The n_TOF NEAR Station and New Spallation Target: Experimental program for 2022 - Ciemat
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
The n_TOF NEAR Station and New Spallation Target: Experimental program for 2022 alberto.mengoni@cern.ch www.cern.ch/n_TOF
n_TOF @ CERN C. Rubbia et al., A high resolution spallation driven facility at the CERN-PS to measure neutron cross sections in the interval from 1 eV to 250 MeV CERN/LHC/98-02(EET) 1998 n_TOF
n_TOF @ Design of EAR2 CERN Dump EAR2 Collimator EAR1 Magnet ~ 20 m Target ~ 200 m 20 GeV/c proton beam Protons From the PS accelerator Both beam lines have: Two experimental areas (EAR): Two experimental areas (EAR) • 1st collimator: • Horizontal flight Both path: beam lines with Horizontal halo cleaning•+ first flight path beam shaping. EAR1 at•182.51st m collimator • Filter station. • Vertical flight path: • Sweeping magnet. EAR1 at 200 m halo cleaning, initial beam EAR2 at 18.2 m shaping • Vertical • 2nd collimator: beam shaping.flight-path • Filter station EAR2 at 20 m • Sweeping magnet • 2nd collimator for beam shaping Two experimental areas running in parallel. Vasilis.Vlachoudis@cern.ch
n_TOF @ CERN 4 proton beam momentum 20 GeV/c intensity (dedicated mode) 7 x 1012 protons/pulse repetition frequency 1 pulse/1.2s pulse width 6 ns (rms) n/p 300 lead target dimensions 80x80x60 cm3 cooling & moderation material N2 & H2O (borated) moderator thickness in the exit face 5 cm neutron beam dimension in EAR-1 2 cm (FWHM) (capture mode)
n_TOF @ CERN: 3 -generation rd target § 3rd generation spallation target, pure Pb based, N2-gas cooled, water moderated § Several innovations have been introduced courtesy of Oliver Aberle and Marco Calviani CERN
n_TOF @ CERN: 3 -generation rd target Cooling and moderator station courtesy of Oliver Aberle and Marco Calviani, CERN
EAR1 beam line 8 SmCo sweeping magnet Neutron shielding 1st collimator 2nd “shaping” collimator Filter station Spallation target 8
EAR2 beam line 2nd “shaping” collimator Filter station 1st collimator SmCo sweeping magnet Spallation target M. Calviani | n_TOF Facility at CERN | NSTAPP
EAR1 beam commissioning C6D6 and iTED SiMON1 – 6Li 4 Si detectors off-beam PTB – 235U gas Ionization chamber neutr on beam Timepix-2 TAC - Total Absorption Calorimeter Si detector BaF2 crystals MGAS1 - 235U & 10B PPAC1 – 2 x 235U gas Ionization detector September 2021
EAR2 beam commissioning • The first proton beam for n_TOF after LS2 was delivered, as planned, on 19 July 2021 Timepix2 • The new target commissioning is proceeding Si detector with excellent reliability and availability of key performance indicators PPAC2 with 238U, 237Np • First weeks of commissioning went faster than planned in terms of protons on target, bunch intensity, average intensity, and power on target MGAS2 - 235U & 10B gas Ionization detector The neutron beam characteristic measurements (Timepix1) is in taking data in both experimental Si detector areas EAR1 and EAR2 SiMON2 - 6Li 4 Si detectors neutron beam September 2021
TIMEPIX as beam monitor at n_TOF EAR1 2-Quad Timepix has been used for beam alignment and for flux measurement in Phase-2021
EAR1 neutron flux 13
EAR1 neutron flux 14
EAR1 neutron flux 15
EAR2 neutron flux 16
EAR2 energy resolution improved 17 J. Lerendegui, V. Alcayne, A. Casanovas, F. García, E. Mendoza, E. Musacchio, J.A. Pavón et al. (The n_TOF Collaboration)
Measurement of 94,95,96Mo(n,γ) relevant to Astrophysics and Nuclear Technology Experimental set up Sample Mass (g) - 3 C6D6 detectors @35° distance: 25 cm 94Mo 1.7375 - 1 L6D6 detector @35° distance: 30 cm 95Mo 0.9292 - 1 sTED @0° distance: 6 cm 96Mo 1.611 natMo 0.9857 Material inside a can* with a 2 cm diameter *mass of the can 0.8073 g R Mucciola et al. (The n_TOF Collaboration), November 2021
Measurement of 94,95,96Mo(n,γ) relevant to Astrophysics and Nuclear Technology R Mucciola et al. (The n_TOF Collaboration), November 2021
Commissioning of the 3rd generation target • 3rd generation target commissioned. Performances according to expectations. All parameters as predicted. • Beams to EAR1 and EAR2 with characteristics improved with respect to previous conditions (flux & resolution). • Perspectives for a new experimental area open (NEAR Station)
21 What we do at n_TOF 1. Nuclear astrophysics 2. Advanced nuclear technologies 3. Basic nuclear science & applications
Plan of measurements: 2022 run reaction field of interest note experimental area INTC proposal – anomalies in pre-solar grains radioactive sample 94Nb(n, ) – strong contributor to the long-term radiotoxicity t1/2 = 20 ka EAR2 INTC-P-577 amongst FP – s-process thermometer radioactive sample EAR1 & EAR2 79Se(n, ) – strong contributor to the long-term radiotoxicity t1/2 = 300 ka INTC-P-580 among FP – s-process AGB stars, SiC grains 94,95,96Mo(n, ) – FP, fuel alloys stable samples (*) EAR1 INTC-P-569 – s-processing in AGB stars INTC-P-437- 160Gd(n, ) stable samples EAR1 – radioisotope (161Tb) production for theranostics ADD-1 50,53Cr(n, ) – criticality safety (major element in stainless steel) stable samples EAR1 INTC-P-588 continue… (*) part of a EU H2020 nuclear data project
Plan of measurements: 2022 run reaction field of interest note experimental area INTC proposal 239Pu(n, ) and radioactive sample – advanced nuclear technologies t1/2 = 24.1 ka (*) EAR1 INTC-P-567 -ratio 243Am(n,f) – contributes to production of 239Pu radioactive sample (by + - decays) t1/2 = 7364 a (*) EAR1 & EAR2 INTC-P-566 detector and setup NN scattering – isospin symmetry breaking developments EAR2 INTC-I-220 detection tests n + 3He – X17 (dark photon?, fifth force?) developments EAR2 INTC-I-233 detection tests and (n,lcp) – DDX measurements developments EAR1 INTC-I-221 natFe detection tests + others – HPGe detection system for (n,n’) measurements developments EAR1 INTC-I-230 (*) part of a EU H2020 nuclear data project
160Gd(n, )161Gd: proposed setup EAR1 typical setup EAR2 typical setup
Plan of measurements: 2022 run
26 The NEAR Station during the design studies of the new shielding around the target station the opportunity for a new near-target experimental area appeared (NEAR station) NEAR Station area Measurements for technical and engineering developments • Irradiation of non-metallic materials + SEE (R2M & R2E projects) – up to 1MGy/year, mixed fields • Measurements of MACS by activation for nuclear astrophysics • Fusion-related measurements (cross sections, not irradiation) • Measurements of decay rates of long-lived isotopes
The NEAR Station Closed configuration Open configuration
NEAR Station (inner area) n_TOF target area irradiation positions inside the shielding shielding OPEN n_TOF target (pool) Ana-Paula Bernardes et al. NSTAPP – Neutrons in Science, Technology and applications November 2021
29 Sample inspection (preliminary) ELASTOMER PPE GREASE MIN. OIL-BASED GREASE • No changes detectable • Change of colour • Change of colour Ø Keep the same • No displacement visible • No displacement visible configuration in 2022 09/02/2022 Courtesy of M Ferrari, CERN 10
30 R2M samples at NEAR in 2022 # PRODUCT PRODUCER TYPE GENERAL COMPOSITION POSITION TOTAL AMOUNT 1 RP-42R MORESCO oil PPE (polyphenyl ether) Shelf 160 mL 2 RG-42R-1 MORESCO grease PPE + bentonite Shelf 200 g 3 RG-42R-2 MORESCO grease PPE + bentonite Shelf 200 g 4 LY PPE 360 Lubrilog oil PPE Shelf 160 mL 5 LX AGFA 00 Lubrilog grease PPE + silica Shelf 200 g 6 LX AGFA 2 Lubrilog grease PPE + silica Shelf 200 g 7 PETAMO GHY 133N Kluberlub grease Minera oil + polyurea Shelf 200 g 8 GRIZZLYGREASE Minera oil + Li/Ca Shelf 200 g N.1 Lubcon grease 9 SANTOVAC 5GB SANTOLUBES grease PPE + unknown additives Shelf 200 g 10 Mineral oil + inorganic Shelf 200 g NUCLEOL G121 Castrol grease thickener 11 EPDM 70.10-02 Angst + Pfister elastomer EPDM-based, various additives Shelf 20 grams 12 Shieldseal 663 James Walker elastomer EPDM-based, various additives Shelf +R2 40 grams 13 Shieldseal 664 James Walker elastomer EPDM-based, various additives Shelf + R2 40 grams 14 Aeroshell grease 22 Shell grease Mineral oil + silica Shelf + R2 260 g Acknowledgements: M. Ferrari 09/02/2022 9
NEAR Station (outer area) 5E8 n/cm2/pulse (outside the shielding)
NEAR Station (outer area) n_TOF target area shielding CLOSED n eu tron s Sample + filter assembly support See INTC proposal P-623 Neutron capture cross section measurements by the activation method at the n_TOF NEAR Station Alice Manna (Universita e INFN, Bologna, IT), Elisso Stamati (University of Ioannina, GR), Gianpiero Gervino (INFN, Torino, IT)
33 The NEAR Station activation setups MAM multi-foil activation method ANTILoPE thermalization-absorption technique
34 NEAR Station (outer area) Neutron flux per proton pulse dn/dlnE [n/cm2/p-pulse] Multi-foil activation analysis (MAM) Unfolded Measurements performed during commissioning 10 8 Fluka (CERN-INTC-2020-073, INTC-I-222) Fluka (integrated) 7 10 6 10 5 10 −8 −7 −6 −5 −4 −3 −2 −1 10 10 10 10 10 10 10 10 1 10 En [MeV] home.cern Analysis performed by M Mastromarco, INFN & University of Bari
The NEAR Station example of simulations of the neutron beam in the NEAR area in comparison to the new ChipIr facility at ISIS(*) (*)D Chiesa et al., NIMA 902 (2018) 14 simulations by V Vlachoudis & M Barbagallo
The NEAR Station: Shaping the neutron flux 1 ntof-nearwg@cern.ch
The NEAR Station: Shaping the neutron flux 2 ntof-nearwg@cern.ch
The NEAR Station: Shaping the neutron flux 3 ntof-nearwg@cern.ch
39 The NEAR Station simulations by V Vlachoudis & M Barbagallo
40 The NEAR Station simulations by V Vlachoudis & M Barbagallo
41 The NEAR Station • Measurements of MACS by activation for nuclear astrophysics • Fusion-related measurements (cross sections, not irradiation) • Measurements of decay rates of long-lived isotopes Inner irradiation area: • Irradiation of non-metallic materials + SEE (R2M & R2E projects)
The NEAR Station courtesy of Oliver Aberle (CERN) Lab EAR2 ‘’A class’’ Surface Underground 20 m Rabbit tubes ~115 m Targ et a rea n_TOF target Irradiation position PS Proton beam
The NEAR Station courtesy of Oliver Aberle (CERN)
44 Conclusion The n_TOF facility at CERN is providing nuclear data for innovation of advanced nuclear technologies and basic science • Experimental program for measurements (including those related to SANDA and ARIEL Projects) • NEAR Station opens new possibilities for applications in different fields (irradiation for materials and activation measurements)
The n_TOF Collaboration Established in the year 2000 (MoU signed in 2008) • 130 researchers, mostly from Europe (participation from Japan, India and the USA) • 30+ research institutions involved • typically, 10 PhD students/year • management: Collaboration Board, Executive Committee, Editorial Board, various working groups
46 O. Aberle1 C. Domingo-Pardo7 I. Ladarescu7 I. Porras42 A. Ventura34 V. Alcayne2 R. Dressler23 C. Lederer-Woods22 J. Praena42 D. Vescovi10,14 S. Amaducci3,4 Q. Ducasse24 H. Leeb8 J. M. Quesada18 V. Vlachoudis1 J. Andrzejewski5 E. Dupont9 J. Lerendegui-Marco18 D. Ramos-Doval6 R. Vlastou21 L. Audouin6 I. Durán16 S. J. Lonsdale22 T. Rauscher44,45 A. Wallner47 V. Babiano-Suarez7 Z. Eleme25 D. Macina1 R. Reifarth27 P. J. Woods22 M. Bacak1,8,9 B. Fernández-Domínguez16 A. Manna34,35 D. Rochman23 T. Wright11 M. Barbagallo1,10 A. Ferrari1 T. Martínez2 Y. Romanets28 P. Žugec12 S. Bennett11 P. Finocchiaro3 A. Masi1 C. Rubbia1 E. Berthoumieux9 V. Furman26 C. Massimi34,35 M. Sabaté-Gilarte18,1 J. Billowes11 K. Göbel27 P. Mastinu36 A. Saxena46 R. Garg22 M. Mastromarco1 P. Schillebeeckx30 The n_TOF D. Bosnar12 A. Brown13 A. Gawlik5 E. A. Maugeri23 D. Schumann23 M. Busso10,14,15 S. Gilardoni1 A. Mazzone10,37 A. Sekhar11 M. Caamaño16 I. F. Gonçalves28 E. Mendoza2 A. G. Smith11 Collaboration L. Caballero-Ontanaya7 E. González-Romero2 A. Mengoni38 N. V. Sosnin11 F. Calviño17 C. Guerrero18 V. Michalopoulou21,1 P. Sprung23 M. Calviani1 F. Gunsing9 P. M. Milazzo39 A. Stamatopoulos21 D. Cano-Ott2 H. Harada29 F. Mingrone1 G. Tagliente10 A. Casanovas17 S. Heinitz23 J. Moreno-Soto9 J. L. Tain7 F. Cerutti1 J. Heyse30 A. Musumarra3,40 A. Tarifeño-Saldivia17 E. Chiaveri1,11 D. G. Jenkins13 A. Negret41 L. Tassan-Got1,21,6 N. Colonna10 A. Junghans31 R. Nolte24 Th. Thomas27 G. Cortés17 F. Käppeler32 F. Ogállar42 P. Torres-Sánchez42 M. A. Cortés-Giraldo18 Y. Kadi1 A. Oprea41 A. Tsinganis1 L. Cosentino3 A. Kimura29 N. Patronis25 J. Ulrich23 S. Cristallo14,19 I. Knapová33 A. Pavlik43 S. Urlass31,1 L. A. Damone10,20 M. Kokkoris21 J. Perkowski5 S. Valenta33 P. J. Davies11 Y. Kopatch26 L. Persanti10,14,19 G. Vannini34,35 M. Diakaki21,1 M. Krtička33 C. Petrone41 V. Variale10 M. Dietz24 D. Kurtulgil27 E. Pirovano24 P. Vaz28
1European 47 Organization for Nuclear Research (CERN), Switzerland 2Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain 3 INFN Laboratori Nazionali del Sud, Catania, Italy 4 Dipartimento di Fisica e Astronomia, Università di Catania, Italy 5 University of Lodz, Poland 6Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex, France 7Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain 8 TU Wien, Atominstitut, Stadionallee 2, 1020 Wien, Austria 9 CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France 10 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy 11University of Manchester, United Kingdom 12Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia 13 University of York, United Kingdom 14 Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Italy 15 Dipartimento di Fisica e Geologia, Universita’ di Perugia, Italy 16University of Santiago de Compostela, Spain The n_TOF 17Universitat Politècnica de Catalunya, Spain 18 Universidad de Sevilla, Spain 19 Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Teramo, Italy 20 Dipartimento di Fisica, Università degli Studi di Bari, Italy Collaboration 21National Technical University of Athens, Greece 22School of Physics and Astronomy, University of Edinburgh, United Kingdom 23 Paul Scherrer Institut (PSI), Villigen, Switzerland 24 Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany 25 University of Ioannina, Greece 26Joint Institute for Nuclear Research (JINR), Dubna, Russia 27Goethe University Frankfurt, Germany 28 Instituto Superior Técnico, Lisbon, Portugal 29 Japan Atomic Energy Agency (JAEA), Tokai-mura, Japan 30 European Commission, Joint Research Centre, Geel, Retieseweg 111, B-2440 Geel, Belgium 31Helmholtz-Zentrum Dresden-Rossendorf, Germany 32Karlsruhe Institute of Technology, Campus North, IKP, 76021 Karlsruhe, Germany 33 Charles University, Prague, Czech Republic 34 Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy 35 Dipartimento di Fisica e Astronomia, Università di Bologna, Italy 36Istituto Nazionale di Fisica Nucleare, Sezione di Legnaro, Italy 37Consiglio Nazionale delle Ricerche, Bari, Italy 38 Agenzia nazionale per le nuove tecnologie (ENEA), Bologna, Italy 39 Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy 40 Dipartimento di Fisica e Astronomia, Università di Catania, Italy 41Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania 42University of Granada, Spain 43 University of Vienna, Faculty of Physics, Vienna, Austria 44 Department of Physics, University of Basel, Switzerland 45 Centre for Astrophysics Research, University of Hertfordshire, United Kingdom 46Bhabha Atomic Research Centre (BARC), India 47Australian National University, Canberra, Australia
48 The End Some slides or part of slides in this presentation are from: Oliver Aberle, CERN Marco Calviani, CERN Vasilis Vlachoudis, CERN Fabrizio Murtas, INFN-LNF & CERN Alice Manna, University of Bologna & CERN Jorge Lerendegui, CSIC-IFIC Valencia Ana-Paula Bernardes, CERN Riccardo Mucciola, University of Perugia
You can also read