27‐33 (2017) Earthquakes from Earthquakes from for two subsequent time windows 8/23/2014 to 8/23/2015 8/24/2015 to 8/23/2016 of one year: (a) From 8/24/2014 to 8/24/2015 (b) from 8/25/2015 to 8/24/2016. The area is sampled by a grid 10x10 km spaced, and, for every node, the number of earthquakes within 100 km radius in the previous year is shown. A clear decrease of seismicity can be seen in the last year with respect to the previous one Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 3
Catalogue declustering • Declustering is particularly difficult in the Apennines, due to the closeness in space and time of different clusters => we used a statistical method called “nearest‐neighbours”. • As shown by Zaliapin and Ben‐Zion (2013), the removal of clusters identified by Nearest‐Neighbors method does not alter the features of inhomogeneous and possibly non‐stationary background seismicity, which are relevant for this study. • The method requires only two input parameters: the b‐value, b and the fractal dimension of epicenters, d Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 4
Rescaled space and time distances Catalogue declustering Fractal dimension of epicenters Zaliapin et al., PRL, 101, 018501 (2008) Gutenberg-Richter law, b ηij =tij rijd 10-bmi /2 with tij>0 Spatial distance Interevent time The Nearest-Neighbor Method (Zaliapin et al., 2008; Zaliapin and Ben-Zion, 2013) expresses the space- time distance η between two earthquakes j and i in terms of rescaled time T and rescaled distance R: Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 5
Nearest‐Neighbors analysis: Central Italy The 2D density map of rescaled time and space components of the nearest-neighbor distance in the observed catalogues is prominently bimodal bimodality is used to Gentili et al., PEPI, 272, 27‐33 (2017) separate the earthquakes into Poissonian background and cluster populations (Zaliapin and Ben-Zion, 2013). Earthquake data for Central Italy (Lat=[40, 46]°N, Lon=[10, 15]°E), 2005-2017: Italian Seismological Instrumental and Parametric Data-Base (till March 2017) http://iside.rm.ingv.it/iside/ Mc=2.2 Scaling parameters: based on the Unified Scaling Law for Earthquakes (USLE) (Nekrasova et al., 2011). Robust average estimates are: B-value b = 0.8-1.0 Fractal dimension d = 1.3-1.4 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 6
RTL algorithm • The RTL algorithm measures the level of seismic activity in moving time windows by counting the number of earthquakes, weighted by their size, and inversely weighted by their distance, in time and space from the point of observation. • It represents the deviations from the background seismicity: seismicity decreases ‐> RTL decreases; seismicity increases‐> RTL increases r0 and t0= free parameters Rs,Ls, Ts=linear trend R ( x, y , t ) T ( x, y , t ) L ( x, y , t ) RTL ( x, y , t ) corrections R T L σR, σR, σR=standard deviation n t ti T ( x, y , t ) exp Ts ( x, y , t ) n li n r t 0 Ls ( x, y , t ) if ri R( x, y, t ) exp i Rs ( x, y, t ) i 1 i 1 r L( x , y , t ) i r0 li L ( x, y , t ) if n i 1 ri i 1 s Distance from x, y Time of occurrence Source size Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 7
Parameters estimation • An ad-hoc choice of the parameters may cause artifacts • Huang and Ding [2012] proposed a formal procedure for the identification of the most stable values, based on the correlation coefficient over pairs of the RTL functions estimated using different parameters which leads to a map of the quality of parameters. • They select an area into the r0-t0 space where at least 70% of the correlation coefficients over pairs exceeds a specified threshold for r0 and t0. Based on this map, they propose a method to find the optimal values of r0 and t0. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 8
Parameters estimation Gentili et al., PEPI, 272, 27‐33 (2017) RTL vs time at the epicenter of the Amatrice earthquake until earthquake r0 and t0 parameters quality map the occurrence. Red line: RTL using epicenter of the Amatrice earthquake r0=50 km and t0=1 year. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 9
Results Gentili et al., PEPI, 272, 27‐33 (2017) Grid 10x10 km spaced. 24, 2015, to August 23, 2016. Map of mean RTL from August • The area around the epicenter exhibits significant seismic quiescence anomaly quantified by the mean RTL values. • It started from the beginning of September 2015 and lasted for about 1 year • It extended throughout a broad region north of the epicenter Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 10
Results Gentili et al., PEPI, 272, 27‐33 (2017) 24, 2015, to August 23, 2016. Map of mean RTL from August • Contour of the quiescence area has the shape of an irregular elliptical form with lengths of major and minor axes of about 40-45 and 30-35 km, respectively. • All the aftershocks overlap eastern part of the quiescence area that to the east is nearly coterminous with the Sibillini thrust and the main causative fault of the earthquake. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 11
Comparison with previous results • Gentili [2010], using the RTL method, analyzed the seismicity preceding the earthquakes with magnitude ≥5 in Italy from 1994 to 2004. • She found a quiescence in 92% of the cases, with a duration D varying from 0.6 to 3 years and an interval s from the quiescence end to the earthquake of 0 to 2.9 years. • Huang [2004] in a review on 8 earthquakes with magnitude >7 in Japan, Russia and Turkey, indicates a duration of 1-2.5 years and a start of the quiescence few years before the mainshock. • The Amatrice RTL, with D=1 and s=0 years, is therefore compatible with previous results. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 12
Comparison with previous results • The RTL function has been previously applied to moderate/large earthquakes in Italy [e.g., Di Giovambattista and Tyupkin, 2000, Di Giovambattista and Tyupkin, 2004, Gentili and Bressan, 2007, Mignan and Di Giovambattista, 2008, Gentili, 2010, Gambino et al., 2014, Gentili et al., 2017] and in other parts of the world [e.g. Sobolev et al., 2002, Huang, 2006, Chen and Wu, 2006, Huang, 2008, Nagao et al. 2011, Huang and Ding, 2012, Wen et al., 2016]. • Several studies in Italy using RTL [Di Giovambattista and Tyupkin 2000 and 2004, Gentili and Bressan, 2007, Gentili 2010, Gambino et al., 2014] Z [Wyss et al., 1997, Console et al., 2000] and beta statistics [Bragato 2014] have shown a decreased seismicity before strong events in Italy. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 13
RTL in Italy 5.6 Kobarid 1998 4.9 Sernio 2002 10 5 0 -5 -10 -15 -20 -25 1988 1990 1992 1994 1996 1998 Date 6.0 Umbria‐Marche 1997 5.2 Kobarid 2004 5.8 Palermo 2002 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 14
RTL in the world 1999 Chi-Chi Mw 7.6 2000 Tottori M 6.7 Chen and Wu 2006 Huang 2006 Kamchatka 1992-1993 Sobolev and Tyupkin1997 1999 Izmit Mw 7.4 1995 Kobe M 7.2 Huang 2004 Huang 2001 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale 15
You can also read