Brian Fields ESO Cosmic Duologue | 26 Jan 2021 - The Primordial Li thium Pr oblem
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Big Bang Nucleosynthesis: A Symphony of Fundamental Forces • BBN: unique arena Gravity – all four fundamental Weak EM Strong forces participate • BBN: unique testbed – probes all fundamental interactions
Standard BBN Gravity = General Relativity Microphysics: Standard Model of Particle Physics § Nν = 3 neutrino species § mν ! 1 MeV § Left handed neutrino couplings only § neutrinos non-degenerate: and not Kinetic equilibrium: Maxwell-Boltzmann nuclei Dark Matter and Dark Energy o d e ls § Present (presumably) but non-interacting B N m a rd B i o n s S ta n d u m p t η ≡N n - nbaryon o e s s aconst Homogeneous U. x t he s Spatially ys i c s re n la γ e w p h Ø Expansion adiabatic ! " ! " test n! " nB nB nB = = nγ BBN nγ CMB nγ today • gives baryon density
Making Primordial Lithium in Standard BBN • SBBN Lithium = 7Li. 6Li negligible • 7Li mostly made as 7Be much later • Production: • Destruction: neutrons are Li poison!
baryon density ≠bh2 Ypp = ρ4 He /ρbary 10°2 0.26 Stanard BBN 0.25 Predictions Pitrou talk Y 0.24 0.23 Curve Widths: abundances °3 10 Theoretical uncertainty D/H nuclear cross sections 10°4 BDF, Olive, Yeh, Young 2020 He/H Pitrou+ 2018 10°5 Cyburt, BDF, Olive, Yeh 2015 3 Descouvement poster 10°9 Cyburt, BDF, Olive 2008 Cyburt 2004 Li/H Coq et al 2004 Serpico et al 2005 7 Cyburt, BDF, Olive 2001 10°10 Krauss & Romanelli 1988 10°10 Note D-Li 10°9 anti correlation Smith, Kawano, Malaney 1993 baryon-to-photon ratio ¥ = nb/n∞ Hata et al 1995 Copi, Schramm, Turner 1995 baryon density
Light Elements: Sites Deuterium – in z~3 galaxies backlit by quasars – New! leap in precision: Pettini, Cooke+ 2013-2019 4He – ionized gas (HII regions) in metal-poor galaxies – New! CMB damping tail: SPT 2011,2012; Planck 2013-2018 7Li – metal-poor halo stars in Milky Way – Newish! now also extragalactic observations 3He – hyperfine in Milky Way HII regions Rood, Wilson, Bania+ – no low-metal data; not used for cosmology
0.27 baryon density parameter ≠Bh2 10°2 Testing BBN: perfect observation Light Element He mass fraction Observations 0.26 0.25 all observations 0.24 actual observation Theory: 0.23 4 • 1 free parameter predicts 10°3 • 4 nuclides: D, 3He, 4He, 7Li D/H C M Observations: 10°4 B • 3 nuclides with precision: D, 4He, 7Li He/H 10°5 Comparison: 3 ★each nuclide selects baryon density 10°9 ★overconstrained--nontrivial test! Result: Li/H ★rough concordance! 7 ★but not in detail! D and 7Li disagree 10°10 need a tiebreaker 10°10 10°9 baryon-to-photon ratio ¥ = nb/n∞
Battle of the Baryons: II CMB New World Order Cyburt, BDF, Olive 2003, …, Yeh, Olive, BDF 2021 Planck baryon density very precise ⌦B h2 = 0.022298 ± 0.000020 10 ⌘ = (6.104 ± 0.058) ⇥ 10 i.e., a sub-1% measurement! New strategy to test BBN: ✓ use Planckηcmb as BBN input ✓ predict all lite elements with appropriate error propagation ✓ compare with observations
Battle of the Baryons: II A Closer Look Cyburt, BDF, Olive 2003, 2008, 2015; BDF, Olive, Yeh, Young 2020 P lanck baseline (N∫ = 3) + BBN Likelihoods 1.0 (a) (b) purple: BBN+CMB predictions 0.8 Likelihood yellow: observations 0.6 0.4 0.2 0.0 Results: 0.23 0.24 0.25 0.26 0 1 2 3 4 Yp 5 10 £ D/H Ø D excellent! 1.0 (c) (d) Ø 4He great! 0.8 Likelihood Ø 7Li poor! 0.6 - observation ~ theory/4 0.4 - 4-5 sigma discrepancy 0.2 - Lithium Problem 0.0 7 8 9 10 11 12 1 2 3 4 5 6 106 £ 3 He/H 1010 £ 7 Li/H
BBN Beyond the Standard Model: Probing Particle Physics baryon density ≠bh22 baryon 10density °2 ≠b h 0.26 °2 10 0.26 0.25 Lite elements probe cosmic expansion history 0.25 p p Radiation domination YY 0.24 0.24 (expansion)2 = H 2 ∼ Gρtot,rel 0.23 BDF, Olive, Yeh, Young 2020 0.23 Controlled by 10°3 10°3 D/H D/H ρtot,rel = ρEM + Nν,eff ρν ν̄ 10°4 10°4 3 3 He/H He/H Observed abundances constrain 10°5 10°5 anything that °9 ✓ Couples to gravity 10 10°9 ✓ Perturbs relativistic energy density 7 7 Li/H Li/H Stiegman, Schramm, & Gunn 77 °10 10 10°10 °10 °9 10 10°10 10°9 10 baryon-to-photon ratio ¥ baryon-to-photon ratio ¥==n nbb/n /n∞∞
5.5 6.0 6.5 7.0 5.0 5.5 6.0 6.5 baryon-to-photon ratio, 1010 £ ¥ Planck 2018 + BBN baryon-to-photon ratio, 1010 £ BDF, Olive, Yeh, Young 2020 Both Yp & D Obs. Constraints Tsung-Han Yeh —– 68.27% 葉宗翰 5 —– 95.45% Concordance! —– 99.73% Neutrino Number, N∫ 4 Standard Particle Physics 3 2 BBN+Yp+D CMB+BBN+Yp+D 1 5.0 5.5 6.0 6.5 7.0 baryon-to-photon ratio, 1010 £ ¥
Likeli 0.4 0.2 Lithium Strategy II: 0.0 0.23 Worry 0.24 0.25 Yp 0.26 0 1 2 3 105 £ D/H 4 5 1.0 (c) (d) 0.8 Likelihood 0.6 0.4 0.2 0.0 7 8 9 10 11 12 1 2 3 4 5 6 7 6 3 10 7 10 £ He/H 10 £ Li/H
Primordial Lithium CMB+BBN prediction Observe in primitive stars (Pop II) lithium abundances Li versus Fe evolution Plateau at low Fe Spite & Spite 82 ★ Li is primordial But is the plateau at Lip? • LiPlanck/Liobs ~ 4 • Why? metallicity = “time”
P lanck baseline (N∫ = 3) + BBN Lithium Problem Overview 1.0 0.8 (a) (b) Likelihood 0.6 0.4 standard standard standard 0.2 observed particle nuclear cosmology 0.0 0.23 0.24 0.25 0.26 0 1 lithium 2 3 4 5 physics physics Yp 5 10 £ D/H 1: n ! p e ⌫ 2: n(p, )d 3: d(d, p)t 7 1.0 (c) (d) Be 4: d(p, )3 He 5: d(d, n)3 He ✓ @ 12 0.8 Likelihood 6: 3 He(n, p)t @R @ 11 7: t(d, n)4 He 7 Li 8: d(d, )4 He 13 0.6 9: 3 He(d, p)4 He ✓ 10: t(↵, )7 Li ⇡ 11: 4 He(↵, )7 Be 3 He 9 - 4 He 0.4 10 12: 7 Be(n, p)7 Li 8 13: 7 Li(p, ↵)4 He 66@ ✓ 6 4 5 @6 7 R @ 1 - 2d - 3t 0.2 H 2 3 6 1 0.0 1 n 7 8 9 10 11 12 1 2 3 4 5 6 7 6 3 10 7 10 £ He/H 10 £ Li/H Solutions: one of these is wrong 1
Astrophysics: Nuclear Meltdown Sbordone+ 2010 ‣ huge increase in CMB+BBN prediction scatter at low lithium desert? [Fe/H] ‣ at least some lithium abundances stars efficiently eat lithium ‣ why does meltdown “turn on”? ‣ no points scatter up to BBN+CMB abundance metallicity = “time”
Nuclear Physics: Hoyle’s Revenge? Cyburt & Pospelov 2009 Nachiketa Chakraborty ✴ “sub-dominant” Li reactions important if narrow resonance missed cf Hoyle state in 12C burning ✴ proposal: 7Be+d inelastic Problem solved!? Chakraborty, BDF, & Olive 2011 ✴ systematic study of all A=7 destruction rxns ✓ confirms 7Be+d Experiment Says: 9B* ✓ even better: 3He+7Be 10C* t+7Be 10B* Not there! 10C*:Hammache+ 2013 9Be*: O’Malley+ 2011
Lithium Problem: New Physics Solutions Li Solutions Beyond the Standard Model ★strategy: new process changes light elements ★bonus: perturbation physically motivated ★goal: fix 7Li discrepancy ★ challenge: retain D, 4He success • D vs Li anticorrelation is quite general n+7Be destruction inevitably changes D • D precision < 1% — no room for mischief!
New Physics Example: Could Lithium Be SUSY-licious? Cyburt, Ellis, BDF, Luo, Olive, Spanos 2012 Supersymmetry complex dark sector SUSY Li sweetspot decays in early U circa 2012 Light elements are a strong SUSY probe ✓ rule out much parameter space Higgs mass ✓ complementary to LHC Illustrates tight links Latest D/H says: among nucleo-cosmo- Sweetspot gone sour: astro-particle physics Li window closed!
The Lithium Problem: Thoughts on the Way Forward • New Physics solutions challenged by D precision – if new physics, finely tuned? – yet dark matter non-detection invites new ideas • Cosmology solutions face CMB LCDM consistency • Nuclear Experiment lags observations! • Stellar Models: – also delicately tuned – why does meltdown start and stop? – why small scatter along Spite plateau? – do we understand Li pre-main sequence? • Observations: 6Li — is it even present in halo stars? intererstellar Li as depletion and isotope probe Ask me: Philosophize? new physics ideas? deuterium status? 6Li?
Director’s Cut Extras Image Credit: Planck 2015
New Physics Lithium Solutions an Incomplete Survey • Particle Physics Beyond the Standard Model – decaying particles Supersymmetry Cyburt+ 2012 – mirror neutrons Coc+ 2013 – magnetic fields+decays Yamazaki+ 2014 – lepton asymmetry (degenerate neutrinos) Makki+ 2019 – light particles with nucleon interactions Goudelis+ 2016 – sterile neutrinos Salvati+ 2016 – axion quark nuggets Flambaum+ 2019 – Stable 8Be Scherrer+ 2017 – Non-extensive statistics Hou+ 2017 Many now excluded by • Evolving Fundamental Constants – see Martins talk precision D observations • Nonstandard Cosmology – Lithium diffusion after recombination Pospelov 2012 – “Hubble bubble” of inhomogeneous abundances Regis+ 2010 – Cosmic deuterium destruction via early stellar processing Piau+ 2006 – Nonthermal “cosmic rays” during BBN Kang+ 2019
The Cosmic Microwave Background: CMB A Powerful New Baryometer CMB ∆T! independent measure of ΩB Twitter version: in recombining plasma ‣ baryon gravity boosts compression ‣ baryon inertia damps rarefaction peaks BBN vs CMB: fundamental test of cosmology
Standard BBN Tested With CMB Only Planck Baryons & Helium! New! e! m a c ulat Im ically C o sm ! clean Contours: Planck Curve: Standard BBN zero parameters!
You can also read