Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
1 Increased capacities for renewable BDO Wednesday, 07 October 2015 BASF and Genomatica have expanded their license agreement for the production of 1,4- butanediol (BDO) based on renewable feedstock. BASF is to build a world-scale production facility that will use the Genomatica bio-based process to manufacture renewable BDO. The agreement adds countries in Southeast Asia, and the pair are targeting large-scale commercial production of renewable BDO using Genomatica technology. Genomatica will continue to develop its patented GENO BDO process technology for the production of renewable BDO. The process, involving single-step fermentation, can be based on dextrose or sucrose as the renewable feedstock. BASF has produced commercial volumes of renewable BDO, offering it to customers for testing and commercial use, and has expanded its portfolio by producing and offering Polytetrahydrofuran (PolyTHF) made from renewable BDO. BASF has said it will increase its global capacities for BDO to 650,000 metric tons and for PolyTHF to 350,000 metric tons by the end of 2015, and beginning of 2016, respectively. "We’re delighted to provide BASF with these additional license rights for our GENO technology,” said Christophe Schilling, CEO, Genomatica. “We look forward to seeing our technology deliver sustainability benefits to our business partners, and through them, to end- users of everyday products.” BDO and its derivatives are widely used for producing plastics, solvents, electronic chemicals and elastic fibres. In the nonwovens industry, BDO is used as an intermediate in elastics used in absorbent hygiene products. October 5, 2015 Updated 3 days ago Plastic bag makers file second California ballot measure By Catherine Kavanaugh 05/10/15 Plastic bag manufacturers are taking steps to get a second ballot proposal before California voters, who will go to the polls in November 2016 to decide whether to uphold a statewide ban on plastic shopping bags. Under a newly filed ballot initiative, voters could also be asked to direct any fees retailers collect for compostable and reusable bags to an environmental fund for projects like drought mitigation, recycling or beach cleanups. The current ballot measure allows retailers to keep those fees, which would be a minimum 10 cents per bag. Calling the first ballot question to repeal or ratify SB 270 a potential “billion dollar giveaway to grocers,” the American Progressive Bag Alliance filed the second ballot measure with the California Attorney General’s office on Oct. 2. Members of the APBA estimate bag fees will generate up to $400 million a year for grocers while a vast majority of Californians — 84 percent by their count — believe the money should go to a public purpose. “So we want to make sure voters have the power to actually put bag fees to work for the environment and their communities should SB 270 become law,” Lee Califf, executive director of the APBA, said in an emailed statement.
2 The second ballot measure, which is tentatively called the Environmental Fee Protection Act, would send bag fees to the California Wildlife Conservation Board, which would distribute the funds as environmental grants. APBA says the money could go to “worthy” goals, such as remediating drought-stricken forests, restoring wetlands, and paying for recycling, litter removal and habitat restoration. APBA opposes bag bans, fees and taxes as a threat to 30,800 manufacturing and recycling jobs in the United States, and questions the environmental benefits of replacing single-use plastic bags with other bags. In California, Califf said SB 270 is a giveaway to grocers under the guise of environmentalism and its stated intent to rid that state of plastic bags is contradicted by a loophole that allows grocers to distribute thicker plastic bags to customers for a 10-cent fee. California lawmakers passed the bag ban in 2014 and it was to go into effect in July 2015. However, APBA collected some 800,000 signatures to put the ban to a vote of the people on Nov. 8, 2016. Now the trade group wants to give voters another option. “Our industry is proud to give California voters a chance to overturn a deeply flawed, job- killing law, or at least, ensure bag fees are dedicated to helping the environment instead of increasing grocer profit margins,” Califf said. State officials have 65 days to review the proposed ballot measure and issue the official title and summary before APBA can launch a signature-gathering drive to place it before voters along with the other ballot question. Suspicions arise In the meantime, supporters of the bag ban are questioning APBA’s motives. The second ballot effort is either an admission of defeat in repealing SB 270, a ploy to confuse voters, or political mischief, Mark Murray, executive director of Californians Against Waste, said in a telephone interview. Murray said the ballot proposal APBA submitted to state officials last week is similar to one that the trade group spent about $3 million defeating in Seattle in 2008. “What’s changed?” Murray asked. “How do they go from spending millions to oppose a bag tax to now saying they’re prepared to spend millions of dollars to advance a bag tax? It doesn’t really seem credible.” Murray does not think grocers stand to profit from the ballot measure already approved for next year. “They certainly stand to gain by no longer having to subsidize single-use plastic or single-use paper bags at the store, so there’s a cost saving for grocers,” Murray said. “But I’m not sure there’s a penny in new revenue for them because they still have to buy paper bags.” Grocers were early opponents of the bag ban, he added, but they got behind the measure because it creates a uniform statewide policy. “We’re seeking a yes vote to affirm the law for environmental reasons,” Murray said. “I think the grocers will continue to seek a yes vote because they want a uniform statewide policy. If the law is overturned, the retailers are stuck with a patchwork of 140 local plastic bag bans in California.” Murray doubts that the second bag proposal will make it onto the ballot. He said it is up for public comment and then revisions would likely be made. It would be early December before the signature drive can begin and the outcome would not be known until June. “It only cost $200 to take the step they’ve taken,” Murray said. “It’s not real until they have to actually start gathering signatures. Maybe they just want people to have the conversation we’re having right now.” APBA believes it will have no problem getting enough signatures to put the proposed referendum on the ballot.
3 Pointing to a private poll, Califf said in an email: “We are confident in our ability to gather signatures, especially given that 84 percent of California voters believe that bag fees in general should go to a public purpose instead of increasing profit margins for grocers.” About Corbion Purac's PLA portfolio 09/10/2015 Corbion Purac's PLA homopolymer resins are available in a range of melt viscosities and deliver improved heat resistance over standard PLA. These grades can be used as neat resin or as part of a compound in order to further optimize overall material properties. PDLA, when combined with PLA homopolymers, will yield a compound that combines good heat resistance with excellent mechanical properties. PLA L105: a high flow resin suitable for injection molding. PLA L130: a medium flow resin suitable for injection molding and fiber spinning. PLA L175: a high viscosity resin suitable for film extrusion, thermoforming or fiber spinning. PLA LX175: a standard, amorphous, transparent resin, suitable for film extrusion, thermoforming or fiber spinning. PDLA D070: a general purpose nucleating agent for PLA homopolymer resins. Corbion Purac's neat PLA resins are compliant with the most relevant regulations and requirements related to bioplastics: Approved for use in food contact applications (EU Framework Regulation EC No. 1935/2004 and No. 10/2011), Compliant with EN13432 standard for industrial composting, Biobased content of 100%, REACH compliant, Exclusively made from non-GMO feedstocks,
4 BISPHÉNOL A - LES SAGES ET LES EMPOISONNEURS Fabrice Nicolino - Charlie Hebdo du 07/10/2015 (merci Pierre) Giscard - à la barre - et Jospin - Yoyo - viennent de filer un grand coup de main, via le Conseil constitutionnel, au lobby européen du plastique. En censurant une loi qui interdisait la production de bisphénol A en France. La vieillesse, ce naufrage. A-t-on le droit d’empoisonner le monde en toute conscience ? Telle est la belle question posée par nos croûtons du Conseil constitutionnel, dont Giscard et Jospin, qui en sont les membres les plus illustres. Nos chers vieux amis ont trouvé le temps de censurer une loi dif- ficilement accouchée en 2010. Celle qui interdisait le bisphénol A (BPA) dans les biberons à partir de janvier 2013, et dans tous les produits au contact des aliments au ier janvier 2015. Un ajout de 2012 avait même imposé «la suspension de la fabrication, de l’importation, de l’exportation et de la mise sur le marché de tout conditionnement contenant ou ustensile comportant du bisphénol A et destiné à entrer en contact direct avec des denrées alimentaires ». Le bisphénol A est une merde grossière, synthétisée pour la première fois en 1891 avant que d’être redécouverte en 1953. Ce plastique polycarbonate (ndlr : ??? la journaliste a certainement voulu dire « cet adjuvant utilisé dans des plastiques tels que les polycarbonates ») est utilisé par l’industrie dans la fabrication des bouilloires électriques, des panneaux solaires, des téléphones portables et jusque dans celle des casques de cosmonaute. On ne peut détailler ici les effets du BPA sur la santé, mais ça craint follement. Le (sérieux) Réseau Environnement Santé recense, pour la seule période 2009-2012, la bagatelle de 296 études dans le monde qui établissent des effets sanitaires chez l’homme ou l’animal, contre 16 qui rien trouvent aucun. Au programme des conséquences : perturbations du système immunitaire, troubles de la reproduction, maladies cardio-vasculaires, diabète, obésité, cancers, troubles neurologiques. Contre cette horreur plastique (ndlr : elle insiste !), donc, deux lois françaises qui limitent la casse sans la faire disparaître. L’industrie aurait dû s’écraser mollement, mais ce serait très mal la connaître. Tout au contraire, elle mobilise ses réseaux, montre les crocs et mord à pleines dents. Pour mieux comprendre, un tour électronique s’impose : http://www.bisphenol-a- europe.org/ . Sur ce portail, qui se présente joliment comme le centre d’information sur le bisphénol A, on vole de cadeau en cadeau, c’est Noël. Par exemple, ceci, attribué sans plus de précisions aux autorités sanitaires suisses : «L’absorption de BPA par le biais d’aliments ne présente pas de risque pour les consommateurs. » Cet audacieux site Internet est — évidemment — aux mains du lobby Plastics Europe (www.plas- ticseurope.fr), constitué notamment des entreprises Covestro (ex-Bayer MaterialScience) et Trinseo (ex-Styron). Puissant et omniprésent à Bruxelles, il influence et manipule les autorités de contrôle européennes à un point qu’on n’imagine pas en France. Et c’est bien à partir de la capitale belge qu’a été lancée l’offensive. Bruxelles mars 2015, PlasticsEurope ose soumettre aux Etats une question prioritaire de consti- tutionnalité QPC). Affirmant que 50000 emplois sont menacés en France, le lobby constate que l’Agence européenne de sécurité sanitaire (EFSA) juge le BPA sans aucun danger. Le menu problème est que l’Agence européenne se noie dans les scandales et conflits d’intérêts qui opposent entre autres certains de ses cadres à l’industrie chimique. PASSE-PASSE CONSTITUTIONNEL Mais revenons au Conseil constitutionnel, le seul à pouvoir répondre sur le fond, si l’on ose écrire. Notre Assemblée cacochyme vient de donner partiellement raison à PlasticsEurope, d’une manière qui réjouira le coeur des démocrates sincères. Dans son immense sagesse de vieillard qui en a plus rien à foutre, le Conseil lève l’interdiction de la
5 fabrication en France et de l’exportation depuis la France de contenants farcis au BPA. Mais valide l’interdiction de la commercialisation et de l’importation en France. Autrement dit : l’industrie du plastique française peut produire et exporter sa merde, mais pas la vendre en France. Le tout au nom de la délicieuse « liberté d’entreprendre». PlasticsEurope, qui sent la victoire totale à portée de main, veut que la Commission européenne torde le bras de la France, ce qui ne devrait pas être difficile. Selon l’un de ses chefaillons, Michel Loubry, «la décision du Conseil constitutionnel est pour nous une première étape». C’est clair, non? La pensée du jour signée Anne Roumanoff Bizarre… Plus les téléphones deviennent intelligents Plus les gens deviennent cons Matières Plastiques Biodégradables : état des lieux en 2015 Mercredi 09 Septembre 2015 – Centre de formation dela Plasturgie
6 Dans un contexte où le développement durable et l’écologie deviennent des préoccupations de plus en plus présentes au sein des sociétés, les matières plastiques évoluent afin de répondre aux exigences actuelles. En effet, en plus d’être sans cesse plus « intelligents », la part des plastiques biodégradables tend à s’accroître. Plastiques biosourcés et/ou biodégradables : quelles différences ? Lorsque l’on s’intéresse à l’impact environnemental des plastiques, il convient de distinguer les plastiques biosourcés des plastiques biodégradables. Selon le CNRS , un plastique biosourcé est issu partiellement ou totalement de matières premières végétales (amidon ou cellulose par exemple). Les plastiques biodégradables sont quant à eux conçus pour se dégrader dans des conditions de compost en quelques semaines seulement. Ainsi, le matériau est complètement métabolisé par des micro-organismes (bactéries, champignons, ou algues) et se décompose en eau, dioxyde de carbone et biomasse. Les plastiques biodégradables peuvent avoir été conçus grâce à des matières premières fossiles issues de la pétrochimie, des matières renouvelables, ou grâce à une combinaison des deux . A titre d’exemple, la matière plastique Ecovio® développée par BASF est « doublement bio » dans le sens où elle est issue de matières premières renouvelables et qu’elle est en intégralité biodégradable. Usages des plastiques biodégradables La biodégradabilité d’un plastique lui confère un avantage certain lorsqu’il est question de jeter le produit après son utilisation ; il sera en effet possible de détruire cet emballage à moindre coût. Il convient cependant de garder à l’esprit que l’utilisation des matériaux plastiques biodégradables doit être faite à bon escient : le simple fait de jeter ces matériaux ne suffit pas, il faut qu’ils rencontrent certaines conditions environnementales pour que leur biodégradation s’opère (compost). Ainsi, ces matériaux seront principalement utilisés pour les emballages alimentaires, l’agriculture ou encore la médecine . Outre la nécessité de détruire rapidement les matières plastiques utilisées pour des produits à consommation unique, il est également pertinent d’adapter leur utilisation pour des objets ayant une durée de vie plus longue. Yves Grohens, Directeur Adjoint du Laboratoire LIMATB, démontre très bien la portée de ces choix en prenant l’exemple d’une clé USB . En effet, pourquoi utiliser un contenant en matière plastique pouvant durer 500 ans alors que le produit ne dispose que d’une durée de vie limitée à quelques années ? En suivant cette logique, 30% des emballages actuels pourraient être remplacés. Pour atteindre les 70% restants, certaines innovations techniques sont encore nécessaires et devraient voir le jour d’ici une dizaine d’années.
7 Le marché des plastiques biodégradables : 10.8% de croissance par an attendue entre 2015 et 2020 Les industriels se sont déjà emparés de cette problématique et, d’après une étude menée par l’organisme Market & Markets , le taux de croissance annuel moyen du marché des plastiques biodégradables va croître de 10.8% entre 2015 et 2020. Cette étude sur les plastiques biodégradables se base sur 3 grands axes de recherche : leur type, leur application et les zones géographiques clés. L’acide polylactique (PLA) est le plus gros segment des matériaux plastiques biodégradables et représente en 2015 plus de 45% du marché. La croissance de ce segment est principalement portée par les propriétés mécaniques supérieures et la facilité de traitement de l’acide polylactique. Lorsque l’on regarde les différentes applications des matériaux plastiques biodégradables, les emballages arrivent nettement en tête avec 60.3% du marché. Les plastiques biodégradables sont de plus en plus utilisés pour produire des emballages à usage unique tels que les sacs de courses. L’accroissement de l’utilisation de plastiques biodégradables pour ces applications est attribué au développement de la conscience environnementale collective. L’étude fait ressortir 4 grandes régions géographiques : Europe de l’Ouest, Amérique du Nord, Asie-Pacifique et le Reste du Monde (RDM). Les pays clés de la croissance du marché des plastiques biodégradables sont les Etats-Unis, l’Allemagne, la Chine et le Japon. L’Europe de l’Ouest est le plus grand consommateur de produits construits à partir de plastiques biodégradables, avec plus de 40% de parts de marché en 2014. Cet accroissement de l’utilisation de plastiques biodégradables est dû à de fortes régulations environnementales prohibant l’utilisation de plastiques issus de la pétrochimie dans les produits à application unique. Vers des matières plastiques de plus en plus « intelligentes » Ainsi, l’utilisation de matières plastiques biodégradables s’inscrit dans une tendance en plein essor. En plus d’adapter la durée de vie des matières plastiques à celle des produits qu’elles composent ou protègent, les matières plastiques biodégradables offrent des caractéristiques de plus en plus intéressantes : tolérance à la chaleur - changements de couleurs - imperméabilité à la chaleur. La forte croissance du marché des plastiques biodégradables et le rythme des innovations liées à ces matériaux sont tels qu’il sera prochainement possible de répondre aux exigences techniques de toutes les applications sans pour autant mettre de côté l’aspect environnemental. New bioplastics bring chitin out of its shell 06/10/2015 EU Research & Innovation Shrimp heads, crab carapaces, lobster shells - many billion tonnes of shellfish waste are generated globally per year. Very little of it is put to good use. This could be about to change, as EU-funded researchers have developed an innovative way to transform this briny refuse into plastic. The shells of crustaceans and molluscs contain chitin, a natural polymer that can be transformed into tiny filaments called nanofibrils. The partners involved in the n-Chitopack project use these nanofibrils to develop compostable bioplastics that offer a more sustainable
8 alternative to petroleum-derived plastics for a variety of applications. The nanofibrils are extracted using a process patented by Italian SME MAVI Sud, the lead partner. The project has already created a number of products based on this invention. These notably include coffee capsules, shopping bags and a variety of food packaging materials, such as hard and soft containers. From prawns to polymers n-Chitopack’s bioplastics are not just biodegradable; they are compostable, says project coordinator Pierfrancesco Morganti of MAVI Sud, who notes that more than 150 billion tonnes of shellfish waste are produced annually around the world. “Some things that are biodegradable actually generate toxic compounds as they break down,” he explains. “It’s important to make sure that products degrade into compounds that are of some benefit, and not harmful to humans or to the environment.” The project’s emphasis on sustainability is not just reflected in the final product. It has shaped the entire process developed by the partners, says Morganti — starting with the extraction of the nanofibrils. Care was taken to design a method that consumes little energy, allows for recycling of all the water used in the process and generates no toxic residues. “The powder that remains at the end of the process is used as fertiliser,” says Morganti. The resulting bioplastics could replace conventional plastics for a number of uses, such as coffee capsules, for example. “Millions and millions of these are thrown away every day, and they are usually not compostable,” Morganti notes. “This has created a problem we didn’t have before.” The n-Chitopack partners decided to rise to the challenge and made the development of greener coffee capsules one of its priorities. The team is currently exploring options to produce their flexible, robust bio-capsules on an industrial scale. It’s a wrap The materials developed by n-Chitopack are based on chitin nanofibrils, but they also contain a certain amount of chitosan, another substance derived from chitin. The project has, for instance, blended the two to produce food packaging film. This food wrap benefits from a particularly useful property that chitosan adds to the mix: it stops the growth of germs. Tests that focused on packaging fish confirmed this effect, Morganti reports. “There were no bacteria on the film that was in contact with the food,” he notes. The full package n-Chitopack’s bioplastics could thus help to address several problems simultaneously: they could help to reduce the vast amounts of chitin waste going to landfill, they could transform part of the world’s avalanche of discarded packaging into a slow-release supply of nutrients, and they could further protect resources by slowing down the spoilage of perishable foods. Food packaging is, however, just one of several possible applications. Chitin nanofibrils also show promise for use in medicine, says Morganti, more specifically for the production of bandages, where the materials’ ability to keep microbes in check are particularly valuable. They also have potential for a range of environmental solutions, including filtering systems for air or water. There are still a few technical issues to address before commercial roll-out can begin, says Morganti. However, he expects the large-scale manufacture.
9 TECNARO develops, produces and markets lignin based ARBOFORM® October 6, 2015 lepitreb Named after latin arbor, tree, Arboform™ is a sustainable thermoplastic material made of 100% renewable raw materials, with a lignin matrix, a by-product of cellulose pulping process. It’s mainly targeting and used for injection moulding applications. Tecnaro (Germany announced it operates a capacity of 5,000t annual output, which can be increased if needed. ARBOFORM® brings two industries together. It puts the wood processing industry in a position to make products with design geometries that in the past were only feasible economically with the use of plastics. And, conversely, it puts the plastics processing industry in the position to process wood just like a conventional thermoplastic material and benefit from the aesthetic and warm soft touch of wood. Because of its lignin matrix, ARBOFORM® is claimed to be as highly constant in quality as the cellulose for papermaking. The disposal of ARBOFORM® products is the same as for naturally grown wood, i.e. natural decay or incineration. The amount of CO2 emitted in the process is no more than was previously fixed from the atmosphere by the plants while growing. ARBOFORM® is thus claimed to be GHG neutral. Caskets to die for 01.10.2015 Bioplastics Magazine Marieke Havermans, a Dutch entrepreneur, is fast taking the idiom "from cradle to grave” to an entirely new level. A packaging expert, she has developed a new ecological casket made of 100% biological materials that will decompose via natural processes in the ground within a period of some 10 years. And for those who prefer cremation: the casket will burn cleanly, reducing toxic emissions by up to 75% compared to conventional caskets. The idea for environmentally friendly coffins arose in 2012, ands Havermans decided to go for it. Market research revealed that this was a product that had not yet been attempted to be made from bioplastic. She resigned from her job and started her company, Onora, in 2012, funded by an investor who believed in the project, a crowdfunding campaign and the proceeds from two awards, including the MKB Export Award. The caskets are made of a purpose-designed bioplastic based on starch derived from byproducts from the seed and potato processing industry. They are among the biggest single products ever made completely from bioplastic. Only natural pigments are used as colorants. The caskets are injection molded; the two, huge molds, one for the lid and one for the coffin itself, were built in China.
10 The casket is basically a thin-walled container with reinforcing ribs and stiffening features, that can accommodate up to 150 kg of weight. Moreover, this structure means that far less material is needed to produce the coffin, which helps to keep the costs down. Because the coffin is injection molded, not only can features such as grips can be integrated in the design, fasteners, such as screws, and adhesives are also unnecessary. According to Havermans, the casket has rounded corners and an organic form: “based on a cocoon,” she says. The coffins come with a comfortable matrass and pillow made of hemp fiber, an eco-cotton sheet and, if desired, a blanket made of ecological Dutch wool. Giecosceptique ? Biopolymers in packaging—some hurdles, but strong signs of growth Europe has led the charge when it comes to embracing biobased packaging. But new and intriguing applications are surfacing in other parts of the world, including Asia and North and South America. By Erin J. Wolford, Contributing Editor September 27, 2015 We’ve seen some pretty notable and innovative biobased applications in packaging lately. Last year, Nofima released a new bioplastic that was made of shrimp shells, using the chitin to produce a degradable material. And this year, Coke made international news when it announced its biobased bottle, made with 30% renewable content. Many other biobased packaging formats are in stores now, and sometimes consumers are none the wiser. The key distinguishing difference between biopolymers and the conventional polymers we’re all familiar with is that biopolymers are sourced not from petroleum but rather from biological sources. In other words, things that grow.
11 European Bioplastics e.V., a Europe-based association representing the European bioplastics industry, includes member companies like NatureWorks, DuPont, Corbion, Braskem, Novamont, BASF, Innovia, Meredian, to name a few. These companies are heavily involved in the bioplastics industry and are actively producing and/or supplying the industry with bioplastics. European Bioplastics’ deputy managing director Kristy-Barbara Lange says that there are numerous benefits to using bioplastics in packaging, including increased resource efficiency because the resources relied upon are renewable. She also notes that there are several certifications, such as ISCC Plus, to ensure that resources are grown sustainably. Lower carbon footprint is another benefit; sometimes even carbon neutrality is possible. Sometimes end-of-life options are highly desireable, compostability for food packaging being one example. Optimized technical properties such as controlled permeability or specific aroma barriers are other benefits that can be gained. Production and converting When a converter starts thinking about running any new material, of course alterations may be necessary. And the consensus is that bioplastics and biopolymers are largely very similar to their conventional counterpart in terms of needing to adjust slightly when converting a new material. Dr. Isao Noda, Chief Science Officer at bioplastics producer MHG, puts it this way. “Some changes to the converting process are necessary, such as process temperature, range, etc. But some of today’s bioplastics are getting so close to the conventional petroleum-based plastics as to be essentially a drop-in substitute for some key applications.” In agreement is Steve Davies, Director of Corporate Communications and Public Affairs at NatureWorks, a maker of plant-based biopolymer PLA (polylactic acid). “Every polymer is different in terms of converting. Polypropylene, PET, Polystrene—each is handled differently. A biopolymer such as PET would be processed indistinguishably from fossil-based PET. NatureWorks’ Ingeo product is most similar to PET in terms of how it processes in converting equipment. One of the reasons that it takes time for any new-to-market material to become widely used is that the converters have a learning curve, and machinery manufacturers have to provide the right technology to handle and convert it. This ramp up adds cost and time for adoption,” says Davies. Lange echoes Davies’ opinion on the converting of biobased materials. “Parameters of existing machines are adapted slightly,” she says, “but most bioplastics can be processed on the same machines as conventional plastics. For example, biobased polyethylene is not different in its properties from conventional PE—except for a lower carbon footprint.” Real world applications NatureWorks’ product materials are called Ingeo. Davies says, “These biopolymers are designed to span packaging uses that range from flexible films, to food serviceware, to thermoformed and form/fill/seal packaging. Yogurt containers and other cups used for take- and-go snacks are an excellent application for Ingeo. The performance and the cost structure are competitive with polystyrene in FFS packaging.” Foam trays that are typically used for refrigerated meats, cheeses, poultry, pork, and other similar items are also suitable applications for Ingeo trays. “The reason is that Ingeo foam trays are compostable in areas where a composting infrastructure has been set up. Seattle is one of the places where Ingeo foam is the go-to material for these trays and takeout containers,” Davies explains. The NatureWorks’ packaging films have breathability characteristics ideal for keeping fresh produce fresh. Ingeo film is also used in the candy industry due to its low carbon footprint credentials. Ingeo’s stiffness also makes a nice clamshell package, requiring less material per package than conventional PET.
12 According to Davies, Ingeo biopolymer is made by converting plant starches into a polymer through a high tech, patented fermentation process. He says this biopolymer has three important competitive advantages, the first of which is its ability to provide unique performance attributes on some applications. Two examples: • In form/fill/seal packaging, Ingeo properties allow lightweighting of the package, while still offering better protection of the contents. The value for the customer is source reduction, as less material is used. • Ingeo foam deli and meat trays that are contaminated with food waste can be composted and thus divert organic food waste from landfills in areas where there is a composting infrastructure. The second advantage that comes with Ingeo, says Davies, is that it offers price stability over the long run compared to volatile pricing of anything based on fossil resources. And third, says Davies, Ingeo is based on renewable abundant resources that give it superior environmental credentials such as less energy to manufacture and fewer greenhouse gases emitted during manufacture. It also means that Ingeo will be increasingly sought after as ever decreasing fossil carbon resources are used for more durable products than packaging. All three are important to consumer brand companies looking for economic, social, and environmental sustainability, concludes Davies. Cost savings Are there cost savings when using this type of material option vs. a “synthetic” polymer? Depending upon the type of use, there definitely can be. Davies points to form/fill/seal yogurt cups as an example. These are primarily made with polystyrene, a material that some brands may want to move away from since some studies have linked styrene to cancer. Ingeo biopolymer offers better price stability than polystyrene and also brings these advantages: • the opportunity to down gauge to thinner packaging and use less material, • manufacturing energy savings through lower temperature forming, • better lid adhesion, • less breakage/cracking, • improved protection during shipping. Noda sees a very clear cost savings, especially if one considers that at end of life most plastic articles saddle us with the cost of disposal. Noda also points out that the production of bioplastics is getting more cost competitive. Lange also sees cost benefits that come with bioplastics, especially if package producers and their customers leverage barrier properties that deliver extended shelf life. She also believes that as manufacturing continues to scale up, the pricing on bioplastics will grow more favorable. Still there are hurdles that bioplastics will have to overcome. Especially tricky is the whole business of life cycle analysis. Not only is there no level playing field across the globe, LCA is always an act of interpretation at some level. Also, notes Lange, there’s a messaging issue. If wrong information continues to be disseminated—such as claims that bio-based plastics are automatically biodegradable, or that bioplastics are a license to litter since they’ll decompose anyway—the growth of biopolymers in packaging could be hindered. International interest in biopolymer packaging While Europe has been earlier than most regions to embrace biobased packaging on a sizeable scale, it seems that biobased packaging options now have an international reach. European Bioplastics’ Lange has seen this firsthand. “Europe is the frontrunner with regard to R&D and is a very interesting market. Converting is also well represented. Production, however, is developing faster in other regions—mainly Asia, but also in North America and South America.” She thinks a missing piece of the biobased packaging puzzle is a legislative
13 framework that guarantees security for investments and also establishes a level playing field amongst the bio-industries. Noda sees the U.S. as a strong contender in biobased materials production: “Europe started earlier, but the U.S. is catching up rapidly, especially with the emerging availability of high- quality and cost-competitive bioplastics.” For Davies, Europe’s strict legislation and cost of oil are the main reasons for a strong presence in the bioplastics industry. “This means the European industry is often quicker to adopt more environmentally friendly and energy efficient manufacturing practices. This helps to drive market interest in biobased materials. All that said, it’s not that the U.S. is waiting to catch up with Europe, and in terms of commercial investment, the U.S. and parts of Asia are moving much more quickly. NatureWorks is one of the leading biopolymer companies in the world and it is based in the U.S., not Europe. A large portion of our sales is in North America and Asia, and Asian countries such as Thailand and Malaysia are moving much more aggressively than Europe to court further investment in biobased materials,” says Davies. “Bioplastics production capacities grow 20% to 100% per year—right now they are about 1% of all the annually produced plastic,” says Lange. Packaging, she adds, is the leading market segment: about 40% of bioplastics produced are made into packaging solutions. Noda has an optimistic outlook for biobased packaging options. “We anticipate a rapid shift in the packaging industry to bioplastics, once there are enough materials with decent physical properties at a competitive price and we have a robust supply chain in place.” Stay tuned where biopolymers in packaging are concerned—or risk getting left behind. ‘Very, very Clicquot’ With this year’s introduction of a package called Naturally Clicquot 2, world famous champagne producer Veuve Clicquot has moved onto biopolymer package 2.0. The French firm’s first effort, dubbed Naturally Clicquot, came out in 2014. Both versions are injection molded of PaperFoam, a starch-based material developed by a Dutch firm that also goes by the name PaperFoam. Not only is the material made from a renewable resource and compatible with the recycled paper stream, it has been validated by Belgium’s AIB-Vincotte International to be 100% compostable at home or in an industrial facility. The raw materials in the slurry used to make both the top and the bottom of this two-part package are identified by PaperFoam as industrial starch (typically from potatoes), “natural fibers,” water, and “premix.” Production is a high-precision process done in custom-made aluminum tools on PaperFoam injection molding machines. Essentially this is a gift package. Though it has isothermal properties—i.e., it keeps things cold--retailers display it at ambient temperatures. The consumer takes it home and puts it in the refrigerator so that when it’s time to bring champagne to a friend’s house, the champagne stays cold for two hours and is in a beautiful package to boot, not to mention one that is easy to hold and carry. As for the upgrade to the 2.0 version, Veuve Clicquot describes it as more appealing, stronger, and easier to carry. Perhaps most important of all, it is “a design which still looks very, very Clicquot,” says the champagne maker in its very, very clever video. One last observation. While 1.0 had glue-applied neck and body labels made of paper, 2.0 has a label made of fiber that includes a hook-and-loop reclosure feature. Biodegradable and compostable coffee capsules available In an interview published in March 2015, the inventor of the popular Keurig K-Cups revealed that he does not use the Keurig system because he feels guilty about the expensive system and the lack of recyclability of the K-Cups. John Sylvan, inventor of Keurig, was quoted as saying, “No matter what they say about recycling, those things (the coffee pods) will never be recyclable. The plastic is a specialized plastic made of four different layers.”
14 In the same month, Italian research group Novamont announced that it had partnered with Italian espresso coffee provider Lavazza to create a fully biodegradable and compostable coffee capsule. Made of Novamont’s third-generation bioplastic, called Mater-Bi 3G, the coffee capsule features a large portion of renewable resources, reduces the fossil resources used to create such a product, and lessens the greenhouse gas emissions produced by traditional coffee capsules/pods. Mater-Bi 3G is produced from renewable raw materials of agricultural origin, including corn, wheat, or potato. According to Lavazza’s website, “Applying the circular economy principle of zero waste, Lavazza and Novamont created a capsule which can be collected with the organic waste and sent for industrial composting, where the capsule and used coffee are recycled together as compost, a natural fertilizer for soil.” Complying with composability certification, listed as NF EN 13432, the capsule includes the Ok Compost Vinçotte logo. “These capsules will contribute significantly to reducing greenhouse gas emissions thanks to the environmental performance of the material,” says the Lavazza website. Novamont is proud of the partnership, and believes it is a nice nod to the company’s research. “The partnership between Lavazza and the Mater-Bi third generation confirms the importance and the success of Novamont’s biorefinery model: a biorefinery integrated into the local area, with positive effects in terms of environmental, economic, and social impacts,” says Novamont. The Two Faces: Bio vs. Shale in a Head–to–Head–Race 10/16/2015 | Dominik Stephan Between The age of naphtha might be coming to an — shale gas and renewables end. The transition from crude oil to gas-based production, and the search for biobased feedstocks for both energy and basic chemicals, are the two faces of tomorrow’s industry. He who comes too late will be punished by life — the chemical industry is undergoing a rapid transition. Crude based naphtha is no longer the predominant feedstock for energy and basic chemicals, as natural gas and bio-materials shape the industry’s future. Established companies change their production cycles, value chains or their business models while new players emerge with revolutionary technologies. These trends will alter the industry radically. Even traditional petrochemical clusters are feeling the wind of change — clusters such as the Sarnia region in Ontario, Canada. Shale Gas in the EU - Facts and Figures
15 Shale Gas in the EU - Facts and Figures Source: IKB / BAFA; Eurostat The countries of the EU 27 show a nearly similar picture: Russia is the leading export nation. The other countries of the former Soviet Union represent another 14 per cent of total imports. Therefore, the EU depends on the OPEC countries and the FSU nations. Source: IKB / BAFA; Eurostat For the European Union, Russia is the dominant supplier of natural gas. But during the last decade, the supply of Norway showed a rising importance. Norway will be a relevant player in the Central European market even in the mid-term after the discovery of new reserves. Algeria supplies the EU 27 not only via three pipelines (two to Spain and one to Italy) but in addition with LNG.
16 Source: IKB / BAFA; Eurostat Germany is mainly depend on Russian and Norwegian natural gas imports. The country is unable to substitute the Russian imports very quickly. The high importance of the Netherlands may be due to the transition function of the Dutch harbours Source: IKB / BAFA; Eurostat Russia is the leading import country for Germany with a market share of 37 per cent of total crude oil imports. Only a quarter of the German crude oil imports are coming from the OPEC countries with Nigeria and Libya as the leading deliverers. Source: IKB / BP Energy Outlook 2035 The global shale gas production will grow with a constant rate during the next two decades...
17 Source: IKB / OPEC; Baker Huges Fracking: The rising Importance of Unconventional Natural Gas: The OPEC countries show a strong upstream investment program to explore new oil reserves. Outside of the OPEC countries the investments into LNG, shale gas or synthesis gas becomes more and more important.. Source: IKB / BP Statistical Review of World Energy Around 75 per cent of the total proven global crude oil reserves are located in the OPEC countries. Russia, which held around 10 per cent of the global oil reserves ten years ago, has lost market share. Main reason were high exports and low investments in oil exploration. During the last years the german industry bank IKB experienced a slight increase in the Northern American oil reserves while the Western European reserves were shrinking.
18 Source: IKB / BP Statistical Review of World Energy The OPEC is not as dominant in the natural gas market as in the crude oil market. But 51 per cent of total proven natural gas reserves are located in the OPEC countries. The countries of the former Soviet Union are the second important player with a global market share of around 28 per cent. North America holds a market share below 5 per cent, while only 8.2 per cent of the natural gas reserves were found in the Asian Pacific region (with Australia, China and Indonesia as dominant players). Source: IKB / BP Energy Outlook 2035 ...Around three quarters of the total production will be exploited in North America. On the other hand the extraction of natural gas via fracking will be of minor importance in Western Europe.
19 Source: IKB / OPEC; Baker Huges ...Mainly North America (United States of America and Canada) make shale gas reserves accessible. As a result the United States will become independent of gas imports and are able to reduce their crude oil imports. This will change the industrial landscape tremendously Source: IKB / BP Energy Outlook 2035 Between 2015 and 2020 the United States will become a net exporter of natural gas. From 2035 on the experts from IKB forecast lower US net exports. The city near Lake Huron has been a center of refining and petrochemicals since the discovery of oil in 1858 — now it wants to be a trailblazer for tomorrow’s industry. Situated among Canada’s corn belt and with access to the North American gas supply, the region is a perfect example of industrial transition in a nutshell. A transition, that is well underway … Goodbye, Naphtha – Hello Ethane Tom Thompson, manufacturing leader of Canadian Nova Chemicals, has something unusual for sale: a fully functioning crude oil cracker. Although the unit is disassembled, it is still in premier working condition, Thompson says. Yet, Nova does not need a crude unit any more: The company is a first mover in terms of raw materials. In 2013, Nova’s Corunna site, about ten miles from Sarnia, started processing ethane from US shales as a feedstock for petrochemicals. Since then, Thomson has not looked back: In late 2014, the operators at Corunna ran the last barrel of crude through the cracker. Now, the whole site runs 100 % on ethane from the Marcellus Shales.
20 Greenwashing: Misuse of EU composting standard EN 13432 14.10.2015 Lately, European Bioplastics (EUBP) has noticed an increasing malpractice by producers of fragmentation additives for conventional plastics referring to the European standard for industrial composting, EN 13432, when marketing their products. Yet such products do not fulfil the requirements of the EU norm for industrial composting of plastic products. Consequently, European Bioplastics considers this a severe case of greenwashing. Recent misuse cases comprise the outright false claim that additive-mediated plastics comply with EN 13432 (see image (ndlr: et en plus avec logo d2w = Symphony)). In other cases,
21 additive producers aim to piggyback on the good reputation of EN 13432 by referring to only parts of the standard, for example stating that ‘The plant growth test and the ecotoxicity effects have been studied with positive results above 100% according the EN 13432’. European Bioplastics is therefore requesting all producers of additives claiming to make conventional plastics biodegradable either to fully comply with the standard en 13432, or to cease making what can only be construed as deliberately misleading references. “If a standard is referenced, all aspects of it need to be fulfilled by the material or product. Should this not be the case, the reference is misleading. We urge all market operators to comply with communication standards according to the ISO 14020 series,“ stated François de Bie, Chairman of the Board of EUBP. Worried about the negative impacts on the environment of additive-mediated conventional plastics, which merely fragment into small pieces, the European Commission has discussed banning such technology in the past. Currently, the Commission is undertaking an assessment of the impact of oxo-degradable plastics on the environment, as these materials represent the foremost part of additive-mediated plastics. According to a recent amendment of the EU Directive on Packaging and Packaging Waste, the results shall be presented by 2017, at the latest.(KL) Un plastique à base d’air (16-10-2015) (Merci Blandine de Breizpack) Quelques entreprises s’attaquent à l’effet de serre en lançant des initiatives qui peuvent réduire les émissions de carbone et même trouver un débouché utile au CO2. Elles l’extraient de l’air pour le recycler en plastique. Le recyclage des gaz à effet de serre pourrait s’avérer une activité lucrative qui ferait aussi du bien à l’environnement. Sont concernés les gaz à base de carbone, comme le CO2, une matière première bon marché et abondante qui est libérée comme sous-produit de la fermentation de l’éthanol, la production d’ammoniaque, d’oxygène et d’oxyde d’éthylène, les sources de gaz naturel, les gaz de combustion des centrales électriques au charbon,… Partout à travers le monde, plusieurs entreprises ont déjà choisi d’utiliser ces émissions comme matières premières. Quelques exemples récents. Newlight Technologies Newlight Technologies récupère le carbone dérivé du méthane à partir de l’air et le recycle en plastique, qu’il a appelé AirCarbon. Ce matériau thermoplastique écologique offre les mêmes performances que les plastiques à base de pétrole et on peut l’utiliser pour fabriquer de nombreux objets, allant de robustes boîtiers durables jusqu’aux films minces et aux meubles imposants. Le procédé breveté associe un biocatalyseur avec l’air et les émissions de gaz à effet de serre contenant du méthane. On peut ainsi constituer une longue chaîne de matériau thermoplastique à base de polyhydroxyalkanoate (PHA) à partir des molécules de carbone, d’hydrogène et d’oxygène. Une fois synthétisé, le matériau est sorti du réacteur et transformé en pellets qui peuvent ensuite être fondus et formés. Dans sa forme la plus rudimentaire, le matériau est constitué d’env. 40 pour-cent d’oxygène et 60 pour-cent de carbone et d’hydrogène provenant des émissions de carbone.
22 Le procédé comprend trois grandes étapes : captage, séparation et polymérisation (Source: Newlight) Un problème auquel la conversion des émissions en polymères est généralement confrontée est son prix élevé, ce qui l’empêche de rivaliser avec les plastiques à base de pétrole. Le rendement du biocatalyseur utilisé par Newlight est neuf fois plus élevé, ce qui rend le plastique obtenu concurrentiel avec les matériaux comme le polypropylène et le polyéthylène. Depuis lors, Newlight a poursuivi le développement de la technologie en vue de sa commercialisation. À cette fin, il a construit un site de production en Californie, qui utilise l’air et les émissions de carbone à base de méthane concentré provenant d’une installation de fermentation anaérobie. À la fin de 2013, l’entreprise introduisait déjà son premier produit à bilan carbone négatif, une chaise. Le matériau convient pour différents secteurs, notamment automobile, électronique, du bâtiment, de l’habillement,… Le développement de Newlight lui a déjà valu de nombreux prix et a suscité l’intérêt entre autres de Dell Computers pour l’emballage des PC portables, de Sprint pour la production de housses pour iPhone et du géant de la pétrochimie Vinmar International. L’entreprise montre qu’il est possible de fabriquer des produits à partir d’une source de matières premières à base carbone provenant de l’air, et cela de manière économique et réalisable. Covestro Il n’y a pas qu’aux États-Unis que l’on recycle le carbone à partir de l’air : suite à des considérations écologiques, de création de valeur industrielle, d’acception par le marché et de protection du climat, la société allemande Covestro (auparavant Bayer MaterialScience) a décidé d’utiliser le dioxyde de carbone comme matière première pour les polymères, mais pas pour remplacer les sources fossiles. En effet, de nombreux procédés dégagent du CO2 comme sous-produit. Il serait possible d’incorporer jusqu’à 43 pour-cent de CO2 dans les polycarbonates aliphatiques et cycliques, pour la production du polyuréthane. L’utilisation d’un polyol dérivé du CO2 a été développée dans un labo central commun de CAT-catalytique, créé par Covestro et RWTH Aachen, qui constitue la première étape d’une
23 implantation. Le premier site pilote de production du polyol à base de CO2 est déjà devenu un fait : on y produit des polyols polycarbonates polyéthers (PPP) qui sont ensuite transformés en plastiques purs. Le premier site de production est maintenant déjà en phase de préparation. Cette usine doit pouvoir produire d’importantes quantités pour l’industrie, à savoir des milliers de tonnes. Une centrale électrique fournit des gaz de combustion de CO2 traités, servant de base au plastique. (Source : Bayer) Covestro voit des applications potentielles de polyol à base de PUR dans les mousses de PUR souples. L’avantage du matériau est que les groupes de carbonate dans les polyols dérivés du CO2 contribuent à donner la viscosité tandis que les blocs de mousse PUR à base de polyol dérivé du CO2 présentent une stabilité thermique comparable à celle du PUR fabriqué avec les polyols traditionnels. Grâce à sa légèreté, le matériau contribue à réduire le poids des produits, ce qui intéresse l’industrie automobile. Par ailleurs, on peut aussi l’utiliser pour les matelas, comme rembourrage de meubles et pour l’isolation des bâtiments. Novomer La société américaine Novomer et la société hollandaise DSM proposent un système commercialisé utilisant le CO2 comme matière première pour les polymères. Il s’agit d’une famille de polyols dérivés du CO2, vendus sous la marque Converge. Le système repose sur un système breveté de catalyseur qui permet la transformation de gaz d’échappement CO2 en polyols à hautes performances et à coût réduit pour tout un éventail d’applications. Les polymères comportent jusqu’à 50 pour-cent massique de CO2, qui permet ainsi de piéger les gaz à effet de serre pendant toute la durée d’utilisation du matériau. D’après l’entreprise, l’utilisation du CO2 dans les plastiques présente pour avantage de réduire la consommation de combustibles fossiles, et participer aussi à la réduction du volume des gaz à effet de serre. De plus la production du matériau pourrait s’avérer concurrentiel même sans subside lors d’une production à plus grande échelle.
You can also read