Ultrafast spin, charge and nuclear dynamics
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Ultrafast spin, charge and nuclear dynamics Sangeeta Sharma Max-Born institute for non-linear optics, Berlin, Germany
Ultrafast spin, charge and nuclear dynamics Theory collaborators: J.K. Dewhurst, E. K. U. Gross, K. Krieger, T. Müller, C. Wang, Q. Lee, P. Scheid, N. Singh, J. Krishna, P. Elliott, S. Shallcross. Experimental collaborators: M. Schultze, M. Münzenberg, S. Mathias, M. Aeschlimann, J. Chen, D. Steil, U. Bovensiepen, A. Eschenlohr, C. Von-Korff Schmising, S. Eisebitt, W. Kuch, J. Biegert, I. Radu, D. Schick Funding: DFG TRR227 and SPP-QUTIF
Femto-magnetism Ultrafast manipulation of spins with light I Efficient devices based in spin currents I Fast (femtoseconds) operational times Laser-induced demagnetization Expt: Beaurepair et al. PRL 76 4250 (1996)
Leading order terms in expansion of QED H X 1 X e2 1X e H= p2i − eVext (ri ) + + pi · Aext (ri ) i 2m r i
Models to explain this demagnetisation 1. Elliott-Yafet mechanism: electron-phonon or electron-impurity mediated spin-flip causing a global demagnetization B. Koopmans, Nature Mater. 6, 715 (2007) 2. Spin-lattice relaxation causing global demagnetization W. Hübner and K. H. Bennemann, PRB 53, 3422 (1996) 3. Super-diffusive model: Electron and spin current flows causing a local demagnetization M. Battiato, K. Carva, and P. M. Oppeneer, PRL. 105, 027203 (2010) 4. Electron -electron and -phonon scattering causing global demagnetization B. Y. Mueller et al., PRL 111, 167204 (2013)
Method: Ab-initio theory Our aim is to make quantitative predictions with a computer code knowing only the atomic species and crystal structure No adjustable parameters
Theory: fully ab-initio approach ∂ψj (r, t) 1 1 i = i∇ + Aext (t) 2 + vs (r, t) (1) ∂t 2 c 1→− 1 − + σ · Bs (r, t) + 2 →σ · (∇vs (r, t) × i∇) ψj (r, t) 2c 4c
Theory: fully ab-initio approach ∂ψj (r, t) 1 1 i = i∇ + Aext (t) 2 + vs (r, t) (1) ∂t 2 c 1→− 1 − + σ · Bs (r, t) + 2 →σ · (∇vs (r, t) × i∇) ψj (r, t) 2c 4c Effective potentials: Bs [ρ, m] = Bext + Bxc [ρ, m], vs [ρ, m] = vcl + vxc [ρ, m] (2)
Theory: fully ab-initio approach ∂ψj (r, t) 1 1 i = i∇ + Aext (t) 2 + vs (r, t) (1) ∂t 2 c 1→− 1 − + σ · Bs (r, t) + 2 →σ · (∇vs (r, t) × i∇) ψj (r, t) 2c 4c Effective potentials: Bs [ρ, m] = Bext + Bxc [ρ, m], vs [ρ, m] = vcl + vxc [ρ, m] (2) Density: X ρ(r, t) = ψj∗ (r, t)ψj (r, t) (3) j Magnetization density(unconstrained vector field): ψj∗ (r, t)→ − X m(r, t) = σ ψj∗ (r, t) (4) j E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)
Demagnetisation in supercell of fcc Ni A field I Inter-site non-collinearity and magnons do not 0 mx my contribute in early times m(t)-m(t=0) -0,1 -0,2 -0,3 4x4 super-cell of Ni I 4c12 → − σ · (∇vs (r, t) × i∇) mz -0,4 -0,5 I The physics is dominated 0,6 Total bulk Ni by spin-orbit induced m(t) (µΒ) 0,4 spin-flips 0,2 Excited localized 0 0 2 4 6 8 10 12 14 16 18 20 Time(fs) Krieger et al. JCTC 11, 4870 (2015), Elliott et al. New J. Phys. 18, 013014 (2016), Dewhurst et al. Computer Phys. Comm. 209, 92 (2016)
How fast?–exchange and spin-orbit times in femto-seconds Metal Exchange Spin-orbit Fe 52 50 Co 80 52 Ni 380 48 Table: Exchange time is Heisenberg exchange parameter converted to time. SO time is the time at which SO coupling causes spin flips in Fe/Mn, Co/Mn and Ni/Mn interfaces.
Faster than spin-orbit 1. A new ultrafast phenomena called OISTR. 1.1 Spin manipulation faster than spin-orbit. 1.2 Spin manipulation at sub-exchange time scales. 1.3 Sub-exchange, sub-spin-orbit switching the magnetic order. 1.4 Spin manipulation times coherently controlled by laser pulse. 2. Experimental demonstration of OISTR 3. What is missing and how we can try to change that
Ferri-magnetic layers: Mn2/Co4/Cu(001)
Magnetization dynamics in Mn2/Co4/Cu(001) 2 FWHM=25fs, E=16mJ/cm A(t)3 2 M(t) [µΒ] 1 Co4 0 Co3 Co2 -1 Co1 Mn2 Mn1 -2 0 10 20 30 40 50 60 Time(fs) I Ground-state is Ferri-magnetic I ∼ 29fs one of the Mn layers switches the direction of spin I Stays in transient FM state at least till 150fs Dewhurst, Elliott, Shallcross, Gross and Sharma, Nano Lett. 18, 1842, (2018)
Spin-flips, spin current, charge current 1 1 1− Ĥs = i∇ + Aext (t) 2 + vs (r, t) + → σ · Bxc (r, t) (5) 2 c 2c 1 →− + σ (∇vs (r, t) × i∇) 4c2 ∂ m(r, t) = ih[Ĥs , σ̂n̂(r, t)]i (6) ∂t ∂ ←→ 1 m(r, t) = − ∇ · J (r, t) + [Bxc (r, t) × m(r, t)] ∂t c 1 + [∇n(r, t) × ∇vs (r, t)] 4c2 1 ← → ←→ + [ J T (r, t) − T r{ J (r, t)}] · ∇vs (r, t) (7) 2c2 Krieger et al. JPCM 29 , 224001 (2017), Dewhurst et al. Computer Phys. Comm. 209, 92 (2016)
Magnetization dynamics in Mn2/Co4/Cu(001) without SO 3 with SO 2 without SO Moment(µΒ) 1 0 -1 -2 0 10 20 30 40 50 60 70 Time (fs) I Spin flips play no role in switching of magnetic order. Dewhurst et al. Nano Lett. 18, 1842, (2018)
Optical inter-site spin transfer (OISTR) m = nup − ndn
Transient state density ∞ Z X DOS(ω, t) = δ(ω − εik )gik (t), (8) i=1 BZ with X 2 k gik (t) = njk Oij (t) , (9) j where njk is the occupation number of the j th time-evolving orbital and Z Oij (t) = d3 rφ∗ik (r)ψjk (r, t). k (10) Here φi are the ground-state Kohn-Sham orbitals. In absence of any time-dependent perturbation ψjk (r, t = 0) = φ∗jk (r) Elliott et al. Sci. Rep. 6, 38911 (2016)
Transient occupied states 2 Mn1 1 Tr-DOS 0 -1 -2 2 Mn2 1 Tr-DOS 0 -1 -2 -6 -4 -2 0 2 4 6 Energy (eV) M = nup − ndn I Optical inter-site spin transfer (OISTR) is responsible for switching I Availability of states enforces OISTR
Outlook for OISTR: Ultrafast GMR
Laser induced transient OCMR device J Resistance change of 385% in CuCoMn multilayers from Boltzmann simulations (Ingrid Mertig)
Experimental confirmation of OISTR
Quantitative but indirect agreement with experiemnts Expt-Ni 1,2 Expt-Fe Theory-Fe Theory-Ni 1 M(t)/M(0) 0,8 0,6 0,4 -50 0 50 100 150 200 250 300 350 400 Time (fs) Laser-induced local increase in moment Hofherr et al. Science Advs. 6, eaay8717 Attosecond dynamics via OISTR (2019) Siegrist et al. Nature 571, 240 (2019)
Linear response TDDFT Interacting response function: ε−1 (q, ω) = 1 + χ0 (q, ω) [1 − (vcl + fxc (q, ω))χ0 (q, ω)] −1 (11) Non-interacting response function: X φ∗ (r)φ∗mk (r0 )φlk (r0 )φmk (r) χ0 (r, r0 , ω) = (nlk − nmk ) lk (12) ω − lk + mk + iη lmk
Linear response TDDFT ε−1 (q, ω) = 1 + χ0 (q, ω) [1 − (vcl + fxc (q, ω))χ0 (q, ω)] −1 (13) All quantities are treated as matrices in reciprocal space vectors G,G’ to account for LFE. Local field effects(LFE)– charge density rearrangement caused by the external perturbation leads to creation of local microscopic fields. Light of the form ei(G+q).r produces a response also of the form 0 ei(G +q).r Simplest approximations: fxc = 0 (RPA, i.e. no excitons) and G=G’=0 (no LFE)
CoPt: experimental response vs theoretical disaster 0.02 Expt. 0 Theory -0.02 ∆β(ω) -0.04 -0.06 -0.08 -0.1 45 50 55 60 65 70 Energy (eV) Disagreemet believed to be due to (a) Missing many-body corrections and (b) missing excitonic physics (i.e. fxc 6= 0).
Theory guiding experiments Co@CoPt Pt@CoPt (a) (b) Agreement requires: 0,005 0,005 Expt. Expt. I Many-body correction 0 0 via GW ∆β(ω) -0,005 Co Pt -0,005 I Excitonic physics included via bootstrap -0,01 -0,01 Total Total approximation -0,015 45 50 55 60 65 70 75 45 50 55 60 65 70 -0,015 75 I Local field effects by Energy (eV) Energy (eV) solving matrix equation. Dewhurst et al. Phys. Rev. Lett. 124, 077203, (2020), Willems et al. Phys. Rev. Lett. 122, 217202, (2019), Willems et al. Nat. Comm. 11, 1-7, (2020)
Transient response function in CoPt -3 x10 4 2 Pt N7-edge 0 Pt O3-edge 57.2 eV ∆β(ω,t) -2 Co M23-edge -4 Pt O3 -edge 54.1 eV -6 -8 -50 0 50 100 150 200 250 time (fs) Dewhurst et al. Phys. Rev. Lett. 124, 077203, (2020)
Where does the angular momentum go? L+S+N is conserved (a) (b) Ni Co L(t)/L(0) -1 0.2 S(t)/S(0) -1 0.1 ex. charge 0 0 -0.1 -0.2 -0.2 -0.3 -0.4 -0.4 -0.5 0 5 10 15 20 0 5 10 15 20 25 30 time(fs) time(fs)
What is missing from the theory? Even the exact functional will not yield full predictiveness!
Relativistic interaction terms
Leading order terms in expansion of QED H X 1 X e2 1X e H= p2i − eVext (ri ) + + pi · Aext (ri ) i 2m r i
Relativistic interaction terms Exchange-correlation functional development
DFT of magnetic dipolar interactions " # 1 e2 X 3(ri − rj )(ri − rj ) 1 Hdip =− 2 2 si · 5 − 3 · sj c m rij rij i
Relativistic interaction terms Exchange-correlation functional development Radiation via Maxwell's equations
Relativistic interaction terms Exchange-correlation Extending functional space-time development boundaries (ultra long-range TDDFT) Radiation via Maxwell's equations
Long length scale physics Spin-spiral ansatz ! u↑nk (r) ei(q/2)·(r) Φkn (r) = eik·r (14) u↓nk (r) ei(-q/2)·(r) Ultra long-range anstaz ! X u↑nk (r) i(k+κ)·(r+R) Φkα (r + R) = cαnk+κ e (15) nκ u↓nk (r)
Self-consistent density for a 3456 atom cell of LiF Müller, Sharma, Gross and Dewhurst, Phys. Rev. Lett. 125, 256402 (2020)
Skyrmion in iron on iridium substrate Plot of the surface magnetization density averaged in each unit cell in the Fe plane. Each triangle represents a unit cell and the ultracell vectors were scaled by 0.8, 0.9, 1.0 and 1.1.
Relativistic interaction terms Exchange-correlation Extending functional space-time development boundaries (ultra long-range TDDFT) Radiation via Maxwell's equations
Relativistic interaction terms Exchange-correlation Extending functional space-time development boundaries (ultra long-range TDDFT) Nuclear degrees Radiation of freedom via (quantum or classical) Maxwell's equations
Nuclear degrees of freedom Treat nuclei as classical point particles: Ehrenfest dynamics Quantum nuclei required for superconductivity!
Coupled spin nuclear dynamics in FePt With nuclear dynamics Without nuclear dynamics 2.5 Fe@FePt M(t) [µΒ] 2 1.5 0 5 10 15 20 25 30 35 40 time(fs)
1.4 LDA LDA+electron-phonon DOS (states/eV/unit cell) 1.2 mean field theory 1 0.8 0.6 0.4 0.2 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 Energy (eV) Change in the band gap This work -365 meV S. Poncé et al., Comp. Mat. Sci. 83, 341 (2014) -409 meV
1 SCDFT LDA+Electron-phonon 0.8 mean field theory FACE / DOS 0.6 0.4 0.2 0 -100 -80 -60 -40 -20 0 20 40 60 80 100 Energy (meV) Superconducting gap in niobium This work ≈ 3.1 meV Bonnet et al., Phys. Lett. A 25, 452 (1967) 2.32 meV
Relativistic interaction terms Exchange-correlation Extending functional space-time development boundaries (ultra long-range TDDFT) Nuclear degrees Radiation of freedom via (quantum or classical) Maxwell's equations
Various combinations yield new predictiveness ( light propagation long-range + Maxwell’s equations + TDDFT =⇒ density wave propagation
Various combinations yield new predictiveness ( light propagation long-range + Maxwell’s equations + TDDFT =⇒ density wave propagation long-range + spin-orbit + spin-TDDFT =⇒ skyrmion dynamics
Various combinations yield new predictiveness ( light propagation long-range + Maxwell’s equations + TDDFT =⇒ density wave propagation long-range + spin-orbit + spin-TDDFT =⇒ skyrmion dynamics long-range + dipole-dipole interaction + spin-DFT =⇒ magnetic domains
Various combinations yield new predictiveness ( light propagation long-range + Maxwell’s equations + TDDFT =⇒ density wave propagation long-range + spin-orbit + spin-TDDFT =⇒ skyrmion dynamics long-range + dipole-dipole interaction + spin-DFT =⇒ magnetic domains 1 e P long-range + superconductivity + c i m pi · Aext (ri ) =⇒ Abrikosov vortices New physics can be found at competing energy scales!
Elk code: full potential LAPW method Science 351, 6280 (2016) Gold standard for electronic structure of solids. Features include: I Ground state I Most single particle observables I Structural optimization I Many-body methods: GW and beyond, RDMFT, BSE ... I Response functions: magnons, phonons, plasmons, excitons ... I Wannier90 interface I Tensor moments I Non-equilibrium spin dynamics I Superconductivity: calculation of Tc, Eliashberg J. K. Dewhurst, S. Sharma, L. Nordström and E. K. U. Gross ....... http://elk.sourceforge.net/
You can also read