L'utilizzo dell'interferometria SAR nel monitoraggio delle frane
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
L’utilizzo dell’interferometria SAR nel monitoraggio delle frane Settimio Ferlisi, Dario Peduto Dipartimento di Ingegneria Civile – Università di Salerno CONVEGNO ECOMONDO – AGI Monitoraggio geotecnico delle opere per la difesa del territorio e la tutela dell’ambiente 3 novembre 2020 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 1 1/32
Differential Synthetic Aperture Radar Interferometry (DInSAR) Differential Synthetic Aperture Radar Interferometry (DInSAR) is a spaceborne remote sensing technique based on the processing of two (o more) SAR sensor images that allows measuring displacements affecting targets (buildings, roads, bridges, bare rocks) on the ground with a sub- millimeter precision on velocity over large areas. Acquisition Stack of images Time series Velocity map Available SAR sensors Tempo Image processing algorithms • Permanent Scatterers (PS) (Ferretti et al., 2000) • Small Baseline Subset (SBAS) (Berardino et al., 2002) • Coherent Point Target Analysis (CPTA) (Mora et al., 2003) • Interf. Point Target Analysis (IPTA) (Wegmuller et al., 2005) • Enhanced Spatial Differences (ESD) (Fornaro et al., 2007) • Multi-Dimensional Imaging tecnique (Fornaro al., 2009) (Peduto et al., 2015) L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 2 2/32
Main applications in the field of Geotechnics/Engineering Geology Subsidence Slow-moving landslides Seismic faults L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 3 3/32
Subsidence: case studies in the Netherlands a) Cumulative thickness of soft soils; b) distribution of piled foundation buildings in The Netherlands DInSAR data accuracy test Rotterdam case study Damage level vs. differential settlements Peduto D., Korff M., Nicodemo G., Marchese A., Ferlisi S. (2019). Empirical fragility curves for settlement-affected buildings: analysis of different intensity parameters for seven hundred masonry buildings in The Netherlands. Soils and Foundations, 59: 380–397, https://doi.org/10.1016/j.sandf.2018.12.009 59/73 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 4 4/32
Control of linear infrastructures: bridges Bridges in Amsterdam city Amsterdam city: subsoil model Example of damage fact-sheet Map of PS over Amsterdam city and accuracy test Dario Peduto, Francesco Elia, Rosario Montuori (2018) Probabilistic analysis of settlement-induced damage to bridges in the city of Amsterdam (The Netherlands), TRANSPORTATION GEOTECHNICS, 14: 169–182, https://doi.org/10.1016/j.trgeo.2018.01.002 64/73 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 5 5/32
DInSAR application to slow-moving landslides Limits of applications to slope monitoring L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 6 6/32
Limits ▪ Vegetated areas, scarsely urbanised areas (Zebker et al, 1992) ▪ Slope angle effect ▪ Revisiting time (35 day, e.g. for ESA past satellites) allows measuring displacements up to 1.4 cm between two acquisitions ▪ Difficult to interpret 3D phenomena via 1D- LOS information ra ng e ▪ Slope distorsion effects: foreshorthening los Fore slope range shorthening displacement Cascini L., Fornaro G., Peduto D. (2010). Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Engineering Geology, 112 los (1-4), 29-42, doi:10.1016/j.enggeo.2010.01.003. L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 7 7/32
Advanced DInSAR velocity maps for slow-moving landslide applications Specifically tailored products developed by UNISA: Advanced DInSAR landslide velocity maps Trend analysis of displacement time series Cascini L., Fornaro G., Peduto D. (2010). Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Engineering Geology, 112 (1-4), 29-42, doi:10.1016/j.enggeo.2010.01.003. L. Cascini, D. Peduto, Pisciotta G., L. Arena., Ferlisi S. and Fornaro G. (2013) The contribution of DInSAR and facility damage data for the updating of slow-moving landslide inventory maps at medium scale. Nat. Hazards Earth Syst. Sci., 13, 1527-1549, doi:10.5194/nhess-13-1527- 2013. L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 8 8/32
Slow-moving landslides Slow-moving landslides are widespread in different geological contexts all over the world and, although they usually have a low probability of generating “catastrophic” events (i.e. a significant loss of human life), often cause significant damage to structures and infrastructures with them interacting. Characterization Consequences related to slow-moving landslides (Australia), november 2001 http://www.ccma.vic.gov.au Castelpagano (Italy), 2012 Types of slow-moving landslide according to Varnes (1978) Ireland http://www.qub.ac.uk Reino Involved material according to Leroueil et al. (1996) (Italy), 2012 Reino (Italy), 2012 Velocity of landslides (Cruden e Varnes, 1996) Activity stage according to Leroueil et al. (1996) Montaguto,2006 (DPCN) 3 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 9 9/32
DInSAR data for slow-moving landslide risk analysis Landslide risk management framework Scale of analysis: 1:5,000 Element(s) at Risk Vulnerability R=HxExV (RISK) Hazard Crack dh dv Landslide characterization - State of activity; - Landslide mapping. Consequence analysis: - Identification of elements at risk; - Cause-effect relationships. Fell et al.(2008) L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 10 10/32
THE LUNGRO CASE STUDY L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 11 11/32
Analysis at municipal scale: the case study of Lungro (CS) Geological map The geological setting consists of the Lungro-Verbicaro Unit (LVU), made up of metapelites and metacarbonates. The LVU, lying next to the dwelled area of Lungro, moves towards the Diamante-Terranova with a clear extensional tectonic contact (Lower Jurassic-Cretaceous), made up of phyllites, blocks of different natures in a prevalently clayey matrix (Antronico et al., 2014). The site of Lungro is characterized by very steep slopes. Prevailing landslide types are: rotational/translational slides, complex slide/flow and landslide zone (Greco et al., 2007) where clustering of phenomena is too tight to distinguish different bodies. (Data source: CNR-IRPI) Landslide inventory The monitoring network Nr.9 GPS benchmarks Nr.12 vertical inclinometers L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 12 12/32
The case study of Lungro (CS): DInSAR dataset 1992 - 2000 2003 - 2010 SAR acquisition R1 R2 ΔR ERS (PST) data on descending orbit (period 1992 – 2000) ENVISAT (SBAS) data on ascending orbit (period 2003 - 2010) 2012 - 2014 REVISITING RESOLUTION TIME COSMO (2012 – 2014) X - BAND ENVISAT (2003 – 2010) C - BAND CosmoSkyMed data on ascending orbit (period 2012 – 2014) ERS (1992 – 2000) C - BAND L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 13 13/32
DInSAR data validation in Lungro Comparison between displacements derived from DInSAR and S19 inclinometer measurements from 2006 to 2010 in Lungro (Calabria region, Italy). Inclinometers DInSAR data Peduto D., Borrelli L., Antronico L., Gullà G., Fornaro G. (2016). An integrated approach for landslide characterization in a historic centre. Landslides and Engineered Slopes. Experience, Theory and Practice, Proc. of the 12th International Symposium on Landslides, Napoli, Italy, 12-19 June 2016, © 2016 , vol.3, pp. 1575-1581. L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 14 14/32
The Lungro case study Slow-moving landslide characterization at the municipal scale L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 15 15/32
Landslide characterization at municipal scale: ‘aPosIn’ procedure GeoG U Geot U Sat methods landslide Map of typified inventory landslides Gullà G., Peduto D., Borrelli L., Antronico L., Fornaro G. (2017). Geometric and kinematic characterization of landslides affecting urban areas: the Lungro case study (Calabria, Southern Italy). Landslides, 14 (1):171–188, DOI 10.1007/s10346-015-0676-0. L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 16 16/32
The Lungro case study Analysis of building vulnerability to slow-moving landslides L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 17 17/32
The case study of Lungro (CS): vulnerability analysis Input data: ‘detailed’ landslide Landslide inventory map with conventional and innovative monitoring network (Inclinometers; GPS; DInSAR data) inventory map Nicodemo, G., Peduto, D., Ferlisi, S., Gullà, G., Borrelli, L., Fornaro, G., Reale, D. (2017). Analysis of building vulnerability to slow-moving landslides via A-DInSAR and damage survey data. Proceedings of the 4th World Landslide Forum – Ljubljana, Slovenia, May 29 – June 02, 2017, pp. 889-907, doi:10.1007/978-3-319-53498-5_102. L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 18 18/32
Phase I at detailed scale: Exposed elements Identification of the exposed buildings Topographic map Typified landslide inventory map Map of exposed buildings Classification of damage levels via ad hoc predisposed fact-sheets The fact-sheets consist of different sections that allow systematical recording of the archive information regarding: 1) Location area 2) building information (i.e. ownership, structural typology, foundation type, n° floors, etc.) 3) damage severity level; 4) field survey photos; (Ferlisi et al., 2015; Nicodemo et al., 2017) 5) DInSAR-derived intensity parameters. L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 19 19/32
Phase I at detailed scale: examples of fact-sheets filled in during in situ damage survey R.C. building L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 20 20/32
Phase I at detailed scale: examples of fact-sheets filled in during in situ damage survey Masonry building L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 21 21/32
Phase I and II at detailed scale: damage classification and interpretation Damage classification (adopted by Burland et al., 1977) Map of damage distribution on typified landslides Statistics of the damage survey of 2015 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 22 22/32
An example of the potential of DInSAR data in monitoring building damage evolution in time Building located on the boundaries of an active roto- translational slide Peduto et al.(2017) Increase of damage severity with the time DInSAR time-series L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 23 23/32
Phase III at detailed scale: cause-effect relationships Differential settlements () vs. damage level (buildings located in slow-moving landslide area) Differential settlements were computed for each building as the maximum difference of the cumulative settlements recorded by the coherent pixels within its perimeter. The cumulative settlements were derived by multiplying the average velocity along the vertical direction (i.e. derived from the Line of Sight sensor-target direction) for the period of observation of each available dataset. Reinforced concrete buildings (12 single buildings) Masonry buildings (37 single buildings) Peduto D., Ferlisi, S., Nicodemo G., Reale D., Gullà G. (2017). Empirical fragility and vulnerability curves for buildings exposed to slow-moving landslides at medium and large scales. Landslides, 14(6): 1993-2007, doi:10.1007/s10346-017-0826-7 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 24 24/32
Phase III at detailed scale: empirical fragility and vulnerability curves Analysis of damage frequency: by adopting a cumulative log-normal distribution function (Saedi at al., 2009, 2012; Negulescu et al., 2010; Mavrouli et al., 2014; etc), empirical fragility and vulnerability curves were derived for masonry buildings with reference to damage level ranging from D1=slight to D5=very severe: = standard normal cumulative distribution function; = maximum differential settlements; = median value of at which the building reaches each damage level ; β = standard deviation of the natural logarithm of for each damage level Empirical fragility curves for masonry buildings Empirical vulnerability curve for masonry buildings Expected damage Regression model Peduto D., Ferlisi, S., Nicodemo G., Reale D., Gullà G. (2017). Empirical fragility and vulnerability curves for buildings exposed to slow- moving landslides at medium and large scales. Landslides, 14(6): 1993-2007, doi:10.1007/s10346-017-0826-7 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 25 25/32
Expected Building Monetary Loss in time Flowchart of the methodology Monetary Estimation EXPECTED MONETARY LOSS Ordinary condition 5 years Critical condition 10 years (homogeneous areas) Value of exposed elements Ordinary condition Critical condition Peduto D., Nicodemo G., Caraffa M., Gullà G. (2018). Quantitative analysis of consequences to masonry buildings interacting with slow-moving landslide mechanisms: a case study. Landslides, 15(10): 2017-2030, DOI 10.1007/s10346-018-1014-0. L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 26 26/32
The contribution of DInSAR and damage survey data to the analysis of risk to road networks 25/38 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 27 27/32
Risk analysis for road networks: a case study in Campania region Flowchart of the proposed methodology for QRA Examples showing the criteria adopted to define the length of buffer/s Road damage severity levels classified as a D0 (negligible), b D1 (from very low to low), c D2 (from moderate to severe), and d D3 (very severe) The study area and available dataset Ferlisi S., Marchese A., Peduto D. (2020) Quantitative analysis of the risk to road networks exposed to slow-moving landslides: a case study in the Campania region (southern Italy). Landslides, DOI 10.1007/s10346-020-01482-8 35/38 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 28 28/32
Risk analysis for road networks: a case study in Campania region Ferlisi S., Marchese A., Peduto D. (2020) Quantitative analysis of the risk to road networks exposed to slow-moving landslides: a case study in the Campania region (southern Italy). Landslides, DOI 10.1007/s10346-020-01482-8 36/38 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 29 29/32
Risk analysis for road networks: a case study in Campania region The probabilities of occurrence of slow-moving landslides of a given intensity level Fragility and vulnerability curves Expected average damage (μD) vs. relative repair cost (RRC) Ferlisi S., Marchese A., Peduto D. (2020) Quantitative analysis of the risk to road networks exposed to slow-moving landslides: a case study in the Campania region (southern Italy). Landslides, DOI 10.1007/s10346-020-01482-8 30/38 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 30 30/32
Remarks ✓ DInSAR data currently offers a huge dataset of displacement data that can be integrated with conventional methods for monitoring building displacement/settlements at different scales of analysis. ✓ The proposed procedure for landslide characterization and the analysis of building vulnerability to slow-moving landslides allowed typifying landslides and the retrieval of preliminary relationships between the damage severity and the selected DInSAR-derived intensity parameters (i.e. differential settlements) for different structural typologies (i.e. reinforced concrete and masonry buildings). ✓ The achieved results highlight a general increasing trend of damage severity with intensity, independently from both the scale of analysis and the structural typology. ✓ The advantage of using such a widespread information as DInSAR data also brought to the generation of empirical fragility and vulnerability curves that, once further validated, may open new perspectives for helping authorities in charge of land use planning to select most suitable zones to be urbanized also addressing restoration and adaptation policies. ✓ The further improvements may take into account other relevant factors, among others: foundation typology; position of the structure within landslide body; etc. This will also call for enriching the dataset. L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 31 31/32
Thank you for the attention Settimio FERLISI, PhD Associate Professor in Geotechnical Engineering Department of Civil Engineering – DICIV University of Salerno (ITALY) Via Giovanni Paolo II, 132 - 84084 www.unisa.it – sferlisi@unisa.it 38/38 L’utilizzo dell’interferometria SAR nel monitoraggio delle frane – Prof. Settimio Ferlisi – 3 novembre 2020 32 32/32
You can also read