Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio

Page created by Micheal Yates
 
CONTINUE READING
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
1

Increased capacities for renewable BDO
Wednesday, 07 October 2015

BASF and Genomatica have expanded their license agreement for the production of 1,4-
butanediol (BDO) based on renewable feedstock. BASF is to build a world-scale production
facility that will use the Genomatica bio-based process to manufacture renewable BDO.
The agreement adds countries in Southeast Asia, and the pair are targeting large-scale
commercial production of renewable BDO using Genomatica technology.
Genomatica will continue to develop its patented GENO BDO process technology for the
production of renewable BDO. The process, involving single-step fermentation, can be based
on dextrose or sucrose as the renewable feedstock.
BASF has produced commercial volumes of renewable BDO, offering it to customers for
testing and commercial use, and has expanded its portfolio by producing and offering
Polytetrahydrofuran (PolyTHF) made from renewable BDO.
BASF has said it will increase its global capacities for BDO to 650,000 metric tons and for
PolyTHF to 350,000 metric tons by the end of 2015, and beginning of 2016, respectively.
"We’re delighted to provide BASF with these additional license rights for our GENO
technology,” said Christophe Schilling, CEO, Genomatica. “We look forward to seeing our
technology deliver sustainability benefits to our business partners, and through them, to end-
users of everyday products.”
BDO and its derivatives are widely used for producing plastics, solvents, electronic chemicals
and elastic fibres. In the nonwovens industry, BDO is used as an intermediate in elastics used
in absorbent hygiene products.
October 5, 2015 Updated 3 days ago

Plastic bag makers file second California ballot measure
By Catherine Kavanaugh 05/10/15

Plastic bag manufacturers are taking steps to get a second ballot proposal before California
voters, who will go to the polls in November 2016 to decide whether to uphold a statewide
ban on plastic shopping bags.
Under a newly filed ballot initiative, voters could also be asked to direct any fees retailers
collect for compostable and reusable bags to an environmental fund for projects like drought
mitigation, recycling or beach cleanups. The current ballot measure allows retailers to keep
those fees, which would be a minimum 10 cents per bag.
Calling the first ballot question to repeal or ratify SB 270 a potential “billion dollar giveaway
to grocers,” the American Progressive Bag Alliance filed the second ballot measure with the
California Attorney General’s office on Oct. 2. Members of the APBA estimate bag fees will
generate up to $400 million a year for grocers while a vast majority of Californians — 84
percent by their count — believe the money should go to a public purpose.
“So we want to make sure voters have the power to actually put bag fees to work for the
environment and their communities should SB 270 become law,” Lee Califf, executive
director of the APBA, said in an emailed statement.
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
2

The second ballot measure, which is tentatively called the Environmental Fee Protection Act,
would send bag fees to the California Wildlife Conservation Board, which would distribute
the funds as environmental grants. APBA says the money could go to “worthy” goals, such as
remediating drought-stricken forests, restoring wetlands, and paying for recycling, litter
removal and habitat restoration.
APBA opposes bag bans, fees and taxes as a threat to 30,800 manufacturing and recycling
jobs in the United States, and questions the environmental benefits of replacing single-use
plastic bags with other bags. In California, Califf said SB 270 is a giveaway to grocers under
the guise of environmentalism and its stated intent to rid that state of plastic bags is
contradicted by a loophole that allows grocers to distribute thicker plastic bags to customers
for a 10-cent fee.
California lawmakers passed the bag ban in 2014 and it was to go into effect in July 2015.
However, APBA collected some 800,000 signatures to put the ban to a vote of the people on
Nov. 8, 2016. Now the trade group wants to give voters another option.
“Our industry is proud to give California voters a chance to overturn a deeply flawed, job-
killing law, or at least, ensure bag fees are dedicated to helping the environment instead of
increasing grocer profit margins,” Califf said.
State officials have 65 days to review the proposed ballot measure and issue the official title
and summary before APBA can launch a signature-gathering drive to place it before voters
along with the other ballot question.
Suspicions arise
In the meantime, supporters of the bag ban are questioning APBA’s motives. The second
ballot effort is either an admission of defeat in repealing SB 270, a ploy to confuse voters, or
political mischief, Mark Murray, executive director of Californians Against Waste, said in a
telephone interview.
Murray said the ballot proposal APBA submitted to state officials last week is similar to one
that the trade group spent about $3 million defeating in Seattle in 2008.
“What’s changed?” Murray asked. “How do they go from spending millions to oppose a bag
tax to now saying they’re prepared to spend millions of dollars to advance a bag tax? It
doesn’t really seem credible.”
Murray does not think grocers stand to profit from the ballot measure already approved for
next year.
“They certainly stand to gain by no longer having to subsidize single-use plastic or single-use
paper bags at the store, so there’s a cost saving for grocers,” Murray said. “But I’m not sure
there’s a penny in new revenue for them because they still have to buy paper bags.”
Grocers were early opponents of the bag ban, he added, but they got behind the measure
because it creates a uniform statewide policy.
“We’re seeking a yes vote to affirm the law for environmental reasons,” Murray said. “I think
the grocers will continue to seek a yes vote because they want a uniform statewide policy. If
the law is overturned, the retailers are stuck with a patchwork of 140 local plastic bag bans in
California.”
Murray doubts that the second bag proposal will make it onto the ballot. He said it is up for
public comment and then revisions would likely be made. It would be early December before
the signature drive can begin and the outcome would not be known until June.
“It only cost $200 to take the step they’ve taken,” Murray said. “It’s not real until they have to
actually start gathering signatures. Maybe they just want people to have the conversation
we’re having right now.”
APBA believes it will have no problem getting enough signatures to put the proposed
referendum on the ballot.
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
3

Pointing to a private poll, Califf said in an email: “We are confident in our ability to gather
signatures, especially given that 84 percent of California voters believe that bag fees in
general should go to a public purpose instead of increasing profit margins for grocers.”
About Corbion Purac's PLA portfolio
09/10/2015

Corbion Purac's PLA homopolymer resins are available in a range of melt viscosities and
deliver improved heat resistance over standard PLA. These grades can be used as neat resin or
as part of a compound in order to further optimize overall material properties. PDLA, when
combined with PLA homopolymers, will yield a compound that combines good heat
resistance with excellent mechanical properties.

       PLA L105: a high flow resin suitable for injection molding.
       PLA L130: a medium flow resin suitable for injection molding and fiber spinning.
       PLA L175: a high viscosity resin suitable for film extrusion, thermoforming or fiber
        spinning.
       PLA LX175: a standard, amorphous, transparent resin, suitable for film extrusion,
        thermoforming or fiber spinning.
       PDLA D070: a general purpose nucleating agent for PLA homopolymer resins.

Corbion Purac's neat PLA resins are compliant with the most relevant regulations and
requirements related to bioplastics:

       Approved for use in food contact applications (EU Framework Regulation EC No.
        1935/2004 and No. 10/2011),
       Compliant with EN13432 standard for industrial composting,
       Biobased content of 100%,
       REACH compliant,
       Exclusively made from non-GMO feedstocks,
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
4

BISPHÉNOL A - LES SAGES ET LES
EMPOISONNEURS
Fabrice Nicolino - Charlie Hebdo du 07/10/2015 (merci Pierre)

Giscard - à la barre - et Jospin - Yoyo - viennent de filer un grand coup de main, via le
Conseil constitutionnel, au lobby européen du plastique. En censurant une loi qui interdisait la
production de bisphénol A en France. La vieillesse, ce naufrage.
     A-t-on le droit d’empoisonner le monde en toute conscience ? Telle est la belle question
posée par nos croûtons du Conseil constitutionnel, dont Giscard et Jospin, qui en sont les
membres les plus illustres. Nos chers vieux amis ont trouvé le temps de censurer une loi dif-
ficilement accouchée en 2010. Celle qui interdisait le bisphénol A (BPA) dans les biberons à
partir de janvier 2013, et dans tous les produits au contact des aliments au ier janvier 2015. Un
ajout de 2012 avait même imposé «la suspension de la fabrication, de l’importation, de
l’exportation et de la mise sur le marché de tout conditionnement contenant ou ustensile
comportant du bisphénol A et destiné à entrer en contact direct avec des denrées alimentaires
».
     Le bisphénol A est une merde grossière, synthétisée pour la première fois en 1891 avant
que d’être redécouverte en 1953. Ce plastique polycarbonate (ndlr : ??? la journaliste a certainement
voulu dire « cet adjuvant utilisé dans des plastiques tels que les polycarbonates ») est utilisé par
l’industrie dans la fabrication des bouilloires électriques, des panneaux solaires, des
téléphones portables et jusque dans celle des casques de cosmonaute. On ne peut détailler ici
les effets du BPA sur la santé, mais ça craint follement. Le (sérieux) Réseau Environnement
Santé recense, pour la seule période 2009-2012, la bagatelle de 296 études dans le monde qui
établissent des effets sanitaires chez l’homme ou l’animal, contre 16 qui rien trouvent aucun.
Au programme des conséquences : perturbations du système immunitaire, troubles de la
reproduction, maladies cardio-vasculaires, diabète, obésité, cancers, troubles neurologiques.
     Contre cette horreur plastique (ndlr : elle insiste !), donc, deux lois françaises qui limitent la
casse sans la faire disparaître. L’industrie aurait dû s’écraser mollement, mais ce serait très
mal la connaître. Tout au contraire, elle mobilise ses réseaux, montre les crocs et mord à
pleines dents. Pour mieux comprendre, un tour électronique s’impose : http://www.bisphenol-a-
europe.org/ . Sur ce portail, qui se présente joliment comme le centre d’information sur le
bisphénol A, on vole de cadeau en cadeau, c’est Noël. Par exemple, ceci, attribué sans plus de
précisions aux autorités sanitaires suisses : «L’absorption de BPA par le biais d’aliments ne
présente pas de risque pour les consommateurs. »
     Cet audacieux site Internet est — évidemment — aux mains du lobby Plastics Europe
(www.plas- ticseurope.fr), constitué notamment des entreprises Covestro (ex-Bayer
MaterialScience) et Trinseo (ex-Styron). Puissant et omniprésent à Bruxelles, il influence et
manipule les autorités de contrôle européennes à un point qu’on n’imagine pas en France. Et
c’est bien à partir de la capitale belge qu’a été lancée l’offensive.
Bruxelles mars 2015, PlasticsEurope ose soumettre aux Etats une question prioritaire de consti-
tutionnalité QPC). Affirmant que 50000 emplois sont menacés en France, le lobby constate que
l’Agence européenne de sécurité sanitaire (EFSA) juge le BPA sans aucun danger. Le menu
problème est que l’Agence européenne se noie dans les scandales et conflits d’intérêts qui
opposent entre autres certains de ses cadres à l’industrie chimique.
PASSE-PASSE CONSTITUTIONNEL
     Mais revenons au Conseil constitutionnel, le seul à pouvoir répondre sur le fond, si l’on
ose écrire. Notre Assemblée cacochyme vient de donner partiellement raison à
PlasticsEurope, d’une manière qui réjouira le coeur des démocrates sincères. Dans son
immense sagesse de vieillard qui en a plus rien à foutre, le Conseil lève l’interdiction de la
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
5

fabrication en France et de l’exportation depuis la France de contenants farcis au BPA. Mais
valide l’interdiction de la commercialisation et de l’importation en France. Autrement dit :
l’industrie du plastique française peut produire et exporter sa merde, mais pas la vendre en
France. Le tout au nom de la délicieuse « liberté d’entreprendre».
    PlasticsEurope, qui sent la victoire totale à portée de main, veut que la Commission
européenne torde le bras de la France, ce qui ne devrait pas être difficile. Selon l’un de ses
chefaillons, Michel Loubry, «la décision du Conseil constitutionnel est pour nous une première
étape». C’est clair, non?

La pensée du jour signée Anne Roumanoff
Bizarre…

Plus les téléphones deviennent intelligents
Plus les gens deviennent cons

Matières Plastiques Biodégradables : état des lieux en 2015
Mercredi 09 Septembre 2015 – Centre de formation dela Plasturgie
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
6

Dans un contexte où le développement durable et l’écologie deviennent des préoccupations de
plus en plus présentes au sein des sociétés, les matières plastiques évoluent afin de répondre
aux exigences actuelles. En effet, en plus d’être sans cesse plus « intelligents », la part des
plastiques biodégradables tend à s’accroître.

Plastiques biosourcés et/ou biodégradables : quelles différences ?

Lorsque l’on s’intéresse à l’impact environnemental des plastiques, il convient de distinguer
les plastiques biosourcés des plastiques biodégradables. Selon le CNRS , un plastique
biosourcé est issu partiellement ou totalement de matières premières végétales (amidon ou
cellulose par exemple). Les plastiques biodégradables sont quant à eux conçus pour se
dégrader dans des conditions de compost en quelques semaines seulement. Ainsi, le matériau
est complètement métabolisé par des micro-organismes (bactéries, champignons, ou algues) et
se décompose en eau, dioxyde de carbone et biomasse.

Les plastiques biodégradables peuvent avoir été conçus grâce à des matières premières
fossiles issues de la pétrochimie, des matières renouvelables, ou grâce à une combinaison des
deux . A titre d’exemple, la matière plastique Ecovio® développée par BASF est «
doublement bio » dans le sens où elle est issue de matières premières renouvelables et
qu’elle est en intégralité biodégradable.

Usages des plastiques biodégradables

La biodégradabilité d’un plastique lui confère un avantage certain lorsqu’il est question de
jeter le produit après son utilisation ; il sera en effet possible de détruire cet emballage à
moindre coût. Il convient cependant de garder à l’esprit que l’utilisation des matériaux
plastiques biodégradables doit être faite à bon escient : le simple fait de jeter ces matériaux
ne suffit pas, il faut qu’ils rencontrent certaines conditions environnementales pour que leur
biodégradation s’opère (compost). Ainsi, ces matériaux seront principalement utilisés pour les
emballages alimentaires, l’agriculture ou encore la médecine .

Outre la nécessité de détruire rapidement les matières plastiques utilisées pour des produits à
consommation unique, il est également pertinent d’adapter leur utilisation pour des objets
ayant une durée de vie plus longue. Yves Grohens, Directeur Adjoint du Laboratoire
LIMATB, démontre très bien la portée de ces choix en prenant l’exemple d’une clé USB . En
effet, pourquoi utiliser un contenant en matière plastique pouvant durer 500 ans alors que le
produit ne dispose que d’une durée de vie limitée à quelques années ? En suivant cette
logique, 30% des emballages actuels pourraient être remplacés. Pour atteindre les 70%
restants, certaines innovations techniques sont encore nécessaires et devraient voir le jour
d’ici une dizaine d’années.
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
7

Le marché des plastiques biodégradables : 10.8% de croissance par an attendue entre
    2015 et 2020

Les industriels se sont déjà emparés de cette problématique et, d’après une étude menée par
l’organisme Market & Markets , le taux de croissance annuel moyen du marché des
plastiques biodégradables va croître de 10.8% entre 2015 et 2020. Cette étude sur les
plastiques biodégradables se base sur 3 grands axes de recherche : leur type, leur application
et les zones géographiques clés.
L’acide polylactique (PLA) est le plus gros segment des matériaux plastiques biodégradables
et représente en 2015 plus de 45% du marché. La croissance de ce segment est principalement
portée par les propriétés mécaniques supérieures et la facilité de traitement de l’acide
polylactique.
Lorsque l’on regarde les différentes applications des matériaux plastiques biodégradables,
les emballages arrivent nettement en tête avec 60.3% du marché. Les plastiques
biodégradables sont de plus en plus utilisés pour produire des emballages à usage unique tels
que les sacs de courses. L’accroissement de l’utilisation de plastiques biodégradables pour ces
applications est attribué au développement de la conscience environnementale collective.
L’étude fait ressortir 4 grandes régions géographiques : Europe de l’Ouest, Amérique du
Nord, Asie-Pacifique et le Reste du Monde (RDM). Les pays clés de la croissance du marché
des plastiques biodégradables sont les Etats-Unis, l’Allemagne, la Chine et le Japon.
L’Europe de l’Ouest est le plus grand consommateur de produits construits à partir de
plastiques biodégradables, avec plus de 40% de parts de marché en 2014. Cet accroissement
de l’utilisation de plastiques biodégradables est dû à de fortes régulations environnementales
prohibant l’utilisation de plastiques issus de la pétrochimie dans les produits à application
unique.

Vers des matières plastiques de plus en plus « intelligentes »

Ainsi, l’utilisation de matières plastiques biodégradables s’inscrit dans une tendance en plein
essor. En plus d’adapter la durée de vie des matières plastiques à celle des produits qu’elles
composent ou protègent, les matières plastiques biodégradables offrent des
caractéristiques de plus en plus intéressantes : tolérance à la chaleur - changements de
couleurs - imperméabilité à la chaleur. La forte croissance du marché des plastiques
biodégradables et le rythme des innovations liées à ces matériaux sont tels qu’il sera
prochainement possible de répondre aux exigences techniques de toutes les applications sans
pour autant mettre de côté l’aspect environnemental.

New bioplastics bring chitin out of its shell
06/10/2015 EU Research & Innovation

Shrimp heads, crab carapaces, lobster shells - many billion tonnes of shellfish waste are
generated globally per year. Very little of it is put to good use. This could be about to change,
as EU-funded researchers have developed an innovative way to transform this briny refuse
into plastic.
The shells of crustaceans and molluscs contain chitin, a natural polymer that can be
transformed into tiny filaments called nanofibrils. The partners involved in the n-Chitopack
project use these nanofibrils to develop compostable bioplastics that offer a more sustainable
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
8

alternative to petroleum-derived plastics for a variety of applications. The nanofibrils are
extracted using a process patented by Italian SME MAVI Sud, the lead partner.
The project has already created a number of products based on this invention. These notably
include coffee capsules, shopping bags and a variety of food packaging materials, such as
hard and soft containers.

From prawns to polymers
n-Chitopack’s bioplastics are not just biodegradable; they are compostable, says project
coordinator Pierfrancesco Morganti of MAVI Sud, who notes that more than 150 billion
tonnes of shellfish waste are produced annually around the world. “Some things that are
biodegradable actually generate toxic compounds as they break down,” he explains. “It’s
important to make sure that products degrade into compounds that are of some benefit, and
not harmful to humans or to the environment.”
The project’s emphasis on sustainability is not just reflected in the final product. It has shaped
the entire process developed by the partners, says Morganti — starting with the extraction of
the nanofibrils. Care was taken to design a method that consumes little energy, allows for
recycling of all the water used in the process and generates no toxic residues. “The powder
that remains at the end of the process is used as fertiliser,” says Morganti.
The resulting bioplastics could replace conventional plastics for a number of uses, such as
coffee capsules, for example. “Millions and millions of these are thrown away every day, and
they are usually not compostable,” Morganti notes. “This has created a problem we didn’t
have before.”
The n-Chitopack partners decided to rise to the challenge and made the development of
greener coffee capsules one of its priorities. The team is currently exploring options to
produce their flexible, robust bio-capsules on an industrial scale.

It’s a wrap
The materials developed by n-Chitopack are based on chitin nanofibrils, but they also
contain a certain amount of chitosan, another substance derived from chitin. The project has,
for instance, blended the two to produce food packaging film.
This food wrap benefits from a particularly useful property that chitosan adds to the mix: it
stops the growth of germs. Tests that focused on packaging fish confirmed this effect,
Morganti reports. “There were no bacteria on the film that was in contact with the food,” he
notes.

The full package
n-Chitopack’s bioplastics could thus help to address several problems simultaneously: they
could help to reduce the vast amounts of chitin waste going to landfill, they could transform
part of the world’s avalanche of discarded packaging into a slow-release supply of nutrients,
and they could further protect resources by slowing down the spoilage of perishable foods.
Food packaging is, however, just one of several possible applications. Chitin nanofibrils also
show promise for use in medicine, says Morganti, more specifically for the production of
bandages, where the materials’ ability to keep microbes in check are particularly valuable.
They also have potential for a range of environmental solutions, including filtering systems
for air or water.
There are still a few technical issues to address before commercial roll-out can begin, says
Morganti. However, he expects the large-scale manufacture.
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
9

TECNARO develops, produces and markets lignin based
  ARBOFORM®
October 6, 2015 lepitreb
Named after latin arbor, tree, Arboform™ is a sustainable thermoplastic material made of
100% renewable raw materials, with a lignin matrix, a by-product of cellulose pulping
process. It’s mainly targeting and used for injection moulding applications. Tecnaro
(Germany announced it operates a capacity of 5,000t annual output, which can be increased if
needed.
ARBOFORM® brings two industries together. It puts the wood processing industry in a
position to make products with design geometries that in the past were only feasible
economically with the use of plastics. And, conversely, it puts the plastics processing industry
in the position to process wood just like a conventional thermoplastic material and benefit
from the aesthetic and warm soft touch of wood.
Because of its lignin matrix, ARBOFORM® is claimed to be as highly constant in quality as
the cellulose for papermaking.
The disposal of ARBOFORM® products is the same as for naturally grown wood, i.e. natural
decay or incineration. The amount of CO2 emitted in the process is no more than was
previously fixed from the atmosphere by the plants while growing. ARBOFORM® is thus
claimed to be GHG neutral.

Caskets to die for
01.10.2015 Bioplastics Magazine

Marieke Havermans, a Dutch entrepreneur, is fast taking the idiom "from cradle to grave” to
an entirely new level. A packaging expert, she has developed a new ecological casket made of
100% biological materials that will decompose via natural processes in the ground within a
period of some 10 years.
And for those who prefer cremation: the casket will burn cleanly, reducing toxic emissions by
up to 75% compared to conventional caskets.

The idea for environmentally friendly coffins arose in 2012, ands Havermans decided to go
for it. Market research revealed that this was a product that had not yet been attempted to be
made from bioplastic. She resigned from her job and started her company, Onora, in 2012,
funded by an investor who believed in the project, a crowdfunding campaign and the proceeds
from two awards, including the MKB Export Award.

The caskets are made of a purpose-designed bioplastic based on starch derived from
byproducts from the seed and potato processing industry. They are among the biggest single
products ever made completely from bioplastic. Only natural pigments are used as colorants.
The caskets are injection molded; the two, huge molds, one for the lid and one for the coffin
itself, were built in China.
Increased capacities for renewable BDO - Wednesday, 07 October 2015 - Serpbio
10

The casket is basically a thin-walled container with reinforcing ribs and stiffening features,
that can accommodate up to 150 kg of weight. Moreover, this structure means that far less
material is needed to produce the coffin, which helps to keep the costs down. Because the
coffin is injection molded, not only can features such as grips can be integrated in the design,
fasteners, such as screws, and adhesives are also unnecessary.
According to Havermans, the casket has rounded corners and an organic form: “based on a
cocoon,” she says. The coffins come with a comfortable matrass and pillow made of hemp
fiber, an eco-cotton sheet and, if desired, a blanket made of ecological Dutch wool.

Giecosceptique ?

Biopolymers in packaging—some hurdles, but strong signs
   of growth
Europe has led the charge when it comes to embracing biobased packaging. But new and intriguing
applications are surfacing in other parts of the world, including Asia and North and South America.

By Erin J. Wolford, Contributing Editor September 27, 2015
We’ve seen some pretty notable and innovative biobased applications in packaging lately.
Last year, Nofima released a new bioplastic that was made of shrimp shells, using the chitin
to produce a degradable material. And this year, Coke made international news when it
announced its biobased bottle, made with 30% renewable content. Many other biobased
packaging formats are in stores now, and sometimes consumers are none the wiser.
The key distinguishing difference between biopolymers and the conventional polymers we’re
all familiar with is that biopolymers are sourced not from petroleum but rather from biological
sources. In other words, things that grow.
11

European Bioplastics e.V., a Europe-based association representing the European bioplastics
industry, includes member companies like NatureWorks, DuPont, Corbion, Braskem,
Novamont, BASF, Innovia, Meredian, to name a few. These companies are heavily involved
in the bioplastics industry and are actively producing and/or supplying the industry with
bioplastics.
European Bioplastics’ deputy managing director Kristy-Barbara Lange says that there are
numerous benefits to using bioplastics in packaging, including increased resource efficiency
because the resources relied upon are renewable. She also notes that there are several
certifications, such as ISCC Plus, to ensure that resources are grown sustainably. Lower
carbon footprint is another benefit; sometimes even carbon neutrality is possible. Sometimes
end-of-life options are highly desireable, compostability for food packaging being one
example. Optimized technical properties such as controlled permeability or specific aroma
barriers are other benefits that can be gained.
Production and converting
When a converter starts thinking about running any new material, of course alterations may be
necessary. And the consensus is that bioplastics and biopolymers are largely very similar to
their conventional counterpart in terms of needing to adjust slightly when converting a new
material. Dr. Isao Noda, Chief Science Officer at bioplastics producer MHG, puts it this way.
“Some changes to the converting process are necessary, such as process temperature, range,
etc. But some of today’s bioplastics are getting so close to the conventional petroleum-based
plastics as to be essentially a drop-in substitute for some key applications.”
In agreement is Steve Davies, Director of Corporate Communications and Public Affairs at
NatureWorks, a maker of plant-based biopolymer PLA (polylactic acid). “Every polymer is
different in terms of converting. Polypropylene, PET, Polystrene—each is handled differently.
A biopolymer such as PET would be processed indistinguishably from fossil-based PET.
NatureWorks’ Ingeo product is most similar to PET in terms of how it processes in converting
equipment. One of the reasons that it takes time for any new-to-market material to become
widely used is that the converters have a learning curve, and machinery manufacturers have to
provide the right technology to handle and convert it. This ramp up adds cost and time for
adoption,” says Davies.
Lange echoes Davies’ opinion on the converting of biobased materials. “Parameters of
existing machines are adapted slightly,” she says, “but most bioplastics can be processed on
the same machines as conventional plastics. For example, biobased polyethylene is not
different in its properties from conventional PE—except for a lower carbon footprint.”
Real world applications
NatureWorks’ product materials are called Ingeo. Davies says, “These biopolymers are
designed to span packaging uses that range from flexible films, to food serviceware, to
thermoformed and form/fill/seal packaging. Yogurt containers and other cups used for take-
and-go snacks are an excellent application for Ingeo. The performance and the cost structure
are competitive with polystyrene in FFS packaging.”
Foam trays that are typically used for refrigerated meats, cheeses, poultry, pork, and other
similar items are also suitable applications for Ingeo trays. “The reason is that Ingeo foam
trays are compostable in areas where a composting infrastructure has been set up. Seattle is
one of the places where Ingeo foam is the go-to material for these trays and takeout
containers,” Davies explains.
The NatureWorks’ packaging films have breathability characteristics ideal for keeping fresh
produce fresh. Ingeo film is also used in the candy industry due to its low carbon footprint
credentials. Ingeo’s stiffness also makes a nice clamshell package, requiring less material per
package than conventional PET.
12

According to Davies, Ingeo biopolymer is made by converting plant starches into a polymer
through a high tech, patented fermentation process. He says this biopolymer has three
important competitive advantages, the first of which is its ability to provide unique
performance attributes on some applications. Two examples:
• In form/fill/seal packaging, Ingeo properties allow lightweighting of the package, while still
offering better protection of the contents. The value for the customer is source reduction, as
less material is used.
• Ingeo foam deli and meat trays that are contaminated with food waste can be composted and
thus divert organic food waste from landfills in areas where there is a composting
infrastructure.
The second advantage that comes with Ingeo, says Davies, is that it offers price stability over
the long run compared to volatile pricing of anything based on fossil resources. And third,
says Davies, Ingeo is based on renewable abundant resources that give it superior
environmental credentials such as less energy to manufacture and fewer greenhouse gases
emitted during manufacture. It also means that Ingeo will be increasingly sought after as ever
decreasing fossil carbon resources are used for more durable products than packaging. All
three are important to consumer brand companies looking for economic, social, and
environmental sustainability, concludes Davies.
Cost savings
Are there cost savings when using this type of material option vs. a “synthetic” polymer?
Depending upon the type of use, there definitely can be. Davies points to form/fill/seal yogurt
cups as an example. These are primarily made with polystyrene, a material that some brands
may want to move away from since some studies have linked styrene to cancer. Ingeo
biopolymer offers better price stability than polystyrene and also brings these advantages:
• the opportunity to down gauge to thinner packaging and use less material,
• manufacturing energy savings through lower temperature forming,
• better lid adhesion,
• less breakage/cracking,
• improved protection during shipping.
Noda sees a very clear cost savings, especially if one considers that at end of life most plastic
articles saddle us with the cost of disposal. Noda also points out that the production of
bioplastics is getting more cost competitive.
Lange also sees cost benefits that come with bioplastics, especially if package producers and
their customers leverage barrier properties that deliver extended shelf life. She also believes
that as manufacturing continues to scale up, the pricing on bioplastics will grow more
favorable.
Still there are hurdles that bioplastics will have to overcome. Especially tricky is the whole
business of life cycle analysis. Not only is there no level playing field across the globe, LCA
is always an act of interpretation at some level.
Also, notes Lange, there’s a messaging issue. If wrong information continues to be
disseminated—such as claims that bio-based plastics are automatically biodegradable, or that
bioplastics are a license to litter since they’ll decompose anyway—the growth of biopolymers
in packaging could be hindered.
International interest in biopolymer packaging
While Europe has been earlier than most regions to embrace biobased packaging on a sizeable
scale, it seems that biobased packaging options now have an international reach. European
Bioplastics’ Lange has seen this firsthand. “Europe is the frontrunner with regard to R&D and
is a very interesting market. Converting is also well represented. Production, however, is
developing faster in other regions—mainly Asia, but also in North America and South
America.” She thinks a missing piece of the biobased packaging puzzle is a legislative
13

framework that guarantees security for investments and also establishes a level playing field
amongst the bio-industries.
Noda sees the U.S. as a strong contender in biobased materials production: “Europe started
earlier, but the U.S. is catching up rapidly, especially with the emerging availability of high-
quality and cost-competitive bioplastics.”
For Davies, Europe’s strict legislation and cost of oil are the main reasons for a strong
presence in the bioplastics industry. “This means the European industry is often quicker to
adopt more environmentally friendly and energy efficient manufacturing practices. This helps
to drive market interest in biobased materials. All that said, it’s not that the U.S. is waiting to
catch up with Europe, and in terms of commercial investment, the U.S. and parts of Asia are
moving much more quickly. NatureWorks is one of the leading biopolymer companies in the
world and it is based in the U.S., not Europe. A large portion of our sales is in North America
and Asia, and Asian countries such as Thailand and Malaysia are moving much more
aggressively than Europe to court further investment in biobased materials,” says Davies.
“Bioplastics production capacities grow 20% to 100% per year—right now they are about 1%
of all the annually produced plastic,” says Lange. Packaging, she adds, is the leading market
segment: about 40% of bioplastics produced are made into packaging solutions.
Noda has an optimistic outlook for biobased packaging options. “We anticipate a rapid shift in
the packaging industry to bioplastics, once there are enough materials with decent physical
properties at a competitive price and we have a robust supply chain in place.”
Stay tuned where biopolymers in packaging are concerned—or risk getting left behind.

‘Very, very Clicquot’
With this year’s introduction of a package called Naturally Clicquot 2, world famous
champagne producer Veuve Clicquot has moved onto biopolymer package 2.0. The French
firm’s first effort, dubbed Naturally Clicquot, came out in 2014. Both versions are injection
molded of PaperFoam, a starch-based material developed by a Dutch firm that also goes by
the name PaperFoam. Not only is the material made from a renewable resource and
compatible with the recycled paper stream, it has been validated by Belgium’s AIB-Vincotte
International to be 100% compostable at home or in an industrial facility.
The raw materials in the slurry used to make both the top and the bottom of this two-part
package are identified by PaperFoam as industrial starch (typically from potatoes), “natural
fibers,” water, and “premix.” Production is a high-precision process done in custom-made
aluminum tools on PaperFoam injection molding machines.
Essentially this is a gift package. Though it has isothermal properties—i.e., it keeps things
cold--retailers display it at ambient temperatures. The consumer takes it home and puts it in
the refrigerator so that when it’s time to bring champagne to a friend’s house, the champagne
stays cold for two hours and is in a beautiful package to boot, not to mention one that is easy
to hold and carry. As for the upgrade to the 2.0 version, Veuve Clicquot describes it as more
appealing, stronger, and easier to carry. Perhaps most important of all, it is “a design which
still looks very, very Clicquot,” says the champagne maker in its very, very clever video.
One last observation. While 1.0 had glue-applied neck and body labels made of paper, 2.0 has
a label made of fiber that includes a hook-and-loop reclosure feature.

Biodegradable and compostable coffee capsules available
In an interview published in March 2015, the inventor of the popular Keurig K-Cups revealed
that he does not use the Keurig system because he feels guilty about the expensive system and
the lack of recyclability of the K-Cups. John Sylvan, inventor of Keurig, was quoted as
saying, “No matter what they say about recycling, those things (the coffee pods) will never be
recyclable. The plastic is a specialized plastic made of four different layers.”
14

In the same month, Italian research group Novamont announced that it had partnered with
Italian espresso coffee provider Lavazza to create a fully biodegradable and compostable
coffee capsule. Made of Novamont’s third-generation bioplastic, called Mater-Bi 3G, the
coffee capsule features a large portion of renewable resources, reduces the fossil resources
used to create such a product, and lessens the greenhouse gas emissions produced by
traditional coffee capsules/pods. Mater-Bi 3G is produced from renewable raw materials of
agricultural origin, including corn, wheat, or potato.
According to Lavazza’s website, “Applying the circular economy principle of zero waste,
Lavazza and Novamont created a capsule which can be collected with the organic waste and
sent for industrial composting, where the capsule and used coffee are recycled together as
compost, a natural fertilizer for soil.”
Complying with composability certification, listed as NF EN 13432, the capsule includes the
Ok Compost Vinçotte logo.
“These capsules will contribute significantly to reducing greenhouse gas emissions thanks to
the environmental performance of the material,” says the Lavazza website.
Novamont is proud of the partnership, and believes it is a nice nod to the company’s research.
“The partnership between Lavazza and the Mater-Bi third generation confirms the importance
and the success of Novamont’s biorefinery model: a biorefinery integrated into the local area,
with positive effects in terms of environmental, economic, and social impacts,” says
Novamont.

The Two Faces: Bio vs. Shale in a Head–to–Head–Race
10/16/2015 | Dominik Stephan

Between The age of naphtha might be coming to an — shale gas and renewables end. The
transition from crude oil to gas-based production, and the search for biobased feedstocks for
both energy and basic chemicals, are the two faces of tomorrow’s industry.

He who comes too late will be punished by life — the chemical industry is undergoing a rapid
transition. Crude based naphtha is no longer the predominant feedstock for energy and basic
chemicals, as natural gas and bio-materials shape the industry’s future. Established companies
change their production cycles, value chains or their business models while new players
emerge with revolutionary technologies.

These trends will alter the industry radically. Even traditional petrochemical clusters are
feeling the wind of change — clusters such as the Sarnia region in Ontario, Canada.

Shale Gas in the EU - Facts and Figures
15

Shale Gas in the EU - Facts and Figures

                                         Source: IKB / BAFA; Eurostat

   The countries of the EU 27 show a nearly similar picture: Russia is the leading export nation. The other
countries of the former Soviet Union represent another 14 per cent of total imports. Therefore, the EU depends
                                 on the OPEC countries and the FSU nations.

                                         Source: IKB / BAFA; Eurostat

 For the European Union, Russia is the dominant supplier of natural gas. But during the last decade, the supply
 of Norway showed a rising importance. Norway will be a relevant player in the Central European market even
in the mid-term after the discovery of new reserves. Algeria supplies the EU 27 not only via three pipelines (two
                               to Spain and one to Italy) but in addition with LNG.
16

                                        Source: IKB / BAFA; Eurostat

Germany is mainly depend on Russian and Norwegian natural gas imports. The country is unable to substitute
the Russian imports very quickly. The high importance of the Netherlands may be due to the transition function
                                            of the Dutch harbours

                                        Source: IKB / BAFA; Eurostat

Russia is the leading import country for Germany with a market share of 37 per cent of total crude oil imports.
Only a quarter of the German crude oil imports are coming from the OPEC countries with Nigeria and Libya as
                                            the leading deliverers.

                                   Source: IKB / BP Energy Outlook 2035
         The global shale gas production will grow with a constant rate during the next two decades...
17

                                      Source: IKB / OPEC; Baker Huges

Fracking: The rising Importance of Unconventional Natural Gas: The OPEC countries show a strong upstream
investment program to explore new oil reserves. Outside of the OPEC countries the investments into LNG, shale
                          gas or synthesis gas becomes more and more important..

                             Source: IKB / BP Statistical Review of World Energy

  Around 75 per cent of the total proven global crude oil reserves are located in the OPEC countries. Russia,
which held around 10 per cent of the global oil reserves ten years ago, has lost market share. Main reason were
   high exports and low investments in oil exploration. During the last years the german industry bank IKB
experienced a slight increase in the Northern American oil reserves while the Western European reserves were
                                                   shrinking.
18

                              Source: IKB / BP Statistical Review of World Energy

   The OPEC is not as dominant in the natural gas market as in the crude oil market. But 51 per cent of total
proven natural gas reserves are located in the OPEC countries. The countries of the former Soviet Union are the
second important player with a global market share of around 28 per cent. North America holds a market share
below 5 per cent, while only 8.2 per cent of the natural gas reserves were found in the Asian Pacific region (with
                              Australia, China and Indonesia as dominant players).

                                     Source: IKB / BP Energy Outlook 2035

   ...Around three quarters of the total production will be exploited in North America. On the other hand the
             extraction of natural gas via fracking will be of minor importance in Western Europe.
19

                                      Source: IKB / OPEC; Baker Huges

...Mainly North America (United States of America and Canada) make shale gas reserves accessible. As a result
  the United States will become independent of gas imports and are able to reduce their crude oil imports. This
                               will change the industrial landscape tremendously

                                    Source: IKB / BP Energy Outlook 2035

 Between 2015 and 2020 the United States will become a net exporter of natural gas. From 2035 on the experts
                                 from IKB forecast lower US net exports.

The city near Lake Huron has been a center of refining and petrochemicals since the
discovery of oil in 1858 — now it wants to be a trailblazer for tomorrow’s industry. Situated
among Canada’s corn belt and with access to the North American gas supply, the region is a
perfect example of industrial transition in a nutshell. A transition, that is well underway …

Goodbye, Naphtha – Hello Ethane

Tom Thompson, manufacturing leader of Canadian Nova Chemicals, has something unusual
for sale: a fully functioning crude oil cracker. Although the unit is disassembled, it is still in
premier working condition, Thompson says. Yet, Nova does not need a crude unit any more:
The company is a first mover in terms of raw materials.

In 2013, Nova’s Corunna site, about ten miles from Sarnia, started processing ethane from US
shales as a feedstock for petrochemicals. Since then, Thomson has not looked back: In late
2014, the operators at Corunna ran the last barrel of crude through the cracker. Now, the
whole site runs 100 % on ethane from the Marcellus Shales.
20

Greenwashing: Misuse of EU composting standard EN
  13432
14.10.2015

Lately, European Bioplastics (EUBP) has noticed an increasing malpractice by producers of
fragmentation additives for conventional plastics referring to the European standard for
industrial composting, EN 13432, when marketing their products.

Yet such products do not fulfil the requirements of the EU norm for industrial composting of
plastic products. Consequently, European Bioplastics considers this a severe case of
greenwashing.

Recent misuse cases comprise the outright false claim that additive-mediated plastics comply
with EN 13432 (see image (ndlr: et en plus avec logo d2w = Symphony)). In other cases,
21

additive producers aim to piggyback on the good reputation of EN 13432 by referring to only
parts of the standard, for example stating that ‘The plant growth test and the ecotoxicity
effects have been studied with positive results above 100% according the EN 13432’.
European Bioplastics is therefore requesting all producers of additives claiming to make
conventional plastics biodegradable either to fully comply with the standard en 13432, or to
cease making what can only be construed as deliberately misleading references.

“If a standard is referenced, all aspects of it need to be fulfilled by the material or product.
Should this not be the case, the reference is misleading. We urge all market operators to
comply with communication standards according to the ISO 14020 series,“ stated François de
Bie, Chairman of the Board of EUBP.

Worried about the negative impacts on the environment of additive-mediated conventional
plastics, which merely fragment into small pieces, the European Commission has discussed
banning such technology in the past. Currently, the Commission is undertaking an assessment
of the impact of oxo-degradable plastics on the environment, as these materials represent the
foremost part of additive-mediated plastics. According to a recent amendment of the EU
Directive on Packaging and Packaging Waste, the results shall be presented by 2017, at the
latest.(KL)

Un plastique à base d’air (16-10-2015) (Merci Blandine de Breizpack)
Quelques entreprises s’attaquent à l’effet de serre en lançant des initiatives qui peuvent
réduire les émissions de carbone et même trouver un débouché utile au CO2. Elles l’extraient
de l’air pour le recycler en plastique.

Le recyclage des gaz à effet de serre pourrait s’avérer une activité lucrative qui ferait aussi du
bien à l’environnement. Sont concernés les gaz à base de carbone, comme le CO2, une
matière première bon marché et abondante qui est libérée comme sous-produit de la
fermentation de l’éthanol, la production d’ammoniaque, d’oxygène et d’oxyde d’éthylène, les
sources de gaz naturel, les gaz de combustion des centrales électriques au charbon,… Partout
à travers le monde, plusieurs entreprises ont déjà choisi d’utiliser ces émissions comme
matières premières. Quelques exemples récents.

Newlight Technologies

Newlight Technologies récupère le carbone dérivé du méthane à partir de l’air et le recycle en
plastique, qu’il a appelé AirCarbon. Ce matériau thermoplastique écologique offre les mêmes
performances que les plastiques à base de pétrole et on peut l’utiliser pour fabriquer de
nombreux objets, allant de robustes boîtiers durables jusqu’aux films minces et aux meubles
imposants. Le procédé breveté associe un biocatalyseur avec l’air et les émissions de gaz à
effet de serre contenant du méthane. On peut ainsi constituer une longue chaîne de matériau
thermoplastique à base de polyhydroxyalkanoate (PHA) à partir des molécules de carbone,
d’hydrogène et d’oxygène. Une fois synthétisé, le matériau est sorti du réacteur et transformé
en pellets qui peuvent ensuite être fondus et formés. Dans sa forme la plus rudimentaire, le
matériau est constitué d’env. 40 pour-cent d’oxygène et 60 pour-cent de carbone et
d’hydrogène provenant des émissions de carbone.
22

     Le procédé comprend trois grandes étapes : captage, séparation et polymérisation
                                   (Source: Newlight)

Un problème auquel la conversion des émissions en polymères est généralement confrontée
est son prix élevé, ce qui l’empêche de rivaliser avec les plastiques à base de pétrole. Le
rendement du biocatalyseur utilisé par Newlight est neuf fois plus élevé, ce qui rend le
plastique obtenu concurrentiel avec les matériaux comme le polypropylène et le polyéthylène.

Depuis lors, Newlight a poursuivi le développement de la technologie en vue de sa
commercialisation. À cette fin, il a construit un site de production en Californie, qui utilise
l’air et les émissions de carbone à base de méthane concentré provenant d’une installation de
fermentation anaérobie. À la fin de 2013, l’entreprise introduisait déjà son premier produit à
bilan carbone négatif, une chaise. Le matériau convient pour différents secteurs, notamment
automobile, électronique, du bâtiment, de l’habillement,…

Le développement de Newlight lui a déjà valu de nombreux prix et a suscité l’intérêt entre
autres de Dell Computers pour l’emballage des PC portables, de Sprint pour la production de
housses pour iPhone et du géant de la pétrochimie Vinmar International. L’entreprise montre
qu’il est possible de fabriquer des produits à partir d’une source de matières premières à base
carbone provenant de l’air, et cela de manière économique et réalisable.

Covestro

Il n’y a pas qu’aux États-Unis que l’on recycle le carbone à partir de l’air : suite à des
considérations écologiques, de création de valeur industrielle, d’acception par le marché et de
protection du climat, la société allemande Covestro (auparavant Bayer MaterialScience) a
décidé d’utiliser le dioxyde de carbone comme matière première pour les polymères, mais pas
pour remplacer les sources fossiles. En effet, de nombreux procédés dégagent du CO2 comme
sous-produit. Il serait possible d’incorporer jusqu’à 43 pour-cent de CO2 dans les
polycarbonates aliphatiques et cycliques, pour la production du polyuréthane.

L’utilisation d’un polyol dérivé du CO2 a été développée dans un labo central commun de
CAT-catalytique, créé par Covestro et RWTH Aachen, qui constitue la première étape d’une
23

implantation. Le premier site pilote de production du polyol à base de CO2 est déjà devenu un
fait : on y produit des polyols polycarbonates polyéthers (PPP) qui sont ensuite transformés en
plastiques purs. Le premier site de production est maintenant déjà en phase de préparation.
Cette usine doit pouvoir produire d’importantes quantités pour l’industrie, à savoir des
milliers de tonnes. Une centrale électrique fournit des gaz de combustion de CO2 traités,
servant de base au plastique.

                                        (Source : Bayer)

Covestro voit des applications potentielles de polyol à base de PUR dans les mousses de PUR
souples. L’avantage du matériau est que les groupes de carbonate dans les polyols dérivés du
CO2 contribuent à donner la viscosité tandis que les blocs de mousse PUR à base de polyol
dérivé du CO2 présentent une stabilité thermique comparable à celle du PUR fabriqué avec
les polyols traditionnels. Grâce à sa légèreté, le matériau contribue à réduire le poids des
produits, ce qui intéresse l’industrie automobile. Par ailleurs, on peut aussi l’utiliser pour les
matelas, comme rembourrage de meubles et pour l’isolation des bâtiments.

Novomer

La société américaine Novomer et la société hollandaise DSM proposent un système
commercialisé utilisant le CO2 comme matière première pour les polymères. Il s’agit d’une
famille de polyols dérivés du CO2, vendus sous la marque Converge. Le système repose sur
un système breveté de catalyseur qui permet la transformation de gaz d’échappement CO2 en
polyols à hautes performances et à coût réduit pour tout un éventail d’applications. Les
polymères comportent jusqu’à 50 pour-cent massique de CO2, qui permet ainsi de piéger les
gaz à effet de serre pendant toute la durée d’utilisation du matériau.

D’après l’entreprise, l’utilisation du CO2 dans les plastiques présente pour avantage de
réduire la consommation de combustibles fossiles, et participer aussi à la réduction du volume
des gaz à effet de serre. De plus la production du matériau pourrait s’avérer concurrentiel
même sans subside lors d’une production à plus grande échelle.
You can also read