Starter diets for broilers - taking into consideration the immaturity of the gut microbiome Richard Ducatelle
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Starter diets for broilers taking into consideration the immaturity of the gut microbiome Richard Ducatelle Department of Pathology, Bacteriology and Avian Medicine
CHALLENGES: 1. Reduce antibiotic use in livestock production – decrease antimicrobial resistance Antibiotics in Poultry – EU Antibiotics in Poultry - US Ban of growth promoters in • Retailers are driving the reduction in antibiotic use. Animal feed since 01-01-2006 –McDonalds: 2017 – only chicken raised without medically important antibiotics. –Chick-fil-A: 2019 – No antibiotics ever. –Subway: 2016–No antibiotics ever 2
Viability (dashed line) and culturability (full line) of Butyricicoccus pullicaecorum after 2h at pH = 2 (Geirnaert et al., 2014) The viable but non-culturable state
Effect of zinc speciation on broiler performance in the starter phase Starter diet Grower diet Finisher diet Ingredient (%) Feed formula: Wheat 49.29 55.62 59.00 Rye 5.00 5.00 5.00 Soybean meal (48) 29.37 23.16 20.11 Soybeans 7.50 7.50 7.50 Rapeseed meal 2.00 2.00 2.00 Animal fat 2.50 2.60 2.70 Soy oil 1.00 1.00 1.00 Vitamin + trace (vitamix)§ 1.000 1.000 1.000 CaCO3 0.820 0.908 0.826 Di-Ca-phosphate 0.650 0.361 0.107 NaCl 0.264 0.226 0.268 Na-bicarbonate 0.104 0.157 0.101 L-Lys-HCl 0.160 0.175 0.154 + 50 ppm Zn-sulphate DL-Methonine 0.256 0.208 0.167 or L-threonine 0.071 0.064 0.049 + 50 ppm ZnAA-chelate Phytase 0.020 0.020 0.020 (Degrande et al., 2019)
Effects of Zinc source on digestibility ZnS ZnAA P-value Parameters Feed intake (FI) (g) 1256 ± 49 1168 ± 90 0.059 Wet excreta (WE) (g) 1797 ± 72 1720 ± 146 0.271 WE/FI* 0.300 ± 0.02 0.304 ± 0.01 0.731 Digestibility coefficients (%) Gross energy 72.0 ± 2.3 71.8 ± 1.7 0.878 Crude protein 58.2 ± 2.9 57.1 ± 2.2 0.512 Crude fat 78.8 ± 2.5 77.0 ± 4.3 0.423 Zinc 32.7 ± 1.3 36.4 ± 2.7 0.020 (Degrande et al., 2019)
Effect of zinc speciation on broiler performance in the starter phase Period BW BWG FI FCR (g/animal) (g/animal/day (g/animal/ ) day) 0-10 days ZnSO4 284.7 ± 5.6 24.4 ± 0.5 28.6 ± 0.9 1.172 ± 0.018 Zn-AA 290.5 ± 5.8 25.0 ± 0.5 28.7 ± 0.9 1.149 ± 0.012* (Degrande et al., 2019)
Duodenum ZnS ZnAA Day 10 Villus length (VL) 1206 ± 221 1308 ± 155 * Crypt depth (CD)) 314.5 ± 76.6 301.6 ± 62.1 Ratio (VL:CD) 3.99 ± 1.05 4.52 ± 1.04 * Thickness T. muscularis 94.8 ± 30.4 91.3 ± 21.8 (Degrande et al., 2019)
(Degrande et al., unpublished)
Metabolomics: negative ionization mode Pathway identificiation Pathway Hits.total Hits.sig Gamma total adjusted Pathway identification Pathway Hits.total Hits.sig Gamma p-value total adjusted Amino sugar and nucleotide sugar 88 10 7 0.0005 p-value metabolism Pentose phosphate pathway 32 18 6 0.0042 Galactose metabolism 41 11 7 0.0005 Terpenoid backbone biosynthesis 33 3 2 0.0083 Valine, leucine & isoleucine 40 5 3 0.0023 degradation Vitamin B6 metabolism 32 8 3 0.0093 Starch and sucrose metabolism 50 5 3 0.0023 Cysteine and methionine metabolism 56 13 4 0.0098 Glycolysis or Gluconeogenesis 31 6 3 0.0037 Tryptophan metabolism 79 9 3 0.0124 Valine, leucine & isoleucine 27 10 4 0.0037 Taurine and hypotaurine metabolism 20 5 2 0.0188 biosynthesis Histidine metabolism 44 7 2 0.0339 Phenylalanine,tyrosine & 27 11 4 0.0053 tryptophan biosynthesis Pyrimidine metabolism 60 14 3 0.0389 Pantothenate and CoA 27 16 5 0.0068 Valine, leucine and isoleucine 27 8 2 0.0429 biosynthesis biosynthesis Aminoacyl-tRNA biosynthesis 75 21 6 0.0081 Glycolysis or Gluconeogenesis 31 15 3 0.0463 Glycerophospholipid metabolism 39 8 3 0.0086 Nicotinate and nicotinamide 44 9 2 0.0527 Pentose phosphate pathway 32 10 3 0.0175 metabolism Sphingolipid metabolism 25 5 2 0.0187 Pantothenate and CoA biosynthesis 27 9 2 0.0527 Sulfur metabolism 18 5 2 0.0187 Alanine, asparate and glutamate 24 10 2 0.0631 Fructose and mannose 48 16 4 0.0233 metabolism metabolism Inositol phosphate metabolism 39 10 2 0.0631 Methane metabolism 34 6 2 0.0275 Lysine degradation 47 17 4 0.0294 Pentose and glucuronate 53 12 2 0.0852 Propanoate metabolism 35 7 2 0.0380 interconversions Glycine, serine & threonine 48 19 4 0.0442 Glycine, serine and threonine 48 12 2 0.0852 metabolism metabolism Cysteine and methionine 56 22 4 0.0721 Phenylalanine, tyrosine and tryptophan 27 13 2 0.0967 metabolism biosynthesis Glutathione metabolism 38 10 2 0.0771 Pyruvate metabolism 32 13 2 0.0967 Vitamin B6 metabolism 32 11 2 0.0918 (Degrande et al., unpublished)
Essential oils Terpenes and terpenoids are the primary constituents of the essential oils of many types of medicinal plants. Terpenes are the major components of rosin. Rosin is a solid form of resin obtained from pine trees. It mainly consists of various resin acids, especially abietic acid.
Effect of resin acids on broiler performance in 13 institutional trials. * * * * * * * * * * * (Vuorenmaa et al., 2019)
In vivo • Ross 308 broilers • Control diet vs challenge diet • + 0.2% resins • Effect on intestinal microbiota and activity of host collagenases In vitro • Cell culture-based model of A549 cells, which express high levels of matrix metalloproteinase-7 (MMP-7) was used (Aguirre et al., 2019)
In vivo: DAY 1-14 * 1.4 *** FCR 1.3 Avg FCR 1.2 1.1 1.0 et et 2 AC di di is R al os m + or et bi /N di ys ol is D tr os on bi C ys D (Aguirre et al., 2019)
In-feed resin acids prevent dysbiosis diet-induced changes in duodenal villi Villus height CD3 area 2500 Dysbiosis diet 20 * * Dysbiosis diet Control/Normal diet * ** Control/Normal diet Villus height (µm) 2000 Dysbiosis diet + RAC-250 15 Dysbiosis diet + RAC-250 CD3 area (%) 1500 10 1000 5 500 0 et et et 50 et 50 di di di di -2 -2 is AC al is AC al os m os m R R or bi or bi + + /N ys /N ys et et ol D ol di D di tr tr on is on is os C os C bi bi ys ys D D Dysbiosis diet: shorter villi, more infiltration of CD3+ T-cells, and loss of performance (weight gain) Resins acids prevent dysbiosis diet-induced changes in duodenal villi (Aguirre et al., 2019)
Zymography Inhibition of mmp-7 expression in ileal tissue Ileum MMP7 gene expression 1.4 1.2 1 0.8 0.6 0.4 * 0.2 0 Control Progres 3000 Partially g/tn purified FOR100 pure 264.9 resin g/tn250 g/tn acids Resins 3 kg/tn MMP7 Pre-pro-MMP7: 30 kDa (incl. signal peptide) Pro-MMP7: 28 kDa (without signal peptide) Mature MMP7: 18 kDa (Aguirre et al., 2019)
Resin acids break down collagen types I and IV in the ileum of broilers Ileum FIGURE 1. Breakdown of gelatin (A) and collagen types I and IV (B and C, respectively) in the ileum of broilers with or without in-feed RAC (N=10, *p < 0.05, *p< 0.01) (Aguire et al., 2019)
Matrix metalloproteinases and wound repair Martins et al., 2012 • Wound healing requires the controlled activity of MMPs at all stages of the wound healing process • The loss of MMP regulation is a characteristic of chronic wounds and contributes to the failure to heal
Wound healing assays • CaCo-2 cells • Collagen-coated plates • Scratch induction: woundmaker • Washed 2x with PBS • The pH of the cell medium was measured beforehand. • 48h-72h measurement • One image per 2 hours • Repeated 3 times
Resin acids: cell scratch wound healing Wound healing assay 0 hrs 12 hrs 24 hrs Resin acids (FOR-100 ultra) 120 Control Resin acids (0,05%) ns 100 *** *** wound extension % 80 0 hrs 12 hrs 24 hrs 60 40 20 Control 0 rs s s hr hr H 12 24 0 0.01% resin acids promoted cell migration in a wound healing assay
Fiber Cellulose Starter: day 1-13 ▪ 310 male Ross 308 broiler chicks ▪ Standard feed formula ▪ + 0.5% Cellulose (amorphous) ▪ 5h darkness ▪ Body weight ▪ Feed conversion ratio De Maesschalck et al., 2019
Day 10: 390 1.5 1.48 380 1.46 1.44 Body weight (g) 370 1.42 FCR 360 1.4 1.38 350 1.36 340 1.34 1.32 330 1.3 control cellulose control cellulose De Maesschalck et al., 2019
• Caecum: De Maesschalck et al., 2019
Alistipes genus *Belongs to the phylum Bacteroidetes and is part of the chicken core microbiome *Obligate strict anaerobe (Pfleiderer et al., 2014) *Gram-negative, non-spore-forming, non-motile (Shkoporov et al., 2015) *Contains a powerful cellulase and is bile-resistant (Pfleiderer et al., 2014) *Main metabolic end product is succinate (Shkoporov et al., 2015)
Effect of cellulose on growth of Alistipes in nutrient-poor medium A. B. p = 0.0095 growth (log1 0 cfu Alistipes /ml) 8 Succinate concentration (mM) 1.5 ** p = 0.019 * 7 1.0 6 0.5 5 0.0 Blank Cellulose Blank Cellulose
Fate of succinate production in the caeca *SUCNR1 = GPR91 = succinate receptor (Ariza et al., 2012) *Expressed on the surface of epithelial cells of small and large intestine in the mouse (Diehl et al., 2016)
Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis Filipe De Vadder, Petia Kovatcheva-Datchary, Carine Zitoun, Adeline Duchampt, Fredrik Bäckhed, Gilles Mithieux Cell Metabolism, Volume 24, Issue 1, 2016, 151–157
Conclusions *The starter phase is characterized by successive waves of different microbial families colonizing the caeca *The caecal lumen gradually becomes anaerobic between 1 and 10 days post hatch *Nutrional tools may help establishing a healthy ecosystem in the gut *Nutritional tools acting through stimulation of certain microbial families depend on the presence of these microbes *Some nutritional tools act through direct supporting of epithelial cell metabolism *Other nutritional tools act through preventing oxidative stress of the epithelial cells *Other nutritional tools again act through damage repair of the intestinal mucosa *Few nutritional tools act through supporting antibacterial defense mechanisms at the site of nutrient absorption
You can also read