Introduction to biomass combustion and pollutant reduction in wood stoves and boilers
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Introduction to biomass combustion and pollutant reduction in wood stoves and boilers Prof. Dr. Thomas Nussbaumer Verenum Research, Zürich Lucerne University of Applied Sciences and Arts, Horw Swiss Federal Office of Energy, Delegate in IEA Task 32 Switzerland IEA Webinar 06 May 2021 Verenum
Content 1. Intro: The role of bioenergy for a) Energy Supply / Climate Change b) Air Pollution Verenum
World energy supply 1990 to 2017 Total in ktoe/a Share in % Coal Natural Gas Nuclear Hydro Wind, Solar olar Hydro W ind&S Wind&Solar Biofuels and waste 9.1% Oil https://www.iea.org/data-and-statistics 20.1.20 Facts or hypotheses 1. Solar energy has largest potential but causes need for energy storage 2. Wood from sustainable forestry is renewable and net CO2 free (and easily storable) Verenum and can ideally complement solar energy as storable fuel
Target conflict Global effect of smoke from biomass on mortality Mio deaths per year Verenum [OECD/IEA: Energy Poverty, IEA, Paris 2010]
Content 1. Intro 2. Pollutant formation with focus on Particulate Matter (PM) and Organic Compounds (OC) Verenum
Pollutants from biomass combustion CO + hn SOA VOC EC + POA PIA PM10 hn Salts SIA NOx CO2 Cfix C Ca, K, Cl, N Ash CaO, KCl, .. Verenum
Products from Products from Incomplete Combustion Products from Complete (PIC) Complete Combustion Combustion Solid Particulate Matter G a s p h a s e p o l l u t a n t s Chimney Droplets Gas Biomass Salts + Char Soot COC VOC CO CO2 H2O NOX > 10 µm < 100 nm –H2 +O2 +O2 KCl, K2SO4 Ash PAH oxides CaCO3 t< t> Gas phase combustion < 100 nm > 1–10 µm in combustion chamber T > 800° T < 800° T > 550° Consecutive reactions O2 = 0 by secondary air +O2 Condensation CO Secondary >700° Primary Coagulation Tars Tars Nucleation O2 = 0 CmHn +O2 +O2 CO, H2 T > 800° +CO2 Devolatilisation Pyrolysis Gasification Solid fuel conversion K+, Na+, Cl–, SO 42–, C OH –, CO 32–, NO 3– CaCO3 (Char) by primary air u > 0.1 m/s T > 300° + O2 in fuel bed Zn-, Mg-, Fe-, Al-oxides Waste: Cu, Cr, Pb, (Cd) CxHyOz Evaporation T > 100° Evaporation Entrainment H2O 1 u > 0.1 m/s 2 T > 800° K, Na, Ca, S, Cl, N Verenum u Gas velocity, t Residence time, short/long COC: Condensable Organic Compounds 1 Solid-particle-path, 2 Solid-vapour-particle-path VOC: Volatile Organic Compounds T: [Evans and Milne, 1987], H 2: [Jess, 1996]
PM10 Atmosphere PIA POA + EC/BC SOA Solid Particulate Matter G a s p h a s e p o l l u t a n t s Chimney Droplets Gas Biomass Salts + Char Soot COC VOC CO 100 000 [mg/Nm3] (11% O 2) 10 000 CO 1 000 100 [Nussbaumer, T., Energy & Fuels, 10 17, No 6, 2003, 1510–1521, 17] 0 1 2 3 4 [–] 5 [Lauber, A.; Nussbaumer, T., 13th ETH-Con- ference on Combustion Generated Nano- Verenum λ Excess Air Ratio l particles, June 22 – 24 2009, Zurich 2009]
Solid Particulate Matter G a s p h a s e p o l l u t a n t s Droplets Gas Biomass Salts + Char Soot COC VOC CO SCHMID energy solutions Graph: [Schmid] Verenum
Solid Particulate Matter G a s p h a s e p o l l u t a n t s Droplets Gas Biomass Salts + Char Soot COC VOC CO Influence of combustion phase Influence of operation Start-up (log wood boiler) PM [mg/mn3] @13% O2 d ) t (ba star o d) t (go star ry iona stat CO [mg/m n3] @13% O 2 [Bäfver, L. et al, Biomass and [Good, J., Obermayr, D., Nussbaumer, T., Bioenergy 35 (2011) 3648–3655] 11. Holzenergie-Symposium, ETH Zürich 2010] Verenum
Solid Particulate Matter G a s p h a s e p o l l u t a n t s Droplets Gas Biomass Salts + Char Soot COC VOC CO Toxicity low medium high Influence of operation ... and technology [P. Zotter et al., Environ. Sci. Technol., 2019 Apr 2; 53(7): 3959-3968] Verenum [Klippel, N.; Nussbaumer, T., 15th Eur. Biomass Conf., Berlin 2007]
Content 1. Intro 2. Pollutant formation 3. Measures for resid. wood combustion (RWC) 3.1 Primary measures Verenum
Measure 1 e.g. in wood stoves Diffusion flame 1000° O2 = 0 O2 [H.R. Christen, Allgemeine Chemie, 1971] Verenum
1-stage combustion CO2, H2O, O2, N2 CO, CxHy + air at l>1 O2 + N2 wood C H O Verenum
Limitations Problem 6: Problem 4: flame quenching gas tightness inside Problem 3: Problem 5: air tightness heat release from combustion (radiation) Problem 2: mixing of gas and air Problem 1: air distribution Verenum
Limitations Problem 6: flame quenching Overfilling can cause quenching Verenum
Avoid quenching 3. hot combustion chamber 2. Mixing improvement 1. Quenching avoided air and (additionally and mandatory): appropriate start-up .. Verenum
.. appropriate start-up: technology dependent, e.g. for updraft as a rule: ignition from the top [www.holzenergie.ch] [www.holzenergie.ch] [T. Nussbaumer et al., EU Biomass Conference 2008] [H. Hartmann, 20th ETH-Conf. on Nanop., Zürich, 2016] Verenum
Appropriate fuel: technology dependent Moisture content Log size 10,000 300 CO OGC Stove 1 Stove 2 Stove 3 mg/Nm³ (13 250 mg/Nm³ 8,000 (13 % O2) % O2) 211 Undiluted flue gas Particle emission Gaseous emission 200 6,000 150 123 4,000 105 85 100 65 74 2,000 34 50 22 21 0 0 0 5 10 15 20 25 30 35 % 40 45 n=3 n=3 n=3 Fuel moisture content 5x5 cm 7x7 cm 9x9 cm Log size Stove 1 Stove 2 Stove 3 [H. Hartmann, 20th ETH-Conf. on Comb. Gen. Nanoparticles, Zürich, 2016 and TFZ-Bericht 36, www.tfz.bayern.de] and additional info by [R. Mack et al. Central European Biomass Conference, Graz 2020] Verenum
Measure 2 e.g. in wood boiler Diffusion Premixed flame flame 1540° 1000° 1560° O2 = 0 520° O2 O2 > 0 300° O2 [H.R. Christen, Allgemeine Chemie, 1971] [H.R. Christen, Allgemeine Chemie, 1971] Verenum
2-stage combustion: principle in downdraft boiler wood CHoval HO Hoval + air with l1 T > 800o t > 0.3-0.5 s CO2, H2O, N2 Verenum [Nussbaumer, Energy & Fuels, Vol. 17, No 6, 2003, 1510–1521, 17]
Titel 2-stage combustion: examples in stoves Bionic Fire Tiba (Sirius) Attika (Juna) https://attika.ch/ Specht TwinFire Xeoos http://www.specht-ofen.de Tiba AG & Hochschule Luzern 2012 [Zotter et al. 2017, 21st ETH Conf. [W. Wiest., 13. Holzenergie-Symposium, Zürich 2014] [T. Nussbaumer & P. Odermatt, TGA 5 2013, 54–58] on Comb. gen. Nanoparticles] Verenum
Improvements since 1975/80 Titel Boilers Stoves [BEST (formerly BLT), AUT] [HKI, GER] Industrieverband Haus-, Heiz und Küchentechnik PM CO PM [L. Lasselsberger, BLT Wieselburg (A) 2016]] [V. Schmatloch, Kachelofen&Kamin, Januar 2018] Approach: "Technical Guidelines for design of low emission stoves, presentation 2 by Morten Warming (DTI, DK) Verenum
Anforderungen für tiefe Emissionen „Gap“ between type-test and reality chimney sweeper measurements PM real-life PM type-test Conclusion: „no correlation“ [German Biomass Research Center – Verenum Deutsches Biomasseforschungszentrum, DBFZ, Leipzig 2014]
Anforderungen für tiefe Emissionen „Gap“ between type-test and reality Approach: "Real life" test methods: presentation 3 by Gabriel Reichert (BEST, AUT) Verenum [C. Schmidl et al., «Be Real» 14. Holzenergie-Symp., Zürich 2016]
Content 1. Intro 2. Pollutant formation 3. Measures 3.1 Primary measures 3.2 Secondary measures Verenum
Titel Electrostatic Catalysts Aerosols Inserts from Biomass Precipitators (ESP) Combustion [Oekosolve 2019] CO > 70% CO > 70% Reduction VOC > 40% VOC > 70% PM 30% - 40% oxidizable PM PM 60% - 80% [V. Schmatloch, EMPA [D. Jud, Oekosolve, [G. Reichert et al., BEST, 13. [M. Aleysa, Fraunhofer IBP, CEBC Graz 2020] Holzenergie-Symp., Zürich 2014] Dübendorf, 2004] 15. Holzenergie-Symp., 2018] Verenum
Titel Electrostatic Catalysts Aerosols Inserts from Biomass Precipitators (ESP) Combustion Pressure drop Temperature control needed Aging Soot causes re-entrainment Limited effect during cold start and/or limited availability Periodic cleaning needed a s ure s easures nd ary me primary m bustion Seco repla ce) lete com t (but not o f in c omp om plemen d in case can c y are limite ince the s Verenum
Content 1. Intro 2. Pollutant formation 3. Measures 4. Consequences for low emissions Verenum
Requirements for low emissions 1. Appropriate ignition and start-up 2. Appropriate fuel (moisture, size, ash) and fuel amount 3. Technology with 2-stage combustion, secondary air and hot comb. chamb.: Target for T T T: l = 1.5-2.5, T > 800o, t > 0.3-0.5 s Options: - forced draft with ventilator - inserts for mixing and/or catalytic effect - combustion control 4. Optional secondary measure: ESP with monitoring 5. For boilers: heat storage tank Remaining challenges: - cold start - ambient conditions, mostly for natural draft - operator influence Verenum
Requirements for low emissions are valid for all combustion types but: - for automatic combustion safely applicable (in small scale for wood pellets) - for manual devices highly challenging most important in real-life Verenum
PM emissions in small scale in real-life conditions limit for boilers 20 mg/m3 with uncertainty 31 mg/m3: pellet boilers: 64% meet emission limit other boilers: 25% meet; 75% exceed PM in mg/m3 @ 13 % O2 [A. Kather, N. Woltersdorf: Feinstaubemissionen aus biomasse-befeuerten Verenum Kleinfeuerungsanlagen, IET, TUHH, Hamburg 2013]
1. Intro 2. Pollutant formation 3. Measures 4. Consequences 5. Conclusions Verenum
1. RWC contributes to PM and OC hence their emissions need to be reduced 2. Primary measures are: - combustion design - ideal start-up and appropriate fuel - ideal operation with appropriate air supply and high temperature 3. The technology has been improved by: - thermal insulation, air tightness, secondary air and hot combustion ch. - modern devices achieve low emissions on test-bench 4. Secondary measures can further reduce emissions, but cannot replace primary measures 5. Main reason for high impact of RWC is the «gap» between test-bench results and non-ideal operation in real life 6. Control systems and monitoring can assist to improve real-life operation 7. Information und inspections remain necessary Verenum
Acknowledgements Swiss Federal Office of Energy Swiss Federal Office for the Environment Swiss National Research Foundation Innosuisse and SCCER Biosweet IEA Bioenergy Task 32 Info www.verenum.ch www.hslu.ch www.holzenergie-symposium.ch Verenum
You can also read