Modelbased Manipulations of B Spline Surfaces to simulate Deformations of the Facial Tissue

Page created by Kelly Pearson
 
CONTINUE READING
Modelbased Manipulations of B−Spline
   Surfaces to simulate Deformations
          of the Facial Tissue
                         D. Bartz
Computer Graphics Group and Telecommunications Institute
            University of Erlangen, Germany

   Outline:
           • Overview
           • Medical Foundations
           • Modelbased Simulation
           • Triangular B−Splines
           • Results & Discussion
           • Conclusions

   Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Overview

Modelbased Simulation:
• mass spring system within five layers [Waters, Terzopoulos, 1990]
• manipulations of positions of nodes cause distortion
  of equilibrium of springsystem
• calculate new equilibrium
• render top layer with spline method to improve resolution

• Waters, Terzopoulos: Manipulation of springs
            with artifical muscle actors
• in this work: direct manipulation of spring nodes
            within the layer, which represent bone layer

           Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Medical Foundations (1)
Mechanical properties of facial tissue:

• epidermis (A)
• dermis (B)

• subcutis (C)
• fascia
• bone

Facial tissue has an inhomogeneous,
and non−directional behavior.

                           [From: PZ90]

           Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Medical Foundations (2)

Human skull:

 We manipulate the position
 of the
   • Maxilla
   • Mandibular

                 [From: Rohe90]

         Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Modelbased Simulation (1)
• Each edge represents
  a spring in a mass
  spring system.
                          epidermis
• Spring stiffness        dermis
  with respect            subcutis
  to mechanical           fascia
  behavior
                          bone

3D laser scanner data: triangulation

          Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Modelbased Simulation (2)

 Spring system after median cut

       Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Modelbased Simulation (3)

         fi = mi . ai(t) + γi . vi(t) + gi ,                          i ε {0..N}

                   where gi =   Σc       ij   (||rij|| − lij) . rij
                                j ε Νi         || rij ||

• equation describes balanced spring system

• moving of spring nodes causes distortion

• to compute new balance, use iteration method

          Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Modelbased Simulation (4)

                 ai(t) = (fi − gi . vi(t) − gi) . Bi/mi

• using a two step numerical integration method (Euler):

                    K1 = H(yn , tn) = a(vn, xn)

                         vn+1 = vn + ∆t . K1

                        xn+1 = xn + ∆t . vn+1

          Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Modelbased Simulation (5)

Algorithm:

       determine processing steps and the
          dedicated regions in bone layer

       foreach processing step do
          select all points in region
          do
             apply translation vector
             to points
             while points have not reached
                   target positions
       od

             Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Triangular B−Splines (1)
• surface: triangulation / unstructured grid

          Tensor product−B−Splines not appropriate

          Triangular B−Splines (DMS−Splines)
          (Dahmen, Micchelli, Seidel 1992)

• properties:

          • piecewise polynomial       • affine invariant

          • locality                   • convex hull

          • positivity                 • local control

          • optimal smoothness

           Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Triangular B−Splines (2)
Mathematical foundations:
• based on
   − Simplex Splines (Dahmen, Micchelli 1982)
   − B−Patches (Seidel 1991)

• Computation of selected Simplex Splines, with respects to
  a triangulation and a set of knot clouds (parametrization)

• half−open convex hull                                t2,2
                                                                        t2,1

• barycentric coordinates                                     t2,0
  (positive oriented triangles)
                                         t0,1

                                                t0,0
                                                                 t1,0
                                         t0,2                                  t1,2

                                                                 t1,1

          Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Triangular B−Splines (3)
Four major problems to be solved:

• Construction of a proper parametrization

• Construction of a proper control net

• Construction of evaluation points in |R2

• Evaluation of Triangular B−Spline base functions at
  the evaluation points

           Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Triangular B−Splines (4)
Problem 1: parametrization

• Take advantage of the "scan property" of the triangulation in |R3

                 Cutting edge

          Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Triangular B−Splines (5)
Construction of the knot cloud

foreach ti,0 e T do
   if ti,0 on_rim_of_T then
     estimate maximal_region m
     estimate neighborhood of ti,0
     select knot within m with best
          quality concerning neighborhood
   else
      estimate neighborhood of ti,0
      estimate knot with best quality           With respects to:
          concerning neighborhood               • affine independent
   fi                                           • guaranteed partition
od                                                of one
                                                • no intersection of
                                                  edges
                                                • no degenerated
                                                  triangles

          Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Triangular B−Splines (6)
Problem 2: control net    ... is an approximation problem:

• Simple approximation by vertex identification
   Pros: fast, simple, robust
   Cons: bad quality

• Least−Square−Approximation (LES)
   Pros: better quality
   Cons: high space and time complexity (O(n3))
          (really huge design matrix)

Problem 3: Evaluation points

• n(n+1)/2 evaluation points per patch

• n=5      15 evaluation points:

          Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Triangular B−Splines (7)
Problem 4: evaluation of base function

Algorithm
(Pfeifle, Seidel 1994) is

• a modification of
  deBoor algorithm

• limited to quadric
  Triangular B−Splines

          C1 smoothness

           Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Results & Discussion (1)

data set:    P/[s]     n=3                      n=5                 n=7
#vertices/                           #vertices           #vertices            #vertices
#triangles             E/[s]         #triangles E/[s]    #triangles E/[s]     #triangles

A:                                    2115                 8277                 18487
552/1012     31         22            4048          94    16192        344      36432

B:                                    4586                18263                 41032
1157/2273    68         60            9092         392    36368        1966     81828

C:                                    5979                23861                107136
1502/2976    102       193           11904         780    47616        3423     53647

D:                                   34282               136567               10000001
8641/17001 584         2517          47616      25156    272016     1500001    623036

Computed on a Onyx RealityEngine2, only using one processor (R4400)

                       1: estimate

             Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Results & Discussion (2)
Problems:

• simplified tissue model:
  − homogeneous conditionalization within every layer
  − bone layer is approximated with a copy of a triangulation
    of the epidermis layer
  − no detail models (lips, eyes, ears,...)
  − no muscle model (but easy to implement)

• results are strongly dependent on selection of vertices and translations
           planning and reproduction is difficult

• method is not surgical oriented (at this stage)

• numerical problem with "bad" triangulations of the face

            Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
Conclusion & Future Work
Conclusion:

 • tissue model out of spring systems

 • epidermis layer is rendered with Triangular B−Splines

Future Work:

 • improvement of the tissue model

 • improvement of the construction of the control net

 • error correction of "bad" numerical data

 • high potential in parallelization

           Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
References

DMS92     W. Dahmen, C. A. Micchelli, H.−P. Seidel: Blossoming begets
          B−Splinebases built better by B−patches", In: Mathematics of
          Computations. I(1), p. 97−115, July 1992
PS94a     R. Pfeifle, H.−P. Seidel: "Faster evaluation of quadric bivariate
          DMS−spline surfaces", Proc. of Graphics Interface’94,
          p. 182−189, 1994
PZ90      W. Pschyrembel, C.Zink: "Pschyrembel Klinisches Woerter−
          buch", Walter de Gruyter Verlag, Berlin, 1990
Rohe90    J.W. Rohen: "Funktionelle Anatomie des Menschen"
          Schattauer Verlag, Stuttgart, 1990
Seide91   H.−P. Seidel: "Polar−Forms and Triangular B−Spline Surfaces",
          In: Blossoming: The New Polar−Form Approach to Spline
          Curves and Surfaces, SIGGRAPH’91, Course Note #26, 1991
WT90      K. Waters, D. Terzopoulos: "A physical model of facial tissure
          and muscle articulation", In: Proc. of the First Conference on
          Visualization in Biomedical Computing, p. 77−82, May 1990

          Graphische Datenverarbeitung, Universität Erlangen−Nürnberg
You can also read