Modern Methods Experimental Physics - Lecture 14 - 19 2 2021 Marc Vrakking marc.vrakking@mbi berlin.de
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Modern Methods Experimental Physics Lecture 14 – 19‐2‐2021 Marc Vrakking marc.vrakking@mbi‐berlin.de
Tentative schedule and topics Lecture Fr : 10:00 – 11:45 https://fu‐berlin.webex.com/meet/vrakking Working group Fr : 8.00 – 9.45 (every other week, first time 20‐11‐2020) https://fu‐berlin.webex.com/meet/vrakking • Active participation in the working group requires a laptop • Slides will be posted following each lecture, incl. suggestions for further reading: http://staff.mbi‐berlin.de/vrakking/lecture/index.html • The exam will consist of a 15‐page paper on a selected topic • Last lecture: 28‐2‐2021; paper due 1‐5‐2021
Schedule of Lecture Wintersemester 2020‐2021 (tentative) November 6, 2020 Lecture 1 Introduction November 13, 2020 Lecture 2 Pump‐probe spectroscopy November 20, 2020 Lecture 3+WG1 Pump‐probe spectroscopy (cont.) November 27, 2020 Lecture 4 Lasers – I December 4, 2020 Lecture 5+WG2 Lasers – II December 11, 2020 Lecture 6 Lasers – III December 18, 2020 Lecture 7+WG3 Atoms in strong laser fields – I Januari 8, 2021 Lecture 8 Atoms in strong laser fields – II Januari 15, 2021 Lecture 9 Molecules in strong laser fields Januari 22, 2021 Lecture 10+WG4 HHG – I Januari 29, 2021 Lecture 11 HHG ‐ II Februari 5, 2021 Lecture 12+WG5 Attosecond pulse generation WG5 Februari 12, 2021 Lecture 13 Attosecond pump‐probe spectroscopy ‐ I Februari 19, 2021 Lecture 14+WG6 Attosecond pump‐probe spectroscopy ‐ II Februari 26, 2021 Lecture 15 Attosecond pump‐probe spectroscopy ‐ III Working groups (tentative): WG 1 ‐ vibrational wavepackets WG 4 ‐ dressed states WG 2 – velocity map imaging WG 5 – SFA WG 3 ‐ lasers WG 6 – t.b.d.
Topics for 15‐page end‐of‐term paper Wavelength dependence of strong‐field ionization – how it functions and how we can exploit it in laser‐induced electron diffraction Wavelength dependence of electron localization in H2 – numerical project using software discussed in working group Attosecond ionization time delays – a critical survey of the recent literature Attosecond transient absorption spectroscopy – accomplishments and prospects Attosecond molecular electron dynamics – a survey of theoretical predictions Attosecond spectroscopy without attosecond pulses – a survey of HHG imaging, inelastic X‐ray scattering and core‐hole clock methods Other topics possible with permission 4
Attosecond atomic physics Examples: Single electron removal Direct Measurement of Light Waves, continuum electron Goulielmakis et al., Science 305, dynamics following XUV 1267 (2004) photoionization Attosecond electron wave packet (streaking) interferometry, Remetter et al., Nature Physics 2, 323 (2006) time delays between photoionization from Delay in photoemission, Schultze et different initial orbitals al, Science 328, 1658 (2010), Klunder et al, Phys. Rev. Lett. 106, 143002 coherent electron (hole) (2012) motion following Real‐time observation of valence excitation of multiple electron motion, Goulielmakis et al., orbitals or ionization Nature 466, 739 (2010), Mauritsson et from multiple orbitals al, Phys. Rev. Lett. 105, 053001 (2010)
Direct Measurement of Light Waves Experimental proof that isolated attosecond pulses (cut‐off harmonics) are obtained for CEP=0 E(t) reconstructed (red line) from the streaking measurement and calculated (gray line) from the measured pulse spectrum Goulielmakis et al., Science 305, 1267 (2004)
Delay in photoemission A = group delay of the attosecond pulses I = atomic delay two‐color ionization Important: Measured time delays /phases accumulate both during ionization process and during propagation in the Coulomb+laser fields Kluender et al, Phys. Rev. Lett. 106, 143002 (2012)
Real‐time observation of valence electron motion Ionization produces the ion in a superposition of two states that are probed by the XUV Can observe stepsize formation of different ionic states Can observe coherence Goulielmakis et al., Nature 466, 739 (2010) between different ionic states
Holographic observation of electronic coherence Reference WP ( Eref E A ) //ℏ IR 0 Unknown WP XUV -IP Time Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)
Near‐threshold Electron Wavepackets HHG in Xenon, polarization gated 100 nm Al filter VMIS image Helium py ionization px IP excitation Helium ionization (raw image) Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)
Near‐threshold Electron Wavepackets HHG in Xenon, Helium two-color ionization, I ~1013 W/cm2 Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)
First-ever observation of bound electron dynamics using attosecond lasers!!! In (E,E) plot the beats of individual states against the continuum and beats among the states can be observed access to energy, amplitude and phase!!! Mauritsson et al, Phys. Rev. Lett. 105, 053001 (2010)
Attosecond atomic physics Multi‐electron dynamics Auger decay Example: Time‐resolved atomic inner shell spectroscopy, Drescher et al., Nature 419, 803 (2002) 15
Attosecond measurement of Auger decay Photoionization of Kr at 95 eV leads to both the removal of valence electrons and that of 3d core M‐shell electrons (purple) The removal of a core electron may be followed by an MNN Auger decay (green), allowing a measurement of the liftetime of the core hole M core level hole, N relaxing electron state N emitted electron state M. Drescher et al., Nature 419, 803 (2002)
Attosecond measurement of Auger decay streaking regime Auger >laser M. Drescher et al., Nature 419, 803 (2002)
Attosecond measurement of Auger decay The Auger lifetime can be revealed by a streaking /sideband measurement valence ionization broadening due to streaking (no CEP stabilization) Auger sideband photoelectrons from Auger proces M. Drescher et al., Nature 419, 803 (2002)
Attosecond measurement of Auger decay Determination of Auger lifetime of 7.9 1 fs M. Drescher et al., Nature 419, 803 (2002)
Attosecond atomic physics Multi‐electron dynamics Auger decay Shake‐up Example: Time‐resolved atomic inner shell spectroscopy, Drescher et al., Nature 419, 803 (2002) Attosecond real‐time observation of electron tunneling in atoms, Uiberacker et 20 al., Nature 446, 627 (2007)
Time‐resolving the tunneling process Photoionization of Ne at 90 eV leads to both the removal of a 2p valence electron and shake‐up of a second 2p electron into a Rydberg state The shake‐up electron can be ionized by a low‐ order NIR multi‐photon ionization process Uiberacker et al., Nature 446, 627 (2007)
Uiberacker et al., Nature 446, 627 (2007) 22
Uiberacker et al., Nature 446, 627 (2007) See sub‐cycle time‐dependence of ionization, even for low‐ order processes where >>1 23
Attosecond atomic physics Increasingly complex atomic physics problems addressed by attosecond pump‐probe spectroscopy
Fano Resonances in Transient Absorption C. Ott et al., arXiv:1205.0519
Fano Resonances in Transient Absorption C. Ott et al., arXiv:1205.0519
Fano Resonances in Transient Absorption: Frequency analysis similar to previous holography experiment C. Ott et al., arXiv:1205.0519
Useful materials for further reading (strong field ionization): C.J. Joachain, N.J. Kylstra and R.M. Potvliege, Atoms in Intense Laser Fields, (Cambridge University Press, 2012) M. Ivanov et al., Anatomy of strong field ionization, J. Mod. Optics 52, 165 (2005) L. DiMauro and P. Agostini, Adv. At. Mol. And Opt. Physics 35, 79 (1995) + several chapters (DiMauro, Ivanov, Smirnova, L´Huillier) in upcoming book „Attosecond and XUV Physics“ (ed. by M.J.J. Vrakking and Th. Schultz, Wiley, december 2013) 28
You can also read