Experimental and theoretical UV/Vis-IR-THz spectroscopies for diagnostic studies of ancient paper - Progetto ADAMO
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Experimental and theoretical UV/Vis-IR-THz spectroscopies for diagnostic studies of ancient paper Mauro Missori1*, Adriano Mosca Conte1,2 Conte, Olivia Pulci2 1Istituto dei Sistemi Complessi – CNR, Unità Sapienza, Rome, Italy 2Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy (*) e-mail: mauro.missori@isc.cnr.it
Outline Brief description of ancient paper degradation UV/Vis spectroscopy: measurement of chromophores concentration IR spectroscopy for the assessment of oxidative degradation of cellulose THz spectroscopy for the study of supermolecular structure of cellulose 2/15
Degradation of paper arteworks Leonardo da Vinci’s self-portrait (circa 1510) Codex on the Flight of Birds (circa 1505) 4v 11v Front Back Images acquired in 2012 Diana Scultori «Le Nozze di Psiche» (1613) 3/15 L. Micheli, C. Mazzuca et al., Microchemical Journal 138, 369-378 (2018)
Degradation at the molecular scale H External O temperature Internal humidity C byproducts radiations impurities microorganisms oxidation hydrolysis Development of acidic byproducts (pH) UV-Vis active oxidized groups Mechanical and morphological degradation (chromophores) containing carbonyl (C=O) groups Variation of optical properties (yellowing) T. Lojewski, et al., Carbohydrate Polymers 82, 370 (2010). 4/15 S. Zervos, Natural and Accelerated Ageing of Cellulose and Paper: A Literature Review (2010).
Measurement of paper optical response Whatman® 1 Paper → fibres and voids with sizes > λ → optically inhomogeneous medium → optical properties are strongly governed by light scattering 10 mm Kubelka-Munk theory Medium described by 2 phenomenological constants: Input output to radiation - absorption coefficient K integrating spectrometer - scattering coefficient S sphere proportional to the concentrations (ci) of chromophores K K (1 R ) 2 i i ci 2 i i S 2 R S is needed in order to recover K paper G. Kortum, Reflectance Spectroscopy, Springer-Verlag (1969) L. Yang, S. J. Miklavcic, J. Opt. Soc. Am. A 22, 9, 1866 (2005) or black backing 5/15 M. Missori et al., Physical Review B 89, 054201 (2014)
UV-Vis results on the Leonardo’s drawings C4v Diffuse reflectance R∞ Absorption coefficient (cm-1) modern (cellulose fibers) sample C11v C2r Pr1 presence of several chromophores Pr2 Pv 6/15
Cellulose chromophores theoretical simulation Density Ground state properties: optimization Functional of the unitary cell geometry of pristine Theory (DFT) and oxidized cellulose (monoclinic crystallographic phase Iβ) http://www.quantum-espresso.org/ diketone Visible Time-Dependent Oxidized groups excited state DFT properties: dielectric function of cellulose CHOb aldehyde → UV-Vis absorption spectrum Near UV http://dp-code.org ketone UV 7/15
UV-Vis experimental vs. theoretical spectra Minimal square Min [(exp(l)-i ai theoi(l))2 ] → ci = (ai / jaj) × 100% algorithm diketones aldehydes ketones 6.1 mmol/100g cellulose 2 mmol/100g cellulose 8/15
Chromophores concentration reduction in Le Nozze di Psiche (1613) % L. Micheli, C. Mazzuca et al., Microchemical Journal 138, 369-378 (2018) 9/15 M. Missori et al., Eur. Phys. J. Plus 134, 99-110 (2019)
Infrared spectroscopy of oxidized groups in cellulose Near UV-Vis active UV active K. Ahn et al., Cellulose 26, 1, 429–444 (2019) Transmission cellulose 99.5%, lignin 0.5% cellulose 100.0% experiments Aging at days 90°C RH=59% days 10/15 T. Łojewski et al., Appl Phys A 100, 809–821 (2010)
Oxidized groups detection in pure cellulose paper Label Aging conditions Expected degradation factors Reactor type D Dry air 90°C Air Drier increasing C Air at RH=59%, 90°C Air and water vapour Climatic chamber degradation V Air at RH=59%, 90°C Air, water vapour, gaseous by-products Closed vial In collaboration with A. Nucara and M. Ortolani (Physics Dept., Sapienza Univ. of Rome) Vacuum FT-IR spectrometer (Bruker IFS66v/S) equipped with reflection setup Spectra after 24 hours under vacuum Difference spectra with unaged 11/15
Comparison with theoretical spectra Formic acid Taking into account Van der Waals interactions OH OH and CH CH C=O 12/15
THz time-domain spectroscopy THz radiation for non-invasive diagnostics Negligible ionization power Penetrates optically opaque materials like painting layers, paper, plastics ... but no metals …and water ! 0.2 1 2 (THz) THz spectroscopy Indomethacin (anti-inflammatory drug) Frequency range 100 GHz - 10 THz (3 cm−1 - 300 cm−1) Detection and identication of low-energy vibrational modes Chemical analysis of intermolecular hydrogen bonds crystalline Y. Ueno, Analytical Sciences, 24, 185-192 (2008) C. Ciano et al., IEEE Trans. Terahertz Sci. Technol. 8, 4 (2018) Clare J. Strachan et al., Chemical Physics Letters 390, 20–24 (2004) 13/15 K. Fukunaga, THz Technology Applied to Cultural Heritage in Practice, Springer, 2016
THz time-domain spectroscopy 33 67 100 (cm-1) Ab-initio low frequency vibrations 2.2 THz 2.7 THz 3.0 THz Moisture-activated dynamics on crystallite surfaces in cellulose M. Missori et al., Microchem J 142, 54-61 (2018) 14/15 C. J. Garvey et al. Colloid and Polymer Science 297, 521–527 (2019)
Conclusions Experimental and theoretical spectroscopy as non-destructive diagnostic method for cultural heritage Identification and quantification of chromophores in ancient paper Identification of the IR spectra of oxidized groups in the ageing process of cellulose THz diagnostics of ancient paper: influence of water in the low- frequency vibration of cellulose polymers 15/15
People Theory Paper restoration Adriano Mosca Conte Olivia Pulci Simonetta Iannuccelli Silvia Sotgiu Serena Dominijanni Experiments Claudia Violante Arrigo Calzolari Lorenzo Teodonio Joanna Łojewska Marco Peccianti Marco Buongiorno Nardeli 16
You can also read