Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France

Page created by Diane Baker
 
CONTINUE READING
Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France
Post-traitement statistique des prévisions d’ensemble à Météo-France

                                             Maxime Taillardat

                                              maxime.taillardat@meteo.fr

                                             12 mars 2019
Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France
Motivation of post-processing ensemble forecasts

                                                    Run: 2012−10−26 Lead time: 12 h
                                                  Rank of the observed temperature: 18

      Météo-France’s                                                                          forecast
    35-members global                                                                         observed

     ensemble system                        −10   0           10           20            30

     (PEARP), 10 km                                      Temperature (°C)

  resolution over France.

     Observations and
      forecasts of 2-m
   temperature (T2m) at
   Lyon-Bron for the run
   of 1800UTC (different
         lead times)

Maxime Taillardat                  1/16
Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France
Motivation of post-processing ensemble forecasts

      Météo-France’s
    35-members global
     ensemble system
     (PEARP), 10 km
  resolution over France.

     Observations and
      forecasts of 2-m
   temperature (T2m) at
   Lyon-Bron for the run
   of 1800UTC (different          ◮   Need of a simultaneous correction of bias and
         lead times)                  dispersion
                                  ◮   Whatever the quality of the raw ensemble,
                                      post-processing improves forecast attributes
                                      (Hemri, 2014)
Maxime Taillardat                  1/16
Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France
The state of the art

          ◮   Existing methods: Analogs, Perfect Prog., Rank-based matching,
              CDF-matching, Member dressing, Bayesian Model Averaging, SAMOS...
          ◮   A review of techniques: Gneiting, 2014

      The most (famous // widely-used // efficient) post-processing method :
          ◮   Ensemble model output statistics (EMOS) (Gneiting, 2005) also
              called Non-homogeneous Regression (NR)
                    ◮   fitting parameters linearly on predictors on some training period:
                                                                           X
                                                                           N
                                   f (y |x1 , . . . , xN ) = N (µ = a0 +         ai xi , σ2 = b + cs2 )
                                                                           i=1

                        y response variable, x1 , . . . , xN ensemble member values or any other
                        predictor, s2 ensemble variance

Maxime Taillardat                              2/16
Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France
Benefits of non-parametric post-processing

      No assumptions on the weather variable you deal with
         ◮   Raw ensemble (not                 EMOS
             post-processed) :

      Non-parametric

Maxime Taillardat                  3/16
Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France
Benefits of non-parametric post-processing

      No assumptions on the weather variable you deal with
         ◮   Raw ensemble (not                 EMOS
             post-processed) :
                                                 ◮   EMOS post-processing :

      Non-parametric

Maxime Taillardat                  3/16
Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France
Benefits of non-parametric post-processing

      No assumptions on the weather variable you deal with
         ◮    Raw ensemble (not                    EMOS
              post-processed) :
                                                    ◮   EMOS post-processing :

      Non-parametric
          ◮   Post-processing possible results :

Maxime Taillardat                    3/16
Post-traitement statistique des prévisions d'ensemble à Météo-France - Meteo France
Benefits of non-parametric post-processing

      No assumptions on the weather variable you deal with
         ◮    Raw ensemble (not                    EMOS
              post-processed) :
                                                    ◮   EMOS post-processing :

      Non-parametric
          ◮   Post-processing possible results :

Maxime Taillardat                    3/16
Best-of post-processing possible outputs

                                  (initialization: 18 UTC)
Maxime Taillardat                  4/16
From binary regression trees to QRF

          ◮   Example: CART algorithm (Breiman, 1984)

           Taillardat, Maxime, Olivier Mestre, Michaël Zamo, and Philippe Naveau.
            "Calibrated ensemble forecasts using quantile regression forests and
           ensemble model output statistics." Monthly Weather Review 144, no. 6
                                      (2016): 2375-2393.
Maxime Taillardat                  5/16
How to verify/evaluate ensemble forecasts ?

          ◮   Differ from deterministic forecasts
          ◮   A "point" (eg. for one day) verification is a nonsense
          ◮   It has to be statistical

      Several attributes sought
          ◮   Reliability
                    ◮   Accordance between forecasted probabilities and observed frequencies of
                        an event and/or exchangeability between observations and ensemble
                        members
          ◮   Resolution/Discrimination
                    ◮   Ability to differ from a climatological forecast
          ◮   Sharpness
                    ◮   Getting the least dispersed forecast

      "the paradigm of maximizing the sharpness of the predictive distributions
      subject to calibration"(Gneiting et al. 2006)

Maxime Taillardat                              6/16
How to verify/evaluate ensemble forecasts ?

          ◮   Differ from deterministic forecasts
          ◮   A "point" (eg. for one day) verification is a nonsense
          ◮   It has to be statistical

      Several attributes sought
          ◮   Reliability
                    ◮   Accordance between forecasted probabilities and observed frequencies of
                        an event and/or exchangeability between observations and ensemble
                        members
          ◮   Resolution/Discrimination
                    ◮   Ability to differ from a climatological forecast
          ◮   Sharpness
                    ◮   Getting the least dispersed forecast

      "maximizing the value of the predictive distributions subject to good overall
      performance"

Maxime Taillardat                              6/16
"Here comes the rain again..."

      Production constraints
          ◮   Relatively shallow datasets ( 1 up to 3 years)
          ◮   Costly reforecasts

      Possible alternatives
          ◮   Data-shifting: Work with anomalies (obs −→ obs − ensemble mean)
          ◮   Data-pooling: Regionalization/Neighborhood
          ◮   Data-boosting: Work with several observations/distribution

Maxime Taillardat                    7/16
"Here comes the rain again..."

      Example: post-processing RR6 (6-h rainfall)
          ◮   This variable is (by far !) the most difficult to calibrate whatever the
              method, a really hard nut to crack for statisticians
          ◮   A lot of zeros, a lot of "extremes"

      What we have tested
      For EMOS:
          ◮   Try different distributions "tailored" for extremes (Gamma, GEV...)
          ◮   Try different sets of predictors
      For QRF:
          ◮   Improve QRF for "quantiles": Gradient Forests (GF) (Athey et al., 2017)
          ◮   Extrapolation in distributions tails: semi-parametric approach

Maxime Taillardat                      8/16
A semi-parametric approach

      Goal: Be skillful for extremes without degrading overall performance
      Use QRF/GF outputs to fit a distribution which would:
          ◮   Model jointly low, moderate and heavy rainfall
          ◮   Be flexible
          ◮   Use of an Extended GP distribution (EGP3) (Papastathopoulos and
              Tawn, 2013 ; Naveau et al., 2016 ; Tencaliec’s PhD 2018)

Maxime Taillardat                    9/16
A semi-parametric approach

      Goal: Be skillful for extremes without degrading overall performance

      What we expect:

    ◮    QRF/GF possible output

Maxime Taillardat                 9/16
A semi-parametric approach

      Goal: Be skillful for extremes without degrading overall performance

      What we expect:

    ◮    QRF/GF possible output                  ◮   After "EGP TAIL"

Maxime Taillardat                 9/16
Results on RR6

                                   Raw ensemble                         Analogs                  Analogs_C                 Analogs_COR

                        0.20

                                                              0.20

                                                                                          0.20

                                                                                                                    0.20
                                        JPZ test : 0 %                  JPZ test : 85 %          JPZ test : 100 %           JPZ test : 99 %

                        0.15

                                                              0.15

                                                                                          0.15

                                                                                                                    0.15
                        0.10

                                                              0.10

                                                                                          0.10

                                                                                                                    0.10
                        0.05

                                                              0.05

                                                                                          0.05

                                                                                                                    0.05
                        0.00

                                                              0.00

                                                                                          0.00

                                                                                                                    0.00
                               1   3     5    7   9      11

                                   Analogs_VSF                         EMOS CSG                  EMOS EGP                   EMOS GEV
                        0.20

                                                              0.20

                                                                                          0.20

                                                                                                                    0.20
                                       JPZ test : 98 %                  JPZ test : 89 %          JPZ test : 11 %            JPZ test : 98 %
                        0.15

                                                              0.15

                                                                                          0.15

                                                                                                                    0.15
                        0.10

                                                              0.10

                                                                                          0.10

                                                                                                                    0.10
                        0.05

                                                              0.05

                                                                                          0.05

                                                                                                                    0.05
                        0.00

                                                              0.00

                                                                                          0.00

                                                                                                                    0.00
                                          QRF                         QRF EGP TAIL                   GF                    GF EGP TAIL
                        0.20

                                                              0.20

                                                                                          0.20

                                                                                                                    0.20
                                       JPZ test : 100 %                 JPZ test : 91 %          JPZ test : 98 %            JPZ test : 63 %
                        0.15

                                                              0.15

                                                                                          0.15

                                                                                                                    0.15
                        0.10

                                                              0.10

                                                                                          0.10

                                                                                                                    0.10
                        0.05

                                                              0.05

                                                                                          0.05

                                                                                                                    0.05
                        0.00

                                                              0.00

                                                                                          0.00

                                                                                                                    0.00

Maxime Taillardat                                             10/16
ROC curves

          ◮   Value: Focus on the upper left corner
          ◮   Taillardat, Maxime, Anne-Laure Fougères, Philippe Naveau, and Olivier
              Mestre. "Forest-based and semi-parametric methods for the
              postprocessing of rainfall ensemble forecasting" Accepted in Weather
              and Forecasting (2019). HAL preprint . ArXiv preprint
              1711.10937
Maxime Taillardat                   11/16
ROC curves

          ◮   Value: Focus on the upper left corner
          ◮   Taillardat, Maxime, Anne-Laure Fougères, Philippe Naveau, and Olivier
              Mestre. "Forest-based and semi-parametric methods for the
              postprocessing of rainfall ensemble forecasting" Accepted in Weather
              and Forecasting (2019). HAL preprint . ArXiv preprint
              1711.10937
Maxime Taillardat                   11/16
ROC curves

          ◮   Value: Focus on the upper left corner
          ◮   Taillardat, Maxime, Anne-Laure Fougères, Philippe Naveau, and Olivier
              Mestre. "Forest-based and semi-parametric methods for the
              postprocessing of rainfall ensemble forecasting" Accepted in Weather
              and Forecasting (2019). HAL preprint . ArXiv preprint
              1711.10937
Maxime Taillardat                   11/16
ROC curves

          ◮   Value: Focus on the upper left corner
          ◮   Taillardat, Maxime, Anne-Laure Fougères, Philippe Naveau, and Olivier
              Mestre. "Forest-based and semi-parametric methods for the
              postprocessing of rainfall ensemble forecasting" Accepted in Weather
              and Forecasting (2019). HAL preprint . ArXiv preprint
              1711.10937
Maxime Taillardat                   11/16
Post-processing strategy for hourly rainfall

          ◮   Work on 3 watersheds in Brittany (global size : 720 km2 )
          ◮   Météo-France’s LAM-EPS PEAROME (12 members, grid scale : 2.5
              km), base time : 21UTC, lead times from 1 to 45 hours
          ◮   Use of hourly calibrated (over rain gauges) radar precipitation
              observations ANTILOPE (grid scale : 1 km)
          ◮   Data spans from 12/2015 to 03/2016 and from 05/2016 to 06/2016
          ◮   Predictors : statistics on the hourly rainfall ensemble, and on surface
              humidity and temperature

      Ensemble Copula Coupling (ECC) (Schefzik et al., 2013)

          ◮   Restores physical consistency between grid points and time steps

      For each time step, each watershed :
                                                                ECC
      Result of calibration : 1 distribution for the watershed −−→ 12 members for
      each grid point

Maxime Taillardat                            12/16
ECC + post-processing visualization

Maxime Taillardat                 13/16
Future architecture

          ◮   Data pooling + Data boosting

                                                                        Raw PEAROME 12 mem 2.5 km

                                                                        Raw PEAROME* 300 mem 10 km
                                                                        (vs. 81 ANTILOPE obs)

                                                                         Post-P of PEAROME* on H.C.A 10km

                                                                        300 PEAROME* quantiles 10 km

                      ANTILOPE grid 1.25km

                      PEAROME grid 2.5km

                      PEARP grid 10km

                      HOMOGENEITY CALIBRATION AREA 10km   Calib PEAROME 12 mem 2.5 km

Maxime Taillardat                             14/16
The after sales service...

      Ensemble forecasting requires met. skill (as deterministic) +
          ◮   understanding of probabilities
          ◮   notions in game theory
          ◮   communication of uncertainty

Maxime Taillardat                    15/16
The after sales service...

      Ensemble forecasting requires met. skill (as deterministic) +
          ◮   understanding of probabilities
          ◮   notions in game theory
          ◮   communication of uncertainty

      One must provide statistical//vizualisation tools
                                                                               Roebber diagram RR24 > 150mm
                                                                   10      5        3          2          1.5   1.3
                                                       1.0

                                                                                                                                1

                                                                                                                         0.9

                                                                                                                         0.8
                                                       0.8

                                                                                                                                0.8

                                                                                                                        0.7
                            Probability of Detection

                                                       0.6

                                                                                                                         0.6

                                                                                                                         0.5    0.5
                                                       0.4

                                                                                                                         0.4

                                                                                                                         0.3    0.3
                                                       0.2

                                                                                                                         0.2

                                                                                                                         0.1
                                                       0.0

                                                             0.0        0.2             0.4         0.6           0.8     1.0

                                                                                         Success Ratio
Maxime Taillardat                                                  15/16
Other references

      Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005:
       Calibrated probabilistic forecasting using ensemble model output statistics
       and minimum crps estimation. Monthly Weather Review, 133 (5),
       1098–1118.
      Schefzik, R., T. L. Thorarinsdottir, T. Gneiting, and Coauthors, 2013:
        Uncertainty quantification in complex simulation models using ensemble
        copula coupling. Statistical Science, 28 (4), 616–640.
      Whan, K., and M. Schmeits, 2018: Comparing area-probability forecasts of
       (extreme) local precipitation using parametric and machine learning
       statistical post-processing methods. Monthly Weather Review, (2018).

Maxime Taillardat                 16/16
You can also read