Studienund Masterarbeiten Supercomputing Systems AG

Page created by Kathy Jensen
 
CONTINUE READING
Studienund Masterarbeiten Supercomputing Systems AG
Studien- und Masterarbeiten
Supercomputing Systems AG
Stand Oktober 2019

https://www.scs.ch/karriere/studien-und-masterarbeiten-bei-scs/

Vision trifft Realität.

Supercomputing Systems AG   Phone +41 43 456 16 00
Technopark 1                Fax +41 43 456 16 10
8005 Zürich                 www.scs.ch
Studienund Masterarbeiten Supercomputing Systems AG
Towards User-independent 2D/3D Object Classification of
    Complex Life Science Images

    We develop novel machine vision & mathematical
    morphology algorithms to analyze complex multi-
    modal Life Science images. The goal of this work is
    the development of 2D/3D image segmentation &
    classification algorithms for (semi-)automated analysis
    of complex cellular structures in plants & liver images
    from Electron Micrographs (EM).

    Art der Arbeit:  30% Theory, 70% Software Engineering
    Voraussetzungen: Solid knowledge of Matlab and C++
                     Good knowledge of Image Processing
    Aufwand:         MA, 1-2 Personen
    Ansprechperson : fabian.schenkel@scs.ch
2   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Studienund Masterarbeiten Supercomputing Systems AG
Automating DDH Diagnosis using Machine/Deep Learning
    Techniques

    Between 2 and 3 percent of all infants are diagnosed with
    developmental dysplasia of the hip (DDH), and it is believed
    that approximately 30% of all hip replacement surgeries on
    patients below the age of 60 are owed to DDH.
    While previous scientific publications as well as research at
    SCS has shown that deep learning-based methods can
    already outperform human experts in measuring angles of the
    hip bones, there is no method yet to reliably detect
    automatically whether an US image has been obtained using
    correct orientation of the US probe.

    Art der Arbeit:                     60% Research, 20% Benchmarking, 20% SW Development
    Voraussetzungen:                    Machine Learning & Deep Learning Basics, Python, C/C++
    Aufwand:                            MA, 1 Person
    Ansprechperson :                    fabian.schenkel@scs.ch
3   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Studienund Masterarbeiten Supercomputing Systems AG
Transfer Learning for Image Segmentation using Convolutional
    Neural Networks

    Today’s Machine Learning (ML) success is often limited
    by a lack of labelled ground truth data to train the
    models. This is especially true for applications in
    medical imaging. In medical optical coherence
    tomography (OCT) of the eye, only a limited set of GT-
    labeled images exists.
    Transfer learning (TL) is a state-of-art ML-technique
    that can be useful to overcome this problem for similar
    yet distinct tasks.

    Art der Arbeit:                     30% Theory, 40% Implementation, 30% Evaluation
    Voraussetzungen:                    High-level programming language, ML/DL knowledge helpful
    Aufwand:                            MA, 1 Person
    Ansprechperson :                    fabian.schenkel@scs.ch

4   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Studienund Masterarbeiten Supercomputing Systems AG
MLOps: Bring Your Model to Production

    The field of ML is growing up. In the past, questions like "which AI algorithm
    should I choose" and "what is the best way to train it" were the main focus of AI
    projects. Today, these topics are well explored.
    Now, new questions get into focus: how can we
    bring our model actually to production in a reliable
    and reproducible way? How can we integrate data
    acquisition, training, and monitoring of our model
    into an automated system?

    Art der Arbeit:                     60% Implementation, 20% Theory, 20% Testing/Benchmark
    Voraussetzungen:                    Machine Learning Basics, DevOps Basics
    Aufwand:                            MA, 1-2 Personen
    Ansprechperson :                    fabian.schenkel@scs.ch

5   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Studienund Masterarbeiten Supercomputing Systems AG
Deep Learning in the Wild

    Climate change and human exploitation of our planet has a significant influence
    on the habitat and existence of wild animals. The resulting biodiversity loss
    threatens ecosystems and the human development that depends on them.
    Protecting these habitats is based on delivering evidence by collecting data. This
    is usually labour intensive, since it depends on
    field work done by biologist and volunteers.
    This master thesis tries to make a contribution to
    scale up this important process by using acoustic
    detection of animals using deep learning on
    embedded systems.

    Art der Arbeit:                     50% Deep Learning, 30% Embedded Dev, 20% Benchmark
    Voraussetzungen:                    ML & DL Basics, Signal Processing, Python
    Aufwand:                            MA, 1 Person
    Ansprechperson :                    fabian.schenkel@scs.ch

6   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Studienund Masterarbeiten Supercomputing Systems AG
Deep Learning for Estimating the Rail-Wheel Forces of an ICN
     based on Track Geometry

     Tilting trains can travel at higher speeds without degrading the passenger
     comfort. However, these higher speeds lead to larger rail-wheel interaction
     forces. This larger forces have to be monitored in order to maintain general
     safety (e.g. to prevent derailment).
     This thesis tries to make a contribution to a cost
     efficient monitoring system. The goal is to learn the
     train characteristics with a deep learning network so
     that it can process track geometry data and predict
     the resulting forces.

    Art der Arbeit:  30% DL Theory, 15% Theory Rail/Wheel Interaction,
                     40% Implementation, 15% Benchmark
    Voraussetzungen: ML & DL Basics, Signal Processing, Python
    Aufwand:         BA/MA, 1-2 Personen
    Ansprechperson : fabian.schenkel@scs.ch
7    Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Studienund Masterarbeiten Supercomputing Systems AG
Automatisierte Anamnese von Heizungen und
    Gebäudeenergieanlagen

    In der Schweiz besteht ein grosses
    Energieeffizienzpotential in Gebäuden. Bestehende
    Heizungsanlagen sind heute oft nicht ideal eingestellt,
    weisen Mängel auf oder sind gar dysfunktional.
    Zur Detektion dieser Mängel soll ein Prototyp eines
    automatisierten Anamnese-Systems aufgebaut werden,
    welches aufgrund von sensorischen Messgrössen
    (primär Temperaturfühler) die Anlage identifiziert, auf
    Fehler analysiert und eine Liste von
    Handlungsempfehlungen generiert, um das System zu
    verbessern.
    Art der Arbeit:                     40% Theorie, 60% Umsetzung
    Voraussetzungen:                    Signalverarbeitung, Programmierung
    Aufwand:                            MA, 1-2 Personen
    Ansprechperson :                    fabian.schenkel@scs.ch
8   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Studienund Masterarbeiten Supercomputing Systems AG
Detektion von Kabelfehlern in der Aussenanlage

    Eine Herausforderung beim Betrieb von Bahnstrecken ist die Überwachung von
    Elementen (z.B. Weichen) und deren Verkabelung. Ein weit verbreitetes
    Verfahren ist die Überwachung der Adern durch einen Ruhestrom. Speziell bei
    den heute immer noch weit verbreiteten Lösungen auf Relaisbasis ist die
    Überwachung des Stromes sehr eingeschränkt.
    In der vorliegenden Arbeit soll ein Verfahren
    konzipiert, aufgebaut und bewertet werden, das
    es erlaubt, rückwirkungsfrei einen Rückschluss
    auf die bestehende Verschaltungen der
    vorliegenden Aussenanlage zu geben, und
    damit den Betrieb und Instandhaltung bei der
    Fehlersuche unterstützen.

    Art der Arbeit:                     30% Theorie, 40% Algorithmus, 30% Erprobung
    Voraussetzungen:                    Signalverarbeitung
    Aufwand:                            MA, 1-2 Personen
    Ansprechperson :                    fabian.schenkel@scs.ch
9   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Studienund Masterarbeiten Supercomputing Systems AG
Self-Calibration for Embedded Stereo Vision System

     Stereo Vision allows accurately measuring scenes in 3D
     – provided that the cameras are well calibrated. Harsh
     industrial or automotive contexts affect opto-mechanical
     properties of the stereo-rig and its measurement
     accuracy.
     The goal of this thesis is to explore, test and analyze
     different methods and algorithms for continuous stereo-
     vision calibration. The solution has to determine the
     extrinsic and intrinsic camera parameters without any
     markers or reference objects.

     Art der Arbeit:                     40% Theory, 40% Implementation, 20% Benchmarking
     Voraussetzungen:                    Computer Vision, OpenCV
     Aufwand:                            MA, 1 Person
     Ansprechperson :                    fabian.schenkel@scs.ch

10   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Virtual Reality as 3D Ground Truth Generator for AI, Machine
     Learning and Deep Learning

     Training effective Artificial Intelligence (AI) algorithms today often requires large
     amounts of ground truth data. Typically, this is a laborious, costly and time-
     consuming process. These problems can be overcome by combining AI with
     Virtual Reality (VR): VR creates artificial
     environments that often resemble our real world.
     This project aims at exploring the potential of VR
     as 3D ground truth generator for state-of-the-art
     Machine Learning (ML) and Deep Learning (DL)
     algorithms.

     Art der Arbeit:                     50% Research, 20% SW Development, 30% Benchmarking
     Voraussetzungen:                    Machine Learning & Deep Learning Basics, Python, Matlab
     Aufwand:                            MA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch
11   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Generating 3D Indoor Maps Autonomously Through
     Reinforcement Learning

     In September 2017, Unity Technologies released the first open beta of the Unity
     Machine Learning Agents Toolkit. With this toolkit, it is possible to train agents to
     solve a specific task in a simulated environment. But how complex can a task in
     such a simulated environment be, which we want to solve? To explore this issue,
     we want to train an agent using reinforcement
     learning that can be used to autonomously move
     an unit through a room. At the same time, the
     agent should be able to scan the room and
     generate a 3D map of it.

     Art der Arbeit:                     30% Theorie, 70% Umsetzung
     Voraussetzungen:                    Machine Learning, CV Basics, Unity Basics, C#, Python
     Aufwand:                            MA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch

12   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Decentralized Ledger eVoting System

     eVoting is an unsolved problem, mainly because of security concerns connected
     to centralized IT systems. Blockchain technology enables new ways to solve IT
     problems in a transparent, tamper-proof and decentralized way.
     This master thesis aims at implementing a
     voting solution that scales to Swiss national
     votes. The technologies to be used could
     include zero knowledge proofs (zk-SNARKS),
     homomorphic encryption and smart contracts
     on a public blockchain (i.e. ethereum).

     Art der Arbeit:                     60% Theory, 40% Implementation
     Voraussetzungen:                    Cryptography, Blockchain
     Aufwand:                            MA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch

13   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Building a new Ecological and Private Cryptocurrency

     encointer proposes a new blockchain-based cryptocurrency with an ecological
     consensus mechanism using trusted execution environments and an egalitarian
     money supply policy, where money issuance is done by individuals attending
     randomized pseudonym key signing events. encointer also features scalable
     private transactions and trustless off-chain
     smart contracts.
     This thesis shall build an encointer
     testnet based on Hyperledger Sawtooth.

     Art der Arbeit:                     30% Theorie, 70% Umsetzung
     Voraussetzungen:                    Blockchain basics, Go
     Aufwand:                            MA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch
14   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Software-Architecture for SDR (Software Defined Radio)

     Alle aktuellen SDR Softwarepakete haben Einschränkungen. Es gibt GNU Radio,
     welches kompliziert und schwierig zu bedienen ist, und es gibt verschiedene
     SDR GUIs, welche jedoch nicht einfach erweiterbar sind. Das Ziel ist eine
     einfach zu bedienende Software zu erstellen, welche es ermöglicht, Radiosignale
     zu analysieren und Algorithmen auszuprobieren.
     Fertige Abläufe sollen dann auf Knopfdruck
     in eine C-Datei exportiert werden können, um
     eine Integration in Embedded Systeme so leicht
     wie möglich zu gestalten.

     Art der Arbeit:                     10% Theorie, 90% Software Engineering
     Voraussetzungen:                    C/C++ oder C#, GUI design (MVVM, WPF, QT oder Web)
     Aufwand:                            SA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch

15   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
AI-based Golf-Coach with Automated Swing Analysis

       Der Golfschwung gilt als einer der komplexesten Bewegungsabläufe aller
       Sportarten. Für den Amateurgolfer besteht die Schwierigkeit darin, bei einem
       Fehlschlag den Fehler in seiner Bewegung zu erkennen und zu korrigieren.

       Das Ziel dieser Arbeit ist die automatisierte
       Analyse des Bewegungsablaufs des
       Golfspielers anhand von Filmaufnahmen,
       gezieltes Erkennen fehlerhafter Muster, sowie
       das Ausgeben von Korrekturvorschlägen.

     Art der Arbeit:                     20% Theorie, 70% Umsetzung, 10% Benchmarking
     Voraussetzungen:                    Interesse an Computer Vision und SW-Entwicklung
     Aufwand:                            SA/BA/MA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch
16   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Flexible FPGA-based Test Equipment to Model and Characterize
     the Real-Time Behavior of an Ethernet Ring

     In this work, flexible test equipment for Ethernet network
     hardware and firmware shall be evaluate and
     commissioned.
     The goal is to model and characterize an Ethernet
     network based on BroadR-Reach with ring topology and
     HSR protocol for its real-time behavior.
     The test equipment could be based on devices available
     at http://netfpga.org. Extensions may be developed to
     further improve functionality.

     Art der Arbeit:                     40% Theorie, 60% Implementation
     Voraussetzungen:                    Ethernet Networks, FPGA Implementation, SW, Testing
     Aufwand:                            SA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch

17   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Jogging with Acoustic Feedback based on Body Rhythms

     Jogging has become very popular in recent years, with millions of people across
     the world integrating it into their regular exercise regime. Many, however, do so
     with poor movement coordination, particularly in terms of the synchronization of
     body rhythms such as cadence, breathing and heartbeats.

     In this Master’s thesis, we aim to develop a digital
     application that will support runners in finding their
     natural jogging ‘groove’ by providing them with
     acoustic, real-time feedback on their individual
     style and technique.

     Art der Arbeit:                     20% Theory, 60% Design/Implementation, 20% App Dev
     Voraussetzungen:                    Programming basics, Enthusiasm
     Aufwand:                            MA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch
18   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Privacy Preserving OAuth Service with TEEs

     If we use Google, Facebook, or SwissID logins for third party sites, these login
     providers get to know when we log into which service. Moreover, the user has
     only little control over which data from her/his Google or Facebook accounts are
     shared with the service she/he's logging into.
     The goal of this thesis is to build a blind Oauth
     service using a Trusted Execution Environment,
     which can be easily integrated into third party
     sites just like the above mentioned services.

     Art der Arbeit:                     30% Theory, 70% Implementation
     Voraussetzungen:                    Rust
     Aufwand:                            MA, 1 Person
     Ansprechperson :                    fabian.schenkel@scs.ch

19   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Enhanced Body Control through Body Tracking and Data
     Visualization

     Currently, especially athletes and tech geeks are using tools that allow to
     measure and track body functions like pulse, blood pressure, or respiration.
     However, the trend towards measurement of bodily functions is increasing
     steadily, while the possibilities of data acquisition are constantly being extended.
     The goal of this work is to develop a new tool that
     allows a human to learn to control non-visible
     body functions through visual feedback provided
     by the tool. If the project is successful, the goal is
     to show the final work in an art exhibition.

     Art der Arbeit:                     40% Theory, 60% Implementation
     Voraussetzungen:                    Data visualization
     Aufwand:                            SA/BA/MA, 1-2 Personen
     Ansprechperson :                    fabian.schenkel@scs.ch

20   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Developing a Payed Web Service that Guarantees no Data
     Collection

     What happens with our data when you log-in to an online service, e. g. over a
     smartphone app? Is your complete usage profile forwarded to the company?
     The goal of this thesis is to evaluate an approach that obfuscates the actual
     usage of a service, while maintaining the
     possibility to restrict access to paying
     customers. The idea is to run the login
     process on a Trusted Execution
     Environment. What happens inside the TEE
     cannot be seen by the company running the
     service, not even by an admin.

     Art der Arbeit:                     30% Theory, 70% Implementation
     Voraussetzungen:                    Interest in privacy, Openness to work with new technologies
     Aufwand:                            MA, 1 Person
     Ansprechperson :                    fabian.schenkel@scs.ch
21   Zürich 07.10.2019 © by Supercomputing Systems AG   CONFIDENTIAL
Supercomputing Systems AG
info@scs.ch +41 43 456 16 00

Vision meets reality.

Supercomputing Systems AG   Phone +41 43 456 16 00
Technopark 1                Fax +41 43 456 16 10
8005 Zürich                 www.scs.ch
You can also read