Ultrafast spin, charge and nuclear dynamics

Page created by Francisco Christensen
 
CONTINUE READING
Ultrafast spin, charge and nuclear dynamics
Ultrafast spin, charge and
    nuclear dynamics

                   Sangeeta Sharma

 Max-Born institute for non-linear optics, Berlin, Germany
Ultrafast spin, charge and nuclear dynamics
Ultrafast spin, charge and nuclear dynamics

Theory collaborators: J.K. Dewhurst, E. K. U. Gross, K.
Krieger, T. Müller, C. Wang, Q. Lee, P. Scheid, N. Singh, J.
Krishna, P. Elliott, S. Shallcross.

Experimental collaborators: M. Schultze, M. Münzenberg,
S. Mathias, M. Aeschlimann, J. Chen, D. Steil, U. Bovensiepen,
A. Eschenlohr, C. Von-Korff Schmising, S. Eisebitt, W. Kuch,
J. Biegert, I. Radu, D. Schick

Funding: DFG TRR227 and SPP-QUTIF
Ultrafast spin, charge and nuclear dynamics
Evolution of multi-core processors
Ultrafast spin, charge and nuclear dynamics
Femto-magnetism

                                             Ultrafast manipulation of
                                             spins with light
                                               I Efficient devices based in
                                                  spin currents
                                               I Fast (femtoseconds)
                                                  operational times

Laser-induced demagnetization
Expt: Beaurepair et al. PRL 76 4250 (1996)
Ultrafast spin, charge and nuclear dynamics
Leading order terms in expansion of QED H

         X 1                      X e2     1X e
  H=          p2i − eVext (ri ) +        +       pi · Aext (ri )
         i
           2m                        r
                                  i
Ultrafast spin, charge and nuclear dynamics
Models to explain this demagnetisation

1. Elliott-Yafet mechanism: electron-phonon or
   electron-impurity mediated spin-flip causing a global
   demagnetization
  B. Koopmans, Nature Mater. 6, 715 (2007)

2. Spin-lattice relaxation causing global demagnetization
  W. Hübner and K. H. Bennemann, PRB 53, 3422 (1996)

3. Super-diffusive model: Electron and spin current flows
   causing a local demagnetization
  M. Battiato, K. Carva, and P. M. Oppeneer, PRL. 105, 027203 (2010)

4. Electron -electron and -phonon scattering causing
   global demagnetization
  B. Y. Mueller et al., PRL 111, 167204 (2013)
Ultrafast spin, charge and nuclear dynamics
Method: Ab-initio theory

Our aim is to make quantitative predictions with a computer
code knowing only the atomic species and crystal structure

No adjustable parameters
Ultrafast spin, charge and nuclear dynamics
Theory: fully ab-initio approach
                                   
  ∂ψj (r, t)      1         1
i              =      i∇ + Aext (t) 2 + vs (r, t)                 (1)
    ∂t            2         c
                                                            
                  1→−               1 −
               +    σ · Bs (r, t) + 2 →σ · (∇vs (r, t) × i∇) ψj (r, t)
                 2c                4c
Theory: fully ab-initio approach
                                   
  ∂ψj (r, t)      1         1
i              =      i∇ + Aext (t) 2 + vs (r, t)                 (1)
    ∂t            2         c
                                                            
                  1→−               1 −
               +    σ · Bs (r, t) + 2 →σ · (∇vs (r, t) × i∇) ψj (r, t)
                 2c                4c
Effective potentials:
  Bs [ρ, m] = Bext + Bxc [ρ, m],      vs [ρ, m] = vcl + vxc [ρ, m]   (2)
Theory: fully ab-initio approach
                                   
  ∂ψj (r, t)      1         1
i              =      i∇ + Aext (t) 2 + vs (r, t)                 (1)
    ∂t            2         c
                                                            
                  1→−               1 −
               +    σ · Bs (r, t) + 2 →σ · (∇vs (r, t) × i∇) ψj (r, t)
                 2c                4c
Effective potentials:
  Bs [ρ, m] = Bext + Bxc [ρ, m],         vs [ρ, m] = vcl + vxc [ρ, m]   (2)
Density:
                                 X
                     ρ(r, t) =       ψj∗ (r, t)ψj (r, t)                (3)
                                 j

Magnetization density(unconstrained vector field):
                             ψj∗ (r, t)→
                                       −
                          X
                m(r, t) =              σ ψj∗ (r, t)                     (4)
                                 j

E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984)
Demagnetisation in supercell of fcc Ni

                                                                            A field         I Inter-site non-collinearity
                                                                                              and magnons do not
                0
                                                                  mx                  my      contribute in early times
m(t)-m(t=0)

              -0,1
              -0,2
              -0,3
                      4x4 super-cell of Ni                                                  I 4c12 →
                                                                                                   −
                                                                                                   σ · (∇vs (r, t) × i∇)
                                                                              mz
              -0,4
              -0,5
                                                                                            I The physics is dominated
              0,6
                                                  Total
                                                                       bulk Ni                by spin-orbit induced
m(t) (µΒ)

              0,4
                                                                                              spin-flips
              0,2
                     Excited                          localized
                0
                 0       2     4    6        8      10    12      14   16    18        20
                                                 Time(fs)

Krieger et al. JCTC 11, 4870 (2015),
Elliott et al. New J. Phys. 18, 013014 (2016),
Dewhurst et al. Computer Phys. Comm. 209, 92 (2016)
How fast?–exchange and spin-orbit times in femto-seconds

                    Metal    Exchange     Spin-orbit
                     Fe         52            50
                     Co         80            52
                     Ni        380            48

   Table: Exchange time is Heisenberg exchange parameter converted to
   time. SO time is the time at which SO coupling causes spin flips in
   Fe/Mn, Co/Mn and Ni/Mn interfaces.
Faster than spin-orbit

1. A new ultrafast phenomena called OISTR.
   1.1 Spin manipulation faster than spin-orbit.
   1.2 Spin manipulation at sub-exchange time scales.
   1.3 Sub-exchange, sub-spin-orbit switching the magnetic order.
   1.4 Spin manipulation times coherently controlled by laser
       pulse.
2. Experimental demonstration of OISTR
3. What is missing and how we can try to change that
Ferri-magnetic layers: Mn2/Co4/Cu(001)
Magnetization dynamics in Mn2/Co4/Cu(001)

                                                                               2
                                                      FWHM=25fs, E=16mJ/cm

                   A(t)3

                       2
           M(t) [µΒ]

                       1

                                                                             Co4
                       0                                                     Co3
                                                                             Co2
                       -1                                                    Co1
                                                                             Mn2
                                                                             Mn1
                       -2
                         0   10    20       30       40       50        60
                                            Time(fs)
  I Ground-state is Ferri-magnetic
  I ∼ 29fs one of the Mn layers switches the direction of spin
  I Stays in transient FM state at least till 150fs
Dewhurst, Elliott, Shallcross, Gross and Sharma, Nano Lett. 18, 1842, (2018)
Spin-flips, spin current, charge current

                              
            1        1                       1−
   Ĥs =        i∇ + Aext (t) 2 + vs (r, t) + → σ · Bxc (r, t) (5)
            2        c                       2c
             1 →−
        +       σ (∇vs (r, t) × i∇)
            4c2

                   ∂
                      m(r, t) = ih[Ĥs , σ̂n̂(r, t)]i            (6)
                   ∂t

   ∂                  ←→           1
      m(r, t) = − ∇ · J (r, t) + [Bxc (r, t) × m(r, t)]
   ∂t                              c
                   1
                +     [∇n(r, t) × ∇vs (r, t)]
                  4c2
                   1 ←  →                ←→
                +     [ J T (r, t) − T r{ J (r, t)}] · ∇vs (r, t) (7)
                  2c2
Krieger et al. JPCM 29 , 224001 (2017),
Dewhurst et al. Computer Phys. Comm. 209, 92 (2016)
Magnetization dynamics in Mn2/Co4/Cu(001) without SO

                       3

                                                           with SO
                       2
                                                           without SO
          Moment(µΒ)

                        1

                       0

                       -1

                       -2
                            0   10   20   30     40   50     60     70
                                          Time (fs)

    I Spin flips play no role in switching of magnetic order.
  Dewhurst et al. Nano Lett. 18, 1842, (2018)
Optical inter-site spin transfer (OISTR)

              m = nup − ndn
Transient state density

                                           ∞ Z
                                           X
                    DOS(ω, t) =                       δ(ω − εik )gik (t),   (8)
                                           i=1   BZ

with
                                            X                  2
                                                      k
                             gik (t) =           njk Oij (t) ,              (9)
                                             j

where njk is the occupation number of the j th time-evolving
orbital and
                          Z
                 Oij (t) = d3 rφ∗ik (r)ψjk (r, t).
                   k
                                                            (10)

Here φi are the ground-state Kohn-Sham orbitals. In absence of
any time-dependent perturbation ψjk (r, t = 0) = φ∗jk (r)
Elliott et al. Sci. Rep. 6, 38911 (2016)
Transient occupied states

                    2
                                                               Mn1
                     1

           Tr-DOS
                    0

                    -1

                    -2
                     2
                                                               Mn2
                     1
           Tr-DOS

                    0

                    -1

                    -2
                      -6      -4    -2       0         2   4         6
                                         Energy (eV)

                                   M = nup − ndn

I Optical inter-site spin transfer (OISTR) is responsible for
  switching
I Availability of states enforces OISTR
Outlook for OISTR: Ultrafast GMR
Laser induced transient OCMR device

                              J

Resistance change of 385% in CuCoMn multilayers from
Boltzmann simulations (Ingrid Mertig)
Experimental confirmation of OISTR
Quantitative but indirect agreement with experiemnts

                                                       Expt-Ni
             1,2                                       Expt-Fe
                                                       Theory-Fe
                                                       Theory-Ni
               1
 M(t)/M(0)

             0,8

             0,6

             0,4

               -50   0   50   100   150   200   250   300   350   400
                                    Time (fs)

 Laser-induced local increase in
 moment
 Hofherr et al. Science Advs. 6, eaay8717
                                                                        Attosecond dynamics via OISTR
 (2019)
                                                                        Siegrist et al. Nature 571, 240 (2019)
Linear response TDDFT

Interacting response function:

 ε−1 (q, ω) = 1 + χ0 (q, ω) [1 − (vcl + fxc (q, ω))χ0 (q, ω)] −1 (11)

Non-interacting response function:
                     X            φ∗ (r)φ∗mk (r0 )φlk (r0 )φmk (r)
  χ0 (r, r0 , ω) =    (nlk − nmk ) lk                                (12)
                                      ω − lk + mk + iη
                     lmk
Linear response TDDFT

 ε−1 (q, ω) = 1 + χ0 (q, ω) [1 − (vcl + fxc (q, ω))χ0 (q, ω)] −1 (13)

All quantities are treated as matrices in reciprocal space vectors
G,G’ to account for LFE.

Local field effects(LFE)– charge density rearrangement caused
by the external perturbation leads to creation of local
microscopic fields.

Light of the form ei(G+q).r produces a response also of the form
    0
ei(G +q).r

Simplest approximations:
fxc = 0 (RPA, i.e. no excitons) and G=G’=0 (no LFE)
CoPt: experimental response vs theoretical disaster

                 0.02

                               Expt.
                    0
                                                     Theory
                 -0.02
         ∆β(ω)

                 -0.04

                 -0.06

                 -0.08

                  -0.1
                         45   50       55     60     65       70
                                       Energy (eV)

Disagreemet believed to be due to
(a) Missing many-body corrections and
(b) missing excitonic physics (i.e. fxc 6= 0).
Theory guiding experiments

                        Co@CoPt                            Pt@CoPt
                  (a)                               (b)                                   Agreement requires:
        0,005                                                                    0,005
                   Expt.                              Expt.                                I Many-body correction
            0                                                                    0            via GW
∆β(ω)

        -0,005
                                       Co                             Pt
                                                                                 -0,005    I Excitonic physics
                                                                                              included via bootstrap
         -0,01                                                                   -0,01
                                  Total                             Total                     approximation
        -0,015
             45   50    55   60   65   70   75 45   50    55   60    65    70
                                                                                 -0,015
                                                                                75         I Local field effects by
                        Energy (eV)                       Energy (eV)
                                                                                              solving matrix equation.
Dewhurst et al. Phys. Rev. Lett. 124,
077203, (2020),
Willems et al. Phys. Rev. Lett. 122,
217202, (2019),

Willems et al. Nat. Comm. 11, 1-7, (2020)
Transient response function in CoPt

                             -3
                       x10
                  4

                  2                                             Pt N7-edge

                  0
                         Pt O3-edge 57.2 eV
        ∆β(ω,t)

                  -2

                                                          Co M23-edge
                  -4
                          Pt O3 -edge
                           54.1 eV
                  -6

                  -8
                   -50            0      50     100       150        200     250
                                              time (fs)
Dewhurst et al. Phys. Rev. Lett. 124, 077203, (2020)
Where does the angular momentum go?
                  L+S+N is conserved
(a)                                                                        (b)
                               Ni          Co             L(t)/L(0) -1
0.2                                                       S(t)/S(0) -1    0.1
                                                          ex. charge
                                                                          0
  0
                                                                          -0.1

                                                                          -0.2
-0.2
                                                                          -0.3

-0.4                                                                      -0.4

                                                                          -0.5
      0    5     10       15        20 0    5   10   15     20   25      30
               time(fs)                          time(fs)
What is missing from the theory?

    Even the exact functional will
     not yield full predictiveness!
Relativistic
interaction
   terms
Leading order terms in expansion of QED H

         X 1                      X e2     1X e
  H=          p2i − eVext (ri ) +        +       pi · Aext (ri )
         i
           2m                        r
                                  i
Relativistic
                       interaction
                          terms
Exchange-correlation
     functional
   development
DFT of magnetic dipolar interactions
                             "                            #
               1 e2 X          3(ri − rj )(ri − rj )   1
     Hdip   =− 2 2      si ·             5           − 3 · sj
              c m                      rij            rij
                    i
Relativistic
                       interaction
                          terms
Exchange-correlation
     functional
   development

                                Radiation
                                   via
                            Maxwell's equations
Relativistic
                       interaction
                          terms
Exchange-correlation                  Extending
     functional                      space-time
   development                       boundaries
                                  (ultra long-range
                                       TDDFT)

                                Radiation
                                   via
                            Maxwell's equations
Long length scale physics
Spin-spiral ansatz
                                                        !
                                u↑nk (r) ei(q/2)·(r)
                 Φkn (r)   =                                eik·r   (14)
                                u↓nk (r) ei(-q/2)·(r)

Ultra long-range anstaz
                                                   !
                           X              u↑nk (r) i(k+κ)·(r+R)
        Φkα (r   + R) =         cαnk+κ               e              (15)
                           nκ
                                          u↓nk (r)
Self-consistent density for a 3456 atom cell of LiF

Müller, Sharma, Gross and Dewhurst, Phys. Rev. Lett. 125,
256402 (2020)
Skyrmion in iron on iridium substrate

Plot of the surface magnetization density averaged in each unit cell in
the Fe plane. Each triangle represents a unit cell and the ultracell
vectors were scaled by 0.8, 0.9, 1.0 and 1.1.
Relativistic
                       interaction
                          terms
Exchange-correlation                  Extending
     functional                      space-time
   development                       boundaries
                                  (ultra long-range
                                       TDDFT)

                                Radiation
                                   via
                            Maxwell's equations
Relativistic
                         interaction
                            terms
Exchange-correlation                    Extending
     functional                        space-time
   development                         boundaries
                                    (ultra long-range
                                         TDDFT)

   Nuclear degrees                Radiation
     of freedom                      via
(quantum or classical)        Maxwell's equations
Nuclear degrees of freedom

Treat nuclei as classical point particles: Ehrenfest dynamics

Quantum nuclei required for superconductivity!
Coupled spin nuclear dynamics in FePt

                                          With nuclear dynamics
                                          Without nuclear dynamics
                    2.5
Fe@FePt M(t) [µΒ]

                     2

                    1.5

                      0   5   10   15     20       25   30   35      40
                                        time(fs)
1.4
                                                               LDA
                                                               LDA+electron-phonon

        DOS (states/eV/unit cell)
                                    1.2                        mean field theory

                                      1

                                    0.8

                                    0.6

                                    0.4

                                    0.2

                                     0
                                     -10   -8   -6   -4   -2      0     2    4       6   8   10
                                                          Energy (eV)

Change in the band gap
 This work                                                        -365 meV
 S. Poncé et al.,
 Comp. Mat. Sci. 83, 341 (2014)                                   -409 meV
1

                                                                SCDFT
                                                                LDA+Electron-phonon
                       0.8                                      mean field theory

          FACE / DOS
                       0.6

                       0.4

                       0.2

                         0
                        -100   -80   -60   -40   -20   0   20      40   60    80      100
                                                 Energy (meV)
Superconducting gap in niobium
 This work                    ≈ 3.1 meV
 Bonnet et al.,
 Phys. Lett. A 25, 452 (1967)  2.32 meV
Relativistic
                         interaction
                            terms
Exchange-correlation                    Extending
     functional                        space-time
   development                         boundaries
                                    (ultra long-range
                                         TDDFT)

   Nuclear degrees                Radiation
     of freedom                      via
(quantum or classical)        Maxwell's equations
Various combinations yield new predictiveness

                                              (
                                                  light propagation
long-range + Maxwell’s equations + TDDFT =⇒
                                                  density wave propagation
Various combinations yield new predictiveness

                                              (
                                                  light propagation
long-range + Maxwell’s equations + TDDFT =⇒
                                                  density wave propagation

      long-range + spin-orbit + spin-TDDFT =⇒ skyrmion dynamics
Various combinations yield new predictiveness

                                              (
                                                  light propagation
long-range + Maxwell’s equations + TDDFT =⇒
                                                  density wave propagation

      long-range + spin-orbit + spin-TDDFT =⇒ skyrmion dynamics

  long-range + dipole-dipole interaction + spin-DFT =⇒ magnetic domains
Various combinations yield new predictiveness

                                                     (
                                                         light propagation
long-range + Maxwell’s equations + TDDFT =⇒
                                                         density wave propagation

      long-range + spin-orbit + spin-TDDFT =⇒ skyrmion dynamics

  long-range + dipole-dipole interaction + spin-DFT =⇒ magnetic domains

                                   1     e
                                       P
long-range + superconductivity +   c   i m pi   · Aext (ri ) =⇒ Abrikosov vortices

           New physics can be found at competing energy scales!
Elk code: full potential LAPW method

Science 351, 6280 (2016)                 Gold standard for electronic structure
                                         of solids. Features include:
                                            I Ground state

                                            I Most single particle observables

                                            I Structural optimization

                                            I Many-body methods: GW and
                                              beyond, RDMFT, BSE ...

                                            I Response functions: magnons,
                                              phonons, plasmons, excitons ...

                                            I Wannier90 interface

                                            I Tensor moments

                                            I Non-equilibrium spin dynamics

                                            I Superconductivity: calculation of Tc,

                                               Eliashberg

J. K. Dewhurst, S. Sharma, L. Nordström and E. K. U. Gross .......

http://elk.sourceforge.net/
You can also read