What we do (not) understand about carbon nanomembranes - Jahresbericht 201 - Uni Bielefeld
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
What we do (not) understand about carbon nanomembranes Jürgen Schnack Department of Physics – University of Bielefeld – Germany http://obelix.physik.uni-bielefeld.de/∼schnack/ Seminar, Bielefeld University, D0, 11 December 2020 Jahresb
à á á à p ? 6 Introduction There are various carbon-based nanostructures . . . Jürgen Schnack, CMD for CNM 2/36
à á á à p ? 6 Introduction . . . and carbon-based cross-linked SAMs (I). www.advmat.de www.MaterialsViews.com REVIEW Figure 2. Schematic for the formation of carbon nanomembranes (CNMs) and graphene from molecular precursors. a) Schematic illustration of the fabrication route for CNMs and graphene: self-assembled monolayers are prepared on a substrate (i), then crosslinked by electron irradiation to form A. Turchanin, A. Gölzh CNMs of monomolecular äuser, thickness (ii). Advanced Materials The CNMs are released 28, 6075-6103 from the underlying (2016). substrate (iii), and further annealing at 900 °C transforms them into graphene. b) Chemical structures of the different precursor molecules discussed in this review. Adapted with permission.[46] Copyright 2013, ACS Publications. bonds between the reactive end groups and the substrate atoms 2e (see Figure 2b) form densely packed arrangements[19] with and the van der Waals interactions between the carbon atoms the (√3 × √3) unit cells of the adsorption positions and with in the core of the precursor molecules. To obtain SAMs with Jürgen Schnack, the (2√3 × √3) superstructures of the molecular backbones. In CMD for CNM 3/36 desired molecular arrangements, such parameters like immer- these monolayers, the surface area per molecule is the same sion duration, temperature, concentration, and solvent polarity (21.6 Å2); thus, the surface density of carbon atoms can be pre-
à á á à p ? 6 Introduction . . . and carbon-based cross-linked SAMs (II). www.advmat.de full papers R. Jordan, A. Gölzhäuser, et al. tip of a scanning tunneling microscope; COMMUNICATION biomedical field as artificial nacre[17] and as a novel material resistance was then determined by a two-point used in surgery. [18] So far, a common feature of all developedmeasurement in UHV. Figure 2A shows an freestanding polymer nanomembranes is the crosslinking ofSEM the image of a tungsten tip touching a polymer itself to ensure the mechanical stability of the layer. nanosheet that suspends over an 11 ! 11 mm2 However, for the fabrication of chemical- or bioresponsive square opening. Additional resistivity measure- polymer-based nanomembranes, the high crosslinking natu- ments were carried out under ambient condi- rally reduces the interactions between the polymer chainstions. and To this end, nanosheets heated directly the environment and thus impairs the sensitivity and flexibilityon gold substrates in UHV where transferred of the films. Analogously to crosslinked polymer films onto silicon oxide, and their sheet resistance versus polymer brushes on substrates, a brush reacts more quickly and has a higher sensitivity towards external stimuli. was determined under ambient conditions by a The entire layer has a better accessibility, even for larger four-point measurement (see SI). The sheet molecules, and the strong chain stretching results in resistivity a values measured in UHV and in considerably lower chain entanglement of the preorganized ambient conditions are in a very good agree- polymers along the surface normal. Hence, on surfaces, ment. soft A measurable electrical current is and stimuli-responsive polymer brushes have been the system detected after annealing at "800 K. Here, the of choice for the development of adaptive layers as actuators [19–23] sheet resistivity corresponds to "108 kV sq#1. and sensors. Upon annealing to temperatures between 800 In this Full Paper, we report on the first freestanding Figure 1. Fabrication scheme and microscopy images of supported and suspended carbon and 1200 K, we find linear current/voltage polymer brush, grafted from a crosslinked monolayer nanosheets. A. Turchanin A) A "1etnmal., thick SAM of biphenyl Advanced molecules is Materials irradiated 21, 1233 by(2009); electrons. This results etcurves I. Amin (Fig. 6, al., Small 2B,1623 C, and E). Increasing the (2010). (nanosheet) that provides mechanical stability and structural in a mechanically stable crosslinked SAM (nanosheet) that can be removed from the substrate annealing temperature to "1200 K, drops the integrity. Because of the morphological similarity, we refer to and transferred onto other solid surfaces. When transferred onto TEM grids, nanosheets suspend sheet resistivity to "100 kV sq#1, demonstrat- over holes. Upon heating to T > 1000 Kthis in as a ‘‘polymer carpet.’’ vacuum (pyrolysis), nanosheets transform into a ing the clear metallic nature of the film. This graphitic phase. B) Optical microscopy image of the section of a "5 cm2 nanosheet that was transferred from a gold surface to an oxidized silicon wafer (300 nm SiO2). Some folds in the large resistivity is only one order of magnitude 2. Results sheet are visible, and originate from wrinkling and during the Discussion transfer process. C) Optical microscopy higher than that of a Jdefect-free graphene ürgen Schnack, CMD for CNM 4/36 [4] image of a line pattern of 10 mm stripes of nanosheet. The pattern was fabricated by e-beam monolayer, and "100 times lower than the For the lithography and then transferred onto oxidized fabrication silicon. of the Note that polymer carpets, small lines are aalmost !1-nm-thin
à á á à p ? 6 Introduction Problems for theory • Systems contain very many carbon atoms. • Structure very likely irregular. Defects? • Quantum Methods, even DFT, cannot deal with such systems. No way! . . . and there are more questions to come. Jürgen Schnack, CMD for CNM 5/36
à á á à p ? 6 Thank God, we have computers Thank God, we have computers “Espresso-doped multi-core” 128 cores, 384 GB RAM . . . but that’s not enough! Jürgen Schnack, CMD for CNM 6/36
à á á à p ? 6 Contents for you today Contents for you today √ 1. Carbon nanomembranes 2. Classical molecular dynamics 3. Mechanical properties 4. Structure of CNMs 5. Open problems Jürgen Schnack, CMD for CNM 7/36
à á á à p ? 6 CMD Classical Molecular Dynamics • CMD can model very large systems (∼ 10.000.000 particles). • CMD can find ground states and model dynamics. • CMD can model thermal equilibrium and non-equilibrium. • But how should this be realistic for carbon-based com- pounds, where the chemical bond is of quantum nature? Jürgen Schnack, CMD for CNM 9/36
à á á à p ? 6 CMD sp hybridization modes sp, sp2, and sp3 hybridization modes. wikipedia: orbital hybridization Jürgen Schnack, CMD for CNM 10/36
à á á à p ? 6 CMD Very sophisticated carbon potential N X ~p2 i H(~r1,~p1;~r2,~p2; . . . ) = + V (~r1,~r2, . . . ) i=1 2m N X N X V (~r1,~r2, . . . ) = U2(|~ri −~rj |, Zi) + U3(|~ri −~rj |, |~ri −~rk |, Θijk , Zi) i6=j i6=(j
U2 (rij , 1.0) U2 (rij , 2.0) U2 (rij , 3.0) -2.5 U2 (rij , 4.0) à á á à p ? 6 U2 (rij , 5.0) CMD U2 (rij , 6.0) -3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 Coordination dependence rij [Å] Abbildung 0.1: Die Funktionenschar U2 (r, Z) für unterschiedliche Koordinationen Z 1 0 20 18 -0.5 16 14 -1 U2 (rij , Z) [eV] 12 h(◊, Z) [eV] -1.5 10 8 -2 U2 (rij , 1.0) 6 U2 (rij , 2.0) U2 (rij , 3.0) 4 h(◊, 2.0) -2.5 U2 (rij , 4.0) h(◊, 3.0) U2 (rij , 5.0) 2 h(◊, 4.0) U2 (rij , 6.0) h(◊, 6.0) -3 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 0 90 120 180 250.5 rij [Å] ◊ [¶ ] Abbildung 0.1: Die Funktionenschar U2 (r, Z) für unterschiedliche Koordinationen Z Abbildung 0.2: Die Funktionenschar h(◊, Z) Coordination influences strength and direction of bonding. 20 18 N. A. Marks, Phys. Rev. B 63, 035401 (2000). 16 A. Mrugalla, Master thesis (2013) 14 12 h(◊, Z) [eV] 10 8 6 4 h(◊, 2.0) Jürgen Schnack, CMD for CNM 12/36 h(◊, 3.0) 2 h(◊, 4.0) h(◊, 6.0)
à á á à p ? 6 CMD What can be achieved realistically? • Structure calculations. • Dynamical self-organization (1). • Mechanical properties, such as vibrational spectra and response to mechanical stress. • Sorry, no electronic properties, such as conductance or heat conductance. (1) R. C. Powles, N. A. Marks, and D. W. M. Lau, Phys. Rev. B 79, 075430 (2009). Jürgen Schnack, CMD for CNM 13/36
à á á à p ? 6 Modulus Mechanical properties (Young’s modulus) F. Gayk, J. Ehrens, T. Heitmann, P. Vorndamme, A. Mrugalla, and J. Schnack, Physica E 99, 215 (2018). Jürgen Schnack, CMD for CNM 14/36
à á á à p ? 6 Modulus Question What is the predictive power of classical carbon potentials for structure and moduli for known carbon materials? . . . before we start to investigate unknown materials! Jürgen Schnack, CMD for CNM 15/36
à á á à p ? 6 Modulus Ground state distances for graphene, CNT, and diamond Table 1: Ground-state dimensions in Å of graphene, CNT, and diamond for the investigated potentials (LAMMPS). (* No proper ground state structure found; † anisotropic.) potential graphene CNT diamond C-C distance C-C distance lattice const. EDIP 1.42 1.42 3.56 REBO-II 1.42 1.42 3.58 ABOP 1.42 1.424, 1.417 † 3.46 Tersoff 89 1.46 1.46 3.57 Tersoff 90 * * 3.56 Tersoff 94 1.55 * 3.56 Tersoff BNC 1.44 1.44 - Tersoff EA 1.48 1.48 3.57 AIREBO+LJ+t 1.40 1.41 3.58 AIREBO+LJ 1.40 1.40 3.58 AIREBO+t 1.40 1.40 3.58 AIREBO 1.40 1.40 3.58 experimental 1.42 1.42 3.567 Jürgen Schnack, CMD for CNM 16/36
à á á à p ? 6 Modulus Young’s modulus for graphene 1500 1400 1400 1300 Tersoff 1989 1200 Tersoff 1989 1200 REBO-II Tersoff 1990 E / GPa E / GPa EDIP 1000 Tersoff 1994 1100 ABOP Tersoff EA 2005 1000 AIREBO+LJ+t 800 Tersoff BNC 2012 AIREBO+LJ 900 AIREBO+t AIREBO 600 800 700 400 0 0.01 0.02 0.03 0.04 0 0.01 0.02 0.03 0.04 1/N 1/N Young’s modulus of graphene for various sizes and potentials. N denotes the num- ber of atoms in the approximately square graphene sheets. Open boundary condi- tions are applied. Experimental value: 1000 GPa. Jürgen Schnack, CMD for CNM 17/36
à á á à p ? 6 Modulus Young’s modulus for CNT 1300 1300 1200 1200 1100 1100 1000 1000 Tersoff 1989 900 E / GPa E / GPa Tersoff 1989 Tersoff 1990 900 REBO-II 800 Tersoff 1994 EDIP Tersoff EA 2005 800 ABOP 700 Tersoff BNC 2012 AIREBO+LJ+t 600 700 AIREBO+LJ 500 AIREBO+t 600 AIREBO 400 500 300 0 0.002 0.004 0.006 0.008 0 0.002 0.004 0.006 0.008 1/N 1/N Young’s modulus of a (20,20) CNT with armchair geometry along the tube, taken as x-direction, for various sizes and potentials. N denotes the number of atoms of the tube. Open boundary conditions are applied. Experimental value: 1000 GPa. Jürgen Schnack, CMD for CNM 18/36
à á á à p ? 6 Modulus Young’s modulus for diamond GPa 1130 1110 1090 1070 1050 z y x Structure and directions as well as Young’s modulus of diamond taken in various directions on the northern hemisphere around the positive x-direction for N = 8631 and the EDIP potential. Open boundary conditions are applied. Experimental values: 1.05 TPa . . . 1.21 TPa Jürgen Schnack, CMD for CNM 19/36
à á á à p ? 6 Modulus Conclusion For the investigated observables (bond length & Young’s modulus) and the chosen carbon materials EDIP and REBO-II perform overall well. F. Gayk, J. Ehrens, T. Heitmann, P. Vorndamme, A. Mrugalla, and J. Schnack, Physica E 99, 215 (2018). Jürgen Schnack, CMD for CNM 20/36
à á á à p ? 6 Structure How to find the Structure of CNMs? Jürgen Schnack, CMD for CNM 21/36
à á á à p ? 6 Structure Questions • The structure or a structure? • Structure very likely a metastable state, a local energy minimum. Glas-like? • How to model? Initial conditions, cooling, . . . ? • Which structures are correct? Observables? • X-ray structure determination impossible! Jürgen Schnack, CMD for CNM 22/36
à á á à p ? 6 Structure That’s how we do it z −Fz z random Vwall Model: includes only carbon atoms (+ surface); Initial state: randomized carbon positions in SAM, vertical force field; Cooling: Nose-Hoover or alike; LAMMPS: EDIP and analytical forces included in our version. Jürgen Schnack, CMD for CNM 23/36
Tabelle 7.2 und sind, verglichen mit den experimentellen Werten (≥10 GPa, siehe Ab- à á á à p ? schnitt 6 6.7), deutlich zu groß. Offensichtlich machen die Sechsecke die linke Struktur Structure in Abbildung 17 stabiler als die rechte. Außerdem wird durch den geringeren Impuls Examples of CMNs die Struktur weniger durchmischt und erhält einen weniger isotropen E-Modul. eV eV Abbildung 17: TPT, T = 700 K; k = 30 Å (links) und k = 200 Å (rechts) F. Gayk, Master Thesis, Bielefeld University (2018) J. Ehrens et al., arXiv:2011.00880 Tabelle 7.2: E-Module (bezüglich: Boxvolumen|Oberflächennetzvolumen) Ex / GPa Ey / GPa TPT (T=700 K, k = 30 eV Å ) 436| 847 334| 649 eV TPT (T=700 K, k = 200 Å ) 215| 448 220| 457 TPT (T=300 K, k = 60 eV Å ) 325| 987 316| 960 Jürgen Schnack, CMD for CNM 24/36 TPT (T=1100 K, k = 60 eV Å ) 351| 866 339| 838
Die zugehörigen E-Module betragen links Ex = 231|730 GPa bzw. Ey = 230|725 GPa à á á à p ? und6 rechts Ex = 487|916 GPa bzw. Ey = 455|856 GPa. Obwohl die rechte Struk- Structure tur größere Löcher hat, ist sie wegen ihrer geringeren Dicke stabiler. Offensichtlich führen auch große LöcherExamples of CMNs zu keinem E-Modul, welches in die Größenordnung der experimentellen Werte von ≥10 GPa kommt. eV Å Abbildung 21: k = 60 Å , T = 300 K, v = 35 ps ; BPT, N = 4900 (links) und NPTH, N = 2500 (rechts) F. Gayk, Master Thesis, Bielefeld University (2018) Å In Abbildung 21 sind die zu BPT und NPTH gehörenden Resultate für v = 35 ps J. Ehrens et al., arXiv:2011.00880 38 Jürgen Schnack, CMD for CNM 25/36
à á á à p ? 6 Structure Examples of CMNs 7.4. DFT Struktur als Ausgangszustand eV Abbildung 26: DFT Struktur (links); k = 60 Å , T = 300 K auf DFT Struktur (rechts) Randomized and cooled DFT structure (1). 7.4.2. Atome (1) P. Cabrera-Sanfelix, entfernen A. Arnau, and D. Sanchez-Portal, Phys. Chem. Chem. Phys. 12, 1578 (2010). (2) F. Gayk, Master Thesis, Bielefeld University (2018) Da allerdings auch dieser E-Modul zu groß ist, wird versucht durch zufälliges Löschen einiger Atome die Dichte zu verringern. Es werden Anteile von p = 5 %, p = 10 % und p = 20 % gewählt. Die Resultate für p = 5 % und p = 20 % befinden sich in Abbildung 27. Qualitativ sind keine großen Unterschiede zu erkennen. Jürgen Schnack, CMD for CNM 26/36
à á á à p ? 6 Structure Examples of CMNs CNM have got holes (pores)! In simulations this depends on initial conditions: more violence ⇒ more holes. Jürgen Schnack, CMD for CNM 27/36
in Abbildung 17 stabiler als die rechte. Außerdem wird durch den geringeren Impuls 6.7. Beulentest mit dem Rasterkraftmikroskop die Struktur weniger durchmischt und erhält einen weniger isotropen E-Modul. Beim Beulentest wird die CNM über dem Loch eines Trägers fixiert und ein Druck- à á á à p ? 6 unterschied zwischen beiden Seiten erzeugt (siehe Abbildung 13). Die Größe der ent- Structure stehenden Beule wird mit einem Rasterkraftmikroskop vermessen und erlaubt eine Berechnung des E-Moduls. Weitere Informationen zum Verfahren befinden sich in Young’s modulus of CMNs Referenz [44]. In Abbildung 14 sind die E-Module und weitere Eigenschaften für die drei verwendeten SAMs aufgelistet. eV eV Abbildung 17: TPT, T = 700 K; k = 30 Å (links) und k = 200 Å (rechts) Abbildung 13: Aufbau des Beulentests [44] Tabelle 7.2: E-Module (bezüglich: Boxvolumen|Oberflächennetzvolumen) Ex / GPa Ey / GPa TPT (T=700 K, k = 30 eV Å ) 436| 847 334| 649 TPT (T=700 K, k = 200 eV Å ) 215| 448 220| 457 TPT (T=300 K, k = 60 eV Å ) 325| 987 316| 960 TPT (T=1100 K, k = 60 eV Å ) 351| 866 339| 838 BPT (T=700 K, k = 60 eV Å ) 202| 736 191| 695 NPTH (T=700 K, k = 60 eVÅ ) 536|1367 500|1277 Abbildung 14: E-Module aus Beulentest [44] In Abbildung 18 sind die Resultate für die gleiche SAM für zwei unterschiedli- che Fluktuationsstärken dargestellt. Hier gibt es auf den ersten Blick keine großen Unterschiede in der Art der Vernetzung. Durch die größere kinetische Energie bei identischer Simulationsdauer ist die rechte Struktur etwas höher gewandert. Das grö- Theoretical Young’s moduli closer to graphene; ßere Volumen ist vermutlich auch der Grund dafür, dass die mit Oberflächennetz factor 10 . . . 50 bigger than experiment. berechneten E-Module in der rechten Struktur etwas kleiner sind (siehe Tabelle 7.2). F. Gayk, Master Thesis, Bielefeld University (2018) 35 X. Zhang, C. Neumann, P. Angelova, A. Beyer, and A. Gölzhäuser, Langmuir 30, 8221 (2014). Jürgen Schnack, CMD for CNM 28/36 29
à á á à p ? 6 Structure Alternative structure Possible configuration of a Biphenyl layer, ARGUS Lab (1). Not realistic, since construction principle works only for BPT. NEXAFS shows about 60 % aromaticity, i.e. 40 % of phenyl rings are broken. (1) D. Rhinow, N.-E. Weber, A. Turchanin, J. Phys. Chem. C 116, 12295 (2012). Jürgen Schnack, CMD for CNM 29/36
à á á à p ? 6 ODT CNMs from spaghetti? Jürgen Schnack, CMD for CNM 30/36
previously mentioned appplications comprise SAMs on solid supports.. However, aromatic à á á à p ? 6 ODT SAMs can even be laterally ly cross-linked and transferred as monomolecular ar thin membranes on micrometer-sized holes (see Octadecanethiol (s below), which provides an innovative techn [1],[2]],[9] nology in the field of membrane separation . Figure 2.1: (a) Schematic diaggram depicting a self-assembled monolayer (SAM) of alk lkanethiolates on a metal substrate. (b) Scheme of a decan anethiol molecule adsorbed on a solid surface. The orientat ation of the molecule with respect to the substrate surface is defined by the tilt angle α, the twist angle β, and the pre recession angle χ. Part a is reprinted with permission from m ref 16. Copyright (2005) American Chemical Society.. Part b is reprinted with permission from ref [20]. Copyri right (2010) Royal Society of Chemistry (Great Britain). Patrick Stohmann, Dissertation, Bielefeld, 2020. 9 Jürgen Schnack, CMD for CNM 31/36
à á á à p ? 6 ODT Octadecanethiol (ODT, C18) – initial SAM J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev. 105, 1103 (2005). Jürgen Schnack, CMD for CNM 32/36
à á á à p ? 6 ODT Octa-decane-thiol (ODT, C18) – first simulations Structure is mechanically stable Phenyls do not form Theoretical Young’s modulus much smaller than for BPT, TPT or NPT J. Ehrens, private communication Jürgen Schnack, CMD for CNM 33/36
à á á à p ? 6 Open questions Open questions • Structure correct? Discrepancy w.r.t. Young’s modulus! • Compare to ion deflection studies (Richard Arthur Wilhelm (Wien))! • How thick is a CNM? • Precursor-CNM correlations? Which, if any? • No thiols in decane-based CNMs? • Systematic investigation of holes needed. • Future: water permeation. Jürgen Schnack, CMD for CNM 34/36
à á á à p ? 6 Summary Summary • Classical Molecular Dynamics can be set up for carbon systems using effective many-body car- bon potentials. • Ground-state geometries can be determined with great accuracy (exception graphite). • Dynamical self-assembly can be simulated. • Prospect to simulate nano sheets with realistic, i.e. probably irregular structure. • Electronic properties CANNOT be modeled. Jürgen Schnack, CMD for CNM 35/36
à á á à p ? 6 The end Thank you very much for your attention. Jürgen Schnack, CMD for CNM 36/36
You can also read