INSTITUTE OF THEORETICAL AND EXPERIMENTAL PHYSICS INTRODUCTION TO GAUGE THEORIES - Р -43
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
«ТЕР - 4 3 INSTITUTE OF THEORETICAL AND EXPERIMENTAL PHYSICS LB.Okun INTRODUCTION TO GAUGE THEORIES M O S C O W |984
;S 530.145:53^ .3 ;,i-I6 A b s t r a c t These lecture notes contain the text of five lectures and a Supplement. The lectures were given at the JIBR-CERN School of Physics,' Tabor» Czechoslovakia, 5-18 June 1983. The subject of the lectures: gauge invariance of electromagnetic and weak interactions, hifigs^e- and eupersyametric particles. The Sup¬ plement contains^reprints (or excerpts) of some classical papers on gauge invariance by V.Pock, P.London, O.Klein and H.Weyl, i:: which the concept of gauge invariance was introduced and developed. lilli-THTyl Tri)|il'1ll'l'4Koft И .•M-r|i'|'MM4'HTIi.ll.lli>fl фи.ШКИ
P r e f a c e Gauge invariant interaction* form the dynamical basis of the modern theory of elementary particles. More than half of 10* papers published annually in the field of particle physics deal with gauge invariance. Some parts of the subject are now almost as classic as Bucledian geometry. In these lectures I will try to be as elementary as pos¬ sible, I will also try to be complementary to lectures on gaufc < theories given at previous CERH and CERN-Dubna Schools (B.de Wit, 1982, C.Jarlskog 1981, L.lfeiani 1980, ...) and to the lectures given at this School. As a result I will omit some well-known subjects and will ^ive only fragmentary references. (A rather extensive list of references could be /1 2/ found e.g. in books ' » ' ) • On the other hand, special credit will be given to some old papers, selected reprints of which are presented in the Supplement to these lectures.. Because of 1аск of space I have skipped in the written text several topics discussed during the lectures and/or in the transparancies: 1. Present and future experiments with W- and 2-bosons. 2. QCD and gluon-gluon collisions» 3. Grand unification and electrical neutrality of atoms. 4. Gauge fantasies on new long range forces. I take the opportunity to express my gratitude to the hosts of the School for their warm hospitality.
C o n t e n t s Lecture 1. Gauge Inrarlance in Electromagnetic Interaction 1.1. Classical Electrodynamics of Classical Fexticlea. 1.2. Electrodynamics of Fields, 1.3. On the Etymology *nd on the Early History of Gauge Inrariance. 1,4, The Physical "•^Hng of Gauge Imrarlance In Electrodynamics. Lecture 2. Gauge Inrarlance In Weak Interaction 2.1. SU(2) Toy Model. 2.2. SU(2)xU(1) Semi-toy Eleetroweak Model, 2.3. SU(2)xU(1) ElectroweeJc Interaction. 2.4. On the Early History of Intermediate Bosons. Lecture 3» Breaking of Gauge Irrvarlance. Higgaes. 3.1. The Minimal Model. 3.2. Properties of Riggs in the Mini¬ mal Model, 3.3. Yukawa Couplings In the Minimal Model. 3.4. that is wrong with the Minimi Model? Leeture 4* Extensions 4.1. Extra Gauge Bosons. 4.2, Extra Permian*. 4.3, Extra Higgaes, 4.4* Ooldetone and Pseudogoldstone. Lecture 5. Teach-Yourself ABC of the Low Energy SUSY 5«1« Hierarchy Problem. 5.2, Superpartieles. 5.3. Vertices and Coupling Constants. 5.4. Examples of Reactions and Decays. 5.5, Example* of M A S S Pornulas. 5.6. On the Role of Graritino in the Local I«1 SUSY (Supergrarity). Supplement. Gauge Theoriest from 1919 till 1936. Reprints and Excerpts of Selected Papers by Y.Pock. ?.London. O.Klein and H.Weyl
Lecture 1. Gauge Invarlance in H < 1,1» Classical Д.ес trodtraaaics of Let us begin with the Maxwell equations: Vм* where The four-potential AM d o e e n o * appear in these equations explicitly. It enters through the field tensor the potential Aj* is determined up to a gradient transfor¬ mation, which is usually oalled gauge transformation, namely, p . does not change when wher* ЭД Conservation of electric current is necessary for the Talldity of the Maxwell equations' and for gajge"inrariance. it autoaati- cally follows fron the definition of fcv г The Maxwell equations follow from the Lagranglan At first sight this Lagranglan is not gauge inrariant. However the extra tent, jp.$~f $ produced by gauge trans-
4 formation can be easily transformed using the current con¬ servation into a divergence: j^l^-f- - which can be discarded if the function has a reasonable behaviour at Infinity. 1.2. Electrodynamics of Fields In field theory the current /•, is expressed through charged matter fields (through wave functions of charged par¬ ticles in quantum mechanics). Consider spin 1/2 and spin 0 charged fields: JH~ • e s fUj- v |' for Dirac field, J •=• t€.£o>*feLCi>)- (2LCP )/«^ : Jote the ter* 4*f / *h* *h- , whose presence is dic¬ tated by gauge invarlance.
5 The "short" derivatire Э. and the four-potential AH enter aad the Lagrangian only through ^u О ю • Vote tfiat / C u itself can be expressed through a commutator of long deriva- w tives. Consider a JL. [Q,ZX,lR' a product JL. [Q, here £ is. аоме (tensor)function of charged fields: 1 X In the last expression it is implied that the derivatives aet on Д , but not on J^ . Therefore, we can write in the operator sense: In field theory (and in quantum mechanics) the gauge trans¬ formation changes not only the potential of the electromagnetic field, but the charged fields ae well. By considering the action of the long derivative one finds that it is invariant if the gauge transformation consists of two parts: / J 1,3« On the Etymology and on the Early History of Gauge Invariance According to Webster's Dictionary the word gauge is of Old Norman French origin. It has several meanings: л i a standard measure or scale of measurement, 2) dimensions, capacity, thickness etc., 3) any device for measuring something as the thickness of wire, the dimensions of a machined part, the amount of liquid in a container, steam pressure, etc.
Summarizing the content of the precee-dlng sections wo can add: 4) gauge in electrodynamics: a ph^ao factor which multiplies the amplitude of a charged mailer field (or a wave function o f e charged particle) and v/hose gradient in added to tho ele-ctro- magnetic potential. In other languages the corresponding wordo alno have ell the above meanings: Eich (Gernan), jeugc (Frcnoh) ,кй.'м£Ь (R:io- sian), «айц^ар (Serbo-Chroatl-n), Ho.i:,'•?&$dblg.iriF.n), Jcalibr (Czech, Slovenian), kaliber (Polish, Hutch, Du::ish, Ногл\-е,~1г!л), calibro (Itnlian), calibre (Ilinp'-'nic), T^tt (Swedish), r---rtr*i: (Hungarian), chuan (Vietnamese), ХЭ\ iUI'3^ (.V.ancolic). I r.ppilo- gize for being unable to reproduce Chinese and Japanese hierog¬ lyphs and giving here only their tran.vcription* f cogui"; and [gezi"\ . Pig. 1 gives an example of a cc-u^e; used to check the direc¬ tor of tubes. It is evident that tubec are not invariant -,.1/;. respect to this gauge;. Why are we using the term "gau^e invr.ritmce" in theoreti: ~,1 physics to describe a syur.cti-y which is definitely not gau^e invariance? The term Eichinvarianz was coined by \7eyl in 19-> 9 in the framev/ork of his (unseccessful) uttcrapt to geometi-iao the electromagnetic interaction tmd to construct in this way a unified geometrical theory of gravity and eloctroruxcnctian; - "Generalized General Relativity". At that tine Weyl used the term Eichinvarianz аз а вупопут of scale invt»rinace ("a:;a- Btnbinvarianz). With tho advent of Quantum Mechanics Fock in 1926 has in¬ vented the Klein-Pock-Gordon equation (aftor Klein but before Gordon) and discovered that tho equation in- invariant v.lth reBpect to a tron3formation Pock called it gradient transformation.
Pig. 1. lote tl.at if С 1* dropped» the phase factor beooaes a scale factor. This observation was made In 1927 by London, who thus related the phase and gradient transformation to Weyl's old Uchtransformation. In 1929 Weyl published a paper ("Electron and Gravitation") In which invarianoe with respect to phase- and gradient trans¬ formation is stated as a general principle. He called it Bichlnvarlanz• It is Interesting that all these papers (see Supplement) deal with the construction of unified theory of electronagne- tiem and gravitation (Pock's paper deals with Kalnza-ELein five-dimensional theory). The really Important and everlasting discoveries of these papers (e.g. Weyl spinors) were considered by the authors only a minor by-products on the way to their lofty goal. What will survive from our grand- and super-unifi¬ cation schemes half a century later? 1.4. She Physical Keaning of Gauge Invariance in KLectrodynamios The physical meaning of gauge invariance in Electrodynamics per ae does not seem at present to be terribly profound. Por example, a tiny M*. (say ' / m « •">•* 10 1 ' cm) would des¬ troy the gauge invariance, but all our Earth-bound electrodyna¬ mics, including QED, would not be affected.
Consider now the renorm&liz&bility of QED. Here gauge inva- rience is neither necessary nor sufficient: reno: malizability would not be destroyed by ff,v-^Q» but on the other hand» it о• wculd be destroyed by en anomalous magnetic moment term in the Lagrangian, M ^ ^ w ^ f - i- u w , despite its explicit gauge ia- variance (the dimension of Ai being twT{ ) . What is really fundamental in electrodynamics is the conser¬ vation ot electromagnetic current: conservation of electric charge. Without conservation of electrio charge Coulomb's law would be impossible and photon could not be massless (see ref. ' ' and references therein). Unfortunately, the conservation of electric charge is proved experimentallj' 1 0 1 0 times -worse than t.ho conservation of Ъыуопас charge: Z ( П.—•*- p + neutrals) ^ 1O 2 2 years. Bew experiments are needed. In textbooks on Classical Electrodynamics gauge invariance first appeared only in 1941, in the first edition of "Field Theory" by Landau and Lifshitz ' , which contained a special section: Ch. 16 "Gradient Invariance". But of course the freedom in choosing the form of the potential was exploited long before. In this respect physicists are somewhat like the famous Moliere's personage in Le Bourgeois Gcntilhonine who suddenly realized that he was using prose in bis everyday conservations all his life, The choice of a potential is like the choice of a coordinate /2/ syetem (see e.g. ref. ) . There is a deep analogy between the! gauge invariance in Electrodynamics with its freedom to choose the g^uge phase locally, and the general coordinate invariance in General Relativity with its freedom to choose locally the coordinate frames. In both сазез there is a sort of a J*locel self-government". bet U B mention here some special gauge conditions widely used in literature: t. •= О Lorentz gouge, J л — О Hamilton gauge.
~ ^-J Coulomb gauge, Ax ~ ^> axial gauge, Ук.Д.^.0 fixed point gauge. This last gauge was introduced by Pock '4,5/ an ^ тев ^ g ^ ел a powerful theoretical tool by Schwinger in his book "Particles, Sources and Pields" .» It is easy to sheck that a potential *u = " } • J satisfies the condition У ц Дль - O . If a unit time-like four-vector TL and a unit space-like four-vector § H are Introduced, then the Hamilton, Coulomb and axial conditions can be written in a covariant form: ТА = O (Hamilton), ^j\-fT^)(rA)^O (Coulomb), SA » O (axial). In many cases gauge invarlance can be used to make back-of- the-envelope estimates of cross-sections and rates. Consider for instance, the photon-photon scattering (Pig. 2) in the li¬ mit when the frequency of the photon &J is small compared with the electron mass /П. : со « />7 • By virtue of gauge irrvariance the effective Lagrangian of this process has the fora where o/ » 1/137 and the factor ЯгТ^ is determined by dimen¬ sional considerations ( t^l - 1 У П % It**]- /**'»*J>* Noir let us take into account the dimension of the cross section: Jj6^ -=«. J^ КУ>~^ "I and the fact that the cross section is proportio¬ nal to the square of the effective Lagrangian. Then from pure dimensional arguments we get:
10 where п. is a dimensionless coefficient "of the order of unity". Lengthy QED calculations give: (X— oc O. O G Another example ia the de^&y JT —*-^!/ (Pig» 3 ) . •i Pig. 3. The effective Lagrangian in this case is where ^ j is the pion wave function and djj- = 130 MGV is the famous PCAC parameter. Dimensional arguments give из the deccy rate in the form: r - *^/;2 where again (X. is Mof the order of unity". Accurate calculation gives: 3QX Kow I would like to return to the more general discussion of the gauge invariance. One can often read in textbooks end lec¬ ture notes that local gauge invariance of the electron Lacran- gian calls for the existence of photon field. Transformation ч.->€'е^ ot a free electron Lngrancien produces en extra torm «e^S--f J С ь у ^ Ч - . We need the term iCV-Ум'-рЛ Т T T to absorb itj* ^ Г ^ J* Some theorists object. One can avoid introducing A*,by giving ita role to a derivative of a scalar field CO tad trans¬ forming-- CP—»cp-*j. To be invariant under this transformation, the'Lacfanciari cannot contain the kinetic term ( Х ф ) » a n d the field C/> enters only thro^igh the interaction term •f-t.£ (Эмф") ^Р/Ул4^ • H o w e v e r » because of the vector current conservation this "interaction" is fictitioua. So the field
11 Thus, only the nontrivial realization of gauge invariance call for the existence of photons. I do not know who first mode this observation, I heard it from Ogievetsky, Polubarinov, Vainshtein and Khriplovich. We can arrive at the same conclusion without introducing the field
12 where ^> - e s £ Comparing this with an abelian electromagnetic case where S we see that e scalar function у ie substituted now by three scalar functions •§' , and one U(1) generator Q - by three SU(2) generators -}r T * How the covariant derivative Is a matrix: The field strength is also a matrix: In the same operator sense, as in the abelian case, ^ ^ ^ is determined by a commutator: Note that the last term vanishes in the abelian case but is very important in the non-abelian case. It is trivial to see that under gauge transformation The Lagrangian has the form: ' and is gauge invariant. Hote that _». _• L This expression contains not only bilinear terms (W2) , but , trilinear (W-') and quadrilinear (1Г) terms as well (Pig. 4).
и. "of these nonl inear self coalings I¥^he~iaiienT feature of our toy model. It is also the salient feature of the standard electroweek theory with its SU(2) x 0(1) gauge group. 2.2. 3U(2) x V(1) Seal-toy ELectroweak Model bet us now take into account the fact that isotopic doublets in Nature have nonvanishing hypercharge: Q - I3 + Y and consider a so to say semi-t~>y model in which the feraio- nic doublet consists of two particles: y=» (V, -e.) , Q v « 0, Q e .- -1, Y » -1/2. Now not only isospin but also the hypercharge hare to be gauged, and the gauge group is SU(2) 1 TT(1) with four gauge fields ( W + , W", W° and B°) and two coupling constants ( and Their ratio determine a the weak angle wher. | V ^ - f ft Two linear superpositions siti describe the photon and the 2-boson, respectively. In fact, it is easy to check that Henc» where e z The coupling of the Z-boson to a particle, that has charge Q and isospin projection T^ is
It is Important to stress that the formulas are valid when the symmetry SU(2) x U(1) is unbroken. They are also valid when this symmetry is broken to ^ ( 1 ) ^ ^ . In the case of unbrokeu SU(2) x U(1), when T, and Y are con¬ served separately, W° and B° are more meaningful then A and Z (W° being a representation of SU(2), and B° o f U(1)). By consi¬ dering A and Z we make the first step to acknowledging that in Nature SU(2) x TJ(1) is broken and only V(^)e/n survives. The breaking makes W— and Z massive and only the photon stays mas- sless. 2.3. SU(2)xU(1) Electroweak Interaction To construct a realistic theory we have to take into account several experimental facts: (i)we know three generations of fundamental fermiona, of quarks and leptona, (ii) weak interactions are parity-violating; only left-handed helicity states enter the charged weak currents, (iii) quarks and at least some of the leptons are not maasless, (iv) current quarks are superpositions of quark maas eigenstates, (v) W and Z are heavy. First of all let us introduce the left-handed (L) and right-han¬ ded (R) fermions; T / p """™ ^ I '*—m /^ 5™ • f * In accordance with (ii), let us assume that Ч»' 3 a r e SU(2) singlets, whereas V J ' B are SU(2) doublets. There are two doub¬ lets in each generation: *L г *TL ^ С Here (*• ,b ,IQ are obtained from ** , Ь , v> by a unitary transformation with four free parameters: three angles and a phase* Hoto that because of different values of ioospin, the L- end R- components of the same particle have different values
15 of hypercharge. ffe will defer to the next lecture the discussion of the me¬ chanism v/hich give3 зпаззсэ to gauge bosons and fermlons, I will only explain here how the таззез of VT and Z were predicted# Pig. 5. Looking at the diagram (Fig% 5) describing muon decay one 0.1.0-117 finds the relation between the effective four-fermion coupling conotanb, £| M , tho :,?•.•-•?,& £c
It) Pig. 6. In the standard electroweak theory g-a I ; the experimental value cited in the Data Booklet t«, £ - 0.992+0.020. The parameter 9 т г © ^ enters the expressions for the croee шееtion» of other neutral current reactions ae well: v V - ecattering, e//- flcaterring, including the weak interaction of atomic electrons with atomic nuclei, uN- scattering, and e + € ~ — • • н*Ы~ annihi- lation. The mean experimental value of S /V» ^ ) ^ , fтот all these processes, according to the Data Booklet, is C'.n^ . 0.224+0.019. This leads to the masses: rrtw ' 77.9+U7 GeV m-^ - 88.8+1.4 GeV. the W- and 2-bosons were discovered in 1983 by UA1 and UA2 col¬ laborations at CERK. Professors Di Leila and Dydak will provide you with the latest experimental data on these particles. 2.4» On the Early History of Intermediate Bosons The non-abelian electroweak theory can be traced to several tributaries: 1. experimental studies of weak interactions, 2. Gauge invariance of electrodynamics. 3. Spontaneous breaking of symmetries in statistical physics. 4. the conoept of lsopsin introduced by Heisenberg in 1932. 5» Yukawa's idea of mesons, the exchange of which gives both the strong forces and the B-decay (1935). /T/J In 1981 Ceoilia Jaxlecog ' " has brought to general atten¬ tion a paper published by Oscar Klein in 1938. This paper in fact developed an electroweak theory based on the isotoplc gauge invariance. the theory contained two doublets: p,H and Y, e. end three vector particles: У , W* (denoted by !2>) and f~ (denoted by o ) with gauge Invariant cubic and quartic interactions bet-
17 ween them. The only coupling constant of the theory waa the electric charge e . The possibility of neutral currente media¬ ted by the Z-boson (denoted by С ) waa also mentioned. In building his theory Klein worked in the framework of a fire-dimensional Kaluza-Klein world, trying to unite gravity with electromagnetic and nuclear interactions. Unfortunately, he did not realise that atrong and weak inter-» action* are quite different, ao he said nothing about the valueje of the шаввеа of В, %* and C-bosona. One ia inclined to think that he considered theae boaona to play two rolea aimultaneoualyj: of W+, W and Z*aad of 1Л, I "and 1°. o^ rather S + i S" «ad S° . Furthermore, he waa not quite consistent in describing thej electromagnetic interaction of nucleona and leptona without introducing the hypercharge» But hie equations for the iaotopic triplet of gauge fields are absolutely correct. Klein's theory was firmly forgotten, and the modern non-abe- llan theories descend from the famous paper by Yang and Kills (1954)* Oscar Klein waa sixty whan this paper waa published. In •953-1965 he aerred as a member of the Sobel prise committee. He' died in 1977. Unfortunately I know nothing about Klein's reac¬ tion to the reriTal of his ideas. I am grateful to Cecilia Jarlsoog for «ending me her paper and a xerox copy of Klein'a paper, which is reproduced in the Supplement to these lectures. Lecture 3. Breaking of Oaugs Inrariance. Higgaes. Aa we discussed in the proceeding lecture, the electroweak gauge symmetry ia badly broken in Sature. A fundamental role in this breaking is assigned to hypothetical spinleaa particles called Higgs bosons or Higgses. It would perhaps be proper to call the Higgs particle higgson, like fermion and boson. But "higgaon" sounda aomewhat strange, like "son of Eigg * . 0 n the other hand, a title in a reoent issue of Unclear Physics "Radi- atire corrections to Higgs production" looks no leaa strange. So in my lectures I will refer to the Higga boaon aa biggs,with a lower-case h. 3.1. The Minimal Model Let ue begin with a minimal model, containing one ieotopic -doublet-of...scalar-bosons _ •« l^-»"t
18 g£an eonfalolag -6b* field o> baa the form: The tern l^j-tfl describe* free propagation of the field and lte interaction with gauge fielda. Here ^ . ' ^ - I ' ^ K -
19 T72. Propertiea of To predict /72/i we a u t know A and It It easy to find thet f . Indeed, ^ J L frj/fe • "° GeT. But the ralue of J^ la unknown* If X±m anall, XZ«oL» /??* could be cloee to it* lower lisdt of arotmd 10 GaV. • higga with а шааа of a few tana of OaT'a could be produoed at SP3 pp-collider end at Teratron, ассошре- nlng the production of W e and Z'a, or at LBP in the reaction suggeated by Ioffe and Ehose: ече~ — > ZH , The probability of auch higga-breuaatrahlnag ia of the order of eereral times 10"^ for the lowest naaa raluea and rapidly de- creaaea «hen tho ваяа of higge increase*. She main decay ohan- nela of a light higga are H —*- bb*. H — » - ее", H —+• 77 . Of high interest ia the decay into two gluona, H — • - gg, -vhich proceeds throngh Ъвепу quark loops (Tig. 7)* Pig. 7. A light higga ia a "cash register" of heavy quarks, its coupling to two gluona being proportional to the nuaber of quarks q with aaas />?,., which ia large enough; £*??- ->-n)i*% There a»y be not only quarks In the loop*' but alao other colored heavy particlea (quarkinoaT). in inrerae process, gg -^ H, is an example of what ia oal- led the gluon»gluon fuaion.The produotion of a light higga through gluon-gluon fusion at pp- or pp-oollidera has a rather large erosa section* 6^' v 10"^em 2 # Unfortunately, it ia dif- fioult to dig out light higgaea produced in thla way froa under a haystack of background erenta» It ia not ao for heary higgaea* If Лг>(|7Г«^ • than В could be bearler taaa. W. Indeed, r»g^ m*, at A?= i. . A higga with Г М ^ А ^ could be produced at LIP П . The oroaa aeotion ef the proceaa e*e~ -*p-ZB (Pig.8) ia expected to be by aa order of aegnitude saaller than the croaa aection of the proceaa e*e~ —^-W*W~ (Pig, 9)» At U P И
20 witfc гоо BeT on* expects 6Tfe+e- the standard croae section for the electromagnetic process e++e~e + U " In the lowest perturbative approximation (Pig* 10): where is the total c m . energy. H Kg. 8. Tig. 10. It JiJi > ' > HxU then rw^ »^k,« A heavy higgs, say, with ШЦ > 2*г>ь/ 1я difficult to produce (one needs machines like UNK or SSC) but easy to detect. Its production will often be accompanied by that of Z-, W-boson and it will decay into a pair of Z- or W-bosons; thus its signature is three interme¬ diate bosons. The OAl and 0A2 experiments have revealed that the heavier is a particle the more conspicbous are its high f> de~ cays. Three intermediate bosons in one collision would be, as Voloshin remarked, a spectacular ^1reworks. If Jl»/ and f^n^ TeV we will have a really strong inter¬ action in the Higgs sector and in the sector of W- and Z-bosons (through their longitudinal components).
21 ЗТЗ~ Yukawa Couplings In the Minimal Model The same scalar doublet, which gives masses to W and Z, can also give masses to fermions. As an example, consider quarks of the first generation: u and d. Their right-handed conponents Ug and dp , are isotopic singlets; iw and d, fora an isoto- pic doublet which we denote by Q^, The Yukawa coupling of the d^quark has the form The Yukewa coupling of the Ux-quark involves a charge-conjugate isopotlo doublets. (jlt. йГ The use of Qc is necessary because of the conservation of charge and isotopic "spin. (In the above expressions tilde ( л-> ) denotes charge-conjugate, and bar ( - ) denotes hermitian conju¬ gate of a field, the use of antisymmetrical tensor C l k allows one to deal with antipartlcles in the same way as with particle^). The mean vacuum value of the scalar field, «^i^^sA, gives mas¬ ses to u- and d-quarks: In the same way the first generation of leptons acquire their masses: and so do the fermions of the second and the third generations. In the framework of three generations not only diagonal mass terms appear, like m^ULt , П7^е.е. , ^^Fh •••• hut also non- etc diagonal ones, like W u t uc-f »»£c CU > My,£j*-f М^Т*€ » They originate from inter-generational Yukawa couplings of the type of -f &kW "f/i* A e ( P • J * * s * n e s e non-diagonal masses
22 tbel~are~ responsible for tbeTCobayaeM-HaeYawVliiixing" of" genera¬ tions in the charged weak currents: when mass matrix is diagona- lized, non-diagonal current» appear* The Imaginary parts of the non-diagonal masses are the only origin of CP-riolation in the framework of the minimal model. 3.4. What ia wrong with the Minimal Model? We see that aoalar fields are responsible for a large number of fundamentally Important phenomena. Theoreticians import from Scalarland all the masses, all the mixing angles, and CP-viola¬ tions. Therefore the discovery of Scalarland by experimentalists should be considered as the task No.1. At the same time the minimal model which we discussed in the last two lectures is obviously very far from being perfect. Too many parameters in it are arbitrary,not fixed by a priory rules* Some of them are fixed a posteriory by experimental data, others are still absolutely free. In the gauge sector we have two arbitrary gauge couplings: цг and & . The parity violation is brought into the model from the outside by postulating that left-handed spinore form isotopio doublets, while the right-handed ones live as singlets. The value of the scalar condensate 4 is not predicted, the scalar self- coupling \ and with it the hlgge mass are unknown. There is no principle which determines the pattern of Yukawa couplings. The lack of such a principle is especially painful in the case of neutrino masses (not to mention the i -quark mass). We have no reason to beleive that neutrinos are maseless. On the other hand, we do not understand why they are so light, that is, why their Yukawa couplings are so small. Only experimentalists can pull Physics out of this valley of sighs. Lecture 4* Extensions While awaiting new experimental discoveries theoreticians go ahead building models, which extend the standard ••fw1?w1 mo¬ del in various directions. These models contain additional gauge bosons, additional fermions, additional higgses. Some of the ao- dels have broken global syanetries and Goldstonc bosons, i.e. maseless spinless particles originating from spontaneous breaking of. global syameJariea»- (X.will call_theaeL_perticlee. golditon* Ju.
23 In tfEls "lecture we will briefly consxder some of these extended models. 4»1. Extra Gauge Bosons To introduce extra gauge bosons one has to enlarge the gauge group. The beat studied example is the left-right symmetric group (A.Salam, J.Pati, R.Marshak, R.Mohapatra, G. Senja- novic and many others): SU(2) L x SU(2) R x U(1) , which contains, along with our left-handed W?, W7 and 2 T , three extra bosons W~, Hit, Zg, which are coupled to right-handed fer- mion doublets and left-handed fermion singlets. In the unbroken symmetry limit the model is L-R-symmetric, and parity violation appears in it as a result of spontaneous breaking of symmetry. The breaking makes Wo's heavier than ^т'з, so that £*» * чт*/*./л1л, ) «I. It also mixes W^'s and W R 's, by a small angle С , thus producing a small coupling of light W's with right-han¬ ded fermionic currents. We know from Jb -decay that % and ^ are зта11. According to the standard model the polarization of electrons in allowed /2>-transitions is equal to — Д> = - ' tо within -Zz.4% for P-transitions and -3^1* for GT-transitions (van Klinken et al. ' 8 ' ) . With much better accuracy the right-handed currents could be searched for at the future electron-proton collider HERA, Direct search for the pro¬ duction of heavier gauge bosons is in the programs of Tevatron and ЦИК. 4,2. Extra Fermions Another class of models, in which parity is violated spon¬ taneously, it that of the so-called vector like models. These models contain, along with our fermions, additional sets of the so-called mirror fermions, which are usually assumed to be much heavier than our ferraions. (If we assume that mirror and ordi¬ nary fermions have the same masses, then we have to conclude that mirror fermions have their own photons, gluons, and inter-
bosonsj see '*' and references therein). In the vector- models the "sin" of parity violation could be attributed completely to the fermion (and scalar) sector without involving gauge bosons. Some theorists consider this as a vurtue. 4.3. Extra Higgses There are models in which u- and d-.quarks get their masses from two different higgs doublets. In this case there are five physical higgses: H + , H~, H ° , H° ,- H° . The charged higgses should be produced in pairs, electromagnetically: e + e~ • >' У "^ H+H~« Experimental search for this process at PETRA excludes charged higgses with tun < 1 3 GeV. (For a recent review see ref. ' 1 ' ) . Extra higgses should be looked for also among the decay products of Z- and W-bosons: ^ п л , и — у а. л t п—• • ^ ' tx—ti . Of special interest is the reaction e*e~ >- Z -'^- V^H^ , where Z is virtual. The point is that the vertex ZWH vanishes in the theories in which all scalar multiplets are doublets. The discovery of this process would signal the existence of scalar multiplet(s) with isospin larger than 1/2. A neutrino can have a Dirac mass term frivv = r produced by Yukawa term (feere [_i_ — ( e ) , and the scalar field (Pc has been discussed earlier). It can have, however, a Majorana mass. For a left-handed neutrino the Uajorana mass term, when expressed through Weyl'a spinors, has the form Hermitien ^("^иУс ^^л. * conjugate) Here c^?Jb • 1,2 are spinor indices and ^ ^ i s an antisymmetric tensor. The Direc таэз term transforms V L into V b (see fig. 11a); the. Majorana mass. ±exm-transforms- Vl, into /Уд Xsee
11b) and therefore violates conservation of leptonie charge. Such Напогань павв term сип be produced by higgs isotopic trip¬ let with three components, , "*• 2 - ^'i is produced by the va¬ Experimentally /W^of l/e is not larger than 30 eV.(A new ITEP experiment again gives СгЗО eV ^ a few eV# but up to now there were no independent measurements of comparable accuracy which could confirm or disprove this value), with л A /j*~ 10 GeV this means that "T-^^x- ^" **^ • T^ere is no explanation why they should be во small, Another possibility," which is actively discussed, is that у is massless (ми-»- о ) butbut VV is isvery verymassive massive ((Л9 Л 9 ^ Ю ' GeV). V, and y are mixed by the Dirac mass /vj >r 1MeV, the mass matrix being гкг \ ( Then the mass of the lightest mass-eigenstate is J< ~ Majorana neutrinos trigger the neutrinoless douple & -decay (see fig, 12) and an intricate patterm of neutrino oscillations. *- m, Pig. 11. Pig. 12. Both phenomena are eagerly searched for, but without any posi¬ tive results. But let us end this digression on neutrino маеsee
26. and. return to scalar bosons. With several scalar nultiplets it is possible to construct nodela in which CP is violated not (only) through the Yukawa coi:pliu-j3, but (also) in the hicc 3 sector. The mechanism of this violation could bo cither explicit (complex coupling constants of- nonlinear interactions between scalr.rs) or spontaneous. In the latter case the Lt:cz-p.n;^ian io CP-invariant, all coupling constants ocinc real, but the condensates - the vacuum mean values of sca¬ lar fiolda - are complex and thus CP-noninvariant. If the only source of CP-violation i3 in the higgs sector,then it could be shown (see ref. ' 1 '» 1 *-' ) that the dipole moment of ; the neutron, д. > "?-з to bo of the order e.10~ -" en, v/hich is on Vnj hrirJ: of contradiction with e>:pcrir;.ontal data. Moreover in '•.'.-.I" cr.ee obliged hijc.-зсз have to be r-.ithyr li£ht ц v.hLch, -•; •••-•-• hivj >IIHO acer., does not coon to be borne out by cxpr-rir.cr.t3. Lot чч i'-.ontion here t!:.n.t if CP is violated зроп1ялеоиз1у and >.hc vjicuwn is characterized by a phase factor e » it is always ;v.v%ciblo to have a conplex conjugate vacuum with Q~ , That г;огпя that vacuum domains with alternative sign3 of CP-violating" р::^г;ол have to be considered. These domains v/ould be separated by very thin but very maasive \vall3, which would influence cos- r.olo£icr.l history of the universe. a frnd Pn The r.pinlcar, productз оГ the breaking of a local symmetry are.. called hj.-^зсэ. Iri^cc-з are masaivo. The rcplnless products of the '.-rofikin^ of a global syiunetry are called goldstons. Goldstons are nasriV-ss. If tha spontaneously broken symmetry is from the bo^inninc an approximate one (broken explicitly or by quantum ano/nnlieo) then n goldoton becomes a paeudogoldston. Pseudogold- stons have nonvanishing masses. An example of composite (non-eler.entary) poeudogoldston3 are . piona, Piona are paeudocoldotons produced by the dynamical break¬ ing of c^-cbal chiral iootopic invariance of QCD. This invariance. is an approximate one, since the u- and d-que.rks are light but not r,;asnlccs. 'iYci-е u- and d-quarks mas3le33,pion3 also would be ! Except for pions and their SU(3)-relntivea J^- and к -mesons
л no other (pseudo)golrtstons hare been observed experimentally. Up to now they live only on the pages of theoretical papers, I will mention here some of these hypothetical particlest axion, nrion, majoron, familon, technipion ... Axion corresponds to the global chiral UO)-symmetry in the quark sector. Arlon /19-20/ c o r r e a p o n a 3 to the global chiral U(1)-ejmmetry in the /21 22 23/ lepton sector. Pamilone ' • • •" correspond to the so-called horizontal symmetry, relating fermions of different generations. Majoron ' corresponds to the global conservation of the lep- tonic charge. All these particles are assumed to be produced by spontaneous breaking of the symmetries involved. Technipiona /of* ?7/ * are pseudogoldstons that are produced by the dynamical breaking of global isotopic chiral symmetry of a hypothetical technicolor interaction. The interaction of a goldaton Cp with the relevant current Jj, (the conservation of which i3 broken) is described by an expression J_ V The constant V has the dimension of mass and characterizes the scale at which the symmetry is broken. From the experimental absence of the decay К —*"" X + familon one can deduce '2Л~2-' that V > 1010GeV for the global horizon¬ tal symmetry between d, s, b quarks. Somewhat lower limit for V could be obtained from the absence of the decay к —э»- ^. + familon in the case of the horizontal e - M —T -symmetry. The exchange of mnssless goldstons would lead to long-range forces. These forces would be especially interesting in the case of diagonal vertices that transform a fermion into itself. Such diagonal vertices would generate low-energy long-range interac¬ tions between particles of stable natter. It is easy to see that the vector part of the diagonal vertex } "^"^tV» ^ ,would give a vanishing contribution because of the equation сЛ» vi"XV4+' "* 0. The nonvanishing contribution would be given by the axial-vector part; H'tfj-YsM-- In the static U n i t I
28 where Q is the four-momentum of the goldston {arion) and "
29 If we consider the contribution to the mass of the scalar field given by Pig. 13, we find that it is divergent. In a re- normalizable theory there is no natural cut-off value for thio divergence and the first place where it can be cut ('from the out- aide) is the so-called Planck mass, /77o« , where gravitational ** 1 /2 interaction becomes strong, (As you perhaps know, /Wp/^-Grr Cr 1Q o= 10 7 GeV, where G™ is the famous Newton constant). But in this case we would get £«•*- fripB and Gp >~~ G H , while experimen¬ tally GJT/GJ> ~ 1 0 " ^. This extremely snail ratio, this hierarchy of scales, is a real challenge to theorists. —? n н к Pig. 13. A possible way to avoid the above con-stop flight to the Planck mass is an accurate compensation between the bosonic loop of Pig. 13 and the fermionic loop of Pig. 14. To achieve such compensation one needs a sort of symmetry between bosons and fermions. Another physical quantity which calls for boson-femion compensation ia the so-called cosmological term - the energy-momentum tensor of the vacuum. In this case the compensation has to be miraculously accurate. H /А И • О Pig. H . The simplest form of boson-fermion symmetry is the so-called N - 1 supersymmetry (N • 1 SUSY), in which there is one super- partner for each known particle. 5.2. Superparticlea We will use for a superpartner of a known particle suffix ino and decorate the corresponding letter by a (super)hat or (super) tilde. (The hat may be more convenient than tilde, as the latter is often used in the literature to denote antiparticlea).
us begin with spin-sero "inoe** leptinoe and quarkinos, which are often reforreain the literature as sieptons and equarks: л € —»» в (einc, or electrino, or nelectron) h -~>"J4 (ir.uino.nrcu, srauon) У"—^- 7 s (tauino, stau) (e-Kuino, e-cnu) (mu-nuino, nu-snu) (trtu-; v.ino, tau-snu) ii*—*-u r (uino, u-squark) d —чг d (dino, d-squnrk) э —*r- a (air.o, s-squci'k) с —^- о (citio, c-squark) b —^-b (bino, b-squork) t —^-1 (tir.o, t-scup.rk,Л'•'' 'Л с rr-.i" cnp-i'"lf " А К О З " г.гг: £ol>5r*xno П (fro:i the so-called • ;;p-r,;olrt.rtc;:o effect), hi^cino, h, (con;:ti::.o3 crilled shicg3) and several gauginos: photino ( V , another notation Л у ) О** • о gluino (л A , r.nothor notation A A ) о i 3 wino ('./, other notations Дм», \ ^ ) sino (Z. nVnor notntiona J,^ , >'• ) . Of лрсс!г1 1:T;->;:V-.::CO in ::оЛ«'"л thoorotical r.oJols is the 'I'^.ri.-ir-lurv of l!v- --r-vLloii, th'j jravitiuo, pax-ticlc with spin Z/2, гП''П donated by Д, ]n o r " ' r to ; - тГсг:.! .-.'.г vA? о:ь.з.-..\1,'.: oi' cron^~-cction3 end ii. .•:.-.y• г Л---С cf ;-..>-UC.-.;^3 i u v o l r r r ; ; "ino3 ! l i t ifl useful t o drrvv •:•:;:•••....•."••':•: 3'..^ г -п ;-г-.Г" я . Него i a n c t o p l o rccipo,- how t o •\ :•,• v- rtLCC."1 tn Mio -rr.phr:. Co:%.3iflcr en o r a i r a r y v o r t e x , say, ':•;•-.;' С 'с. - r - ) . 0\-::.; r-).\ l i n o л i d c n i i c ^ l l y (bocnurjo i n Q : •. '. :.:.? : o::•"•"" -..:•? •Топкий" w i l l bo intorchr v !.'jcd). Crovrn :• •: (•" I'-..- r.-'.'l,i'.:lo г--.-".гч with t a ^ ' : r h i t 3 ( P i c . 15Ъ). Кос,! tho _"•-'.• л v.l-1-: • 1 l-'i c:a-rs . ' j j j _ . Sor.G o t h e r e x p 3 i. ';•• •* ';-.-V:bio.--;T4ir..-) v c r t i . - x ( P i ; : . 16), Л \ ' - 'l 7Г ^ ' & Tic. 17).
31 3. Emission of a goldstino by an electrino (Pig. 18). The coupling constant is dimension!ess: з е - ( rn£ - r>\ . where m b i s the scale of SUSY brealcinc. Accordine to the VosuoWs W j = Ю 1 1 GeV. If e) b.1 Pig. 15. a) b) Pig. 16. Pig.18. 5.4. Examples of Reactions and Decays In order to draw more complex Feyrmnn diagrams, link vorti ces,- keeping inos' lines continuous. Псге are some examples:
32 Production of eluinos in gluon-gluon fusion (Pig. 19). Note that cluino's colour charge is large. Therefore above the,- threshold the cross section of the production of a pair of eluinos will be much larger than that of a pair of qunrka with the same mace: 3 3 a) b) 3 c) d) Pig. 19. 2. The decay of gluino into photino and hadrons (Pig. 20): л a) ' b) Pig. 20. 3. Interaction of photino with a quark may result in a produc¬ tion of gluino, if the energy of the photino is high enough, Oct —>- &a (Pig. 21). The corresponding cross section ie * 1 where i e the raase of the (virtual) quarkino.
33 з а) Ъ) Another possibility is the elastic scattering (Pig. 22) with The negative results of CHARM Ъеып dunp experiment ney be /24/ interpreted ae ' •" : 2 GeV, 1 A ^ GeV. It is interesting to search for gluinos at SPS pp-collidcr. If glxrinos are heavy their signature ia large nd.&sir^ v without accompanying leptons. A ь г а) Ь) Pig. гг. 4» Decays of W (and Z) into inos, if the inos are light (Pig. 23). A. W e. v V а) Ъ) с) Pig. 23. л л 5. Decays of W and Z (Pig. 24) Л Z4 A> А л «Л ¥ — ^ - 4 + hadrons, W —*?- у • hadrons, Z — > - «> + hadrone.
a) b) Pig. 24. л л £• 25). V 6. Decays of У 1: у —••»— (Pig. 26), у '»- %е~+ hadrone (Pig. 27). Let ue mention that decay rate of the first of these processes (muino — • - 5/1, О • 1. goldstino + neutrino) is of the order of V Pig. 25. 'G. V e /e a) b) Pig. 26. a) b) Pig, 27. 5.5. Examples of Mass Formulas Nobody really knows what the masses of ino's are. Here are predictions from some of the recent preprints:
35 A l l t h e s e formulas c o n t a i n /?"?,.. , t h e rrsr-j o^ >jr: :••: :.J. • -. .'-. educated c u e a s : \ Ilote tlv-t t h r - ::d.r-s bet'.voen h i c c s i r . e s ( 2! ) r-.гЛ -.'.:.:.:..:: (W and Z) ia essential: t h e n i x i n g !!— -*.••>• V
36 R e f e r e n c e s 1. Л.Б.Окунь. Лаптопы и кварки. Наука. М. 1981. L.B.Okun. Leptone and Quarks. North-Holland, 1982. 2. А.А.Славнэв, Л.Д.Фаддеев. Введение в квантовую тэорию калиб¬ ровочных полей. A.A.Slavnov, L.D.Paddeev. Introduction to Quantum Theory of gauge fields. North-Holland, 1981. 3. Л.Д.Ландау, 2.М.Лифшиц. Теория поля. М. 1941. 4. З.А.Фок. Собстаанное время в классической и квантовой механи¬ ке. Известия АН СССР. Серия физ. 1937 ОМБН, с.551-568. 5. В.А.Фок. Работы до квантовой теории поля. Издательство ЛГУ, 1957, с. 150-165. п. J.Schwinper. Particles, Sources and Fields. Addison-Wesley. ••970, v.-!, ch. 3, "И. 7. C.Jarlsc-ccg. Physica Scripta, 24, 367-872 (1981). 8. J. van Klinken et el. Phrs.ReT.Lett., £0, 94 (1983). 9. L.B.Ckun. On a search for mirror particles. Preprint ITEP- 149 (1983). 10. S.Yamada. Search for new particles. Preprint DESY 93-100 (November 1983). 11. S.fleinberg. Phya.Rev.Lett., 21» °57 (1976). 12. А.А.Ансельм, Н.Г.Уральцев. Я Ф , 30, 465 (1979). 13. S.Weinberg. Phys,Rev.Lett., 40, 223 (1978^. 14. F.ffilczek. Phys.Rev.Lett. 4^, ?7? (1975). 15. А.Р.ХитнишшЙ. ЯФ, 31, i97 (1980). 16. M.Dine, P.Piaher, M.Srednicki. Phys.Lett. 104B. 199 (1981). 17. M.B.Wise, H.Georgi, S.Glashow. Phys.Rev.Lett., £1, 402 (1981). 13. M.A.Shlfman, A.I.Vainshtein, V.I.Zakharov, Nucl.Phys., B166. 493 (1980). 19. A.A.Anselm, N.G.Uraltsev. Phys .Lett., 114B. 39; П С - . 161 (1982). 20. А.А.Ансельм. Письма в 1ЭТФ, 36, 46 (1982). 2 1 . G.B.Gelmini, S. Nussinov, T.Yanagida. Nucl.Phys., , (1983). 22. А.А.Аясельм, Н.Г.Уральцев. ЖЭТФ, 84, 1961 (1983). 23. P.Wilczeck. Phys.Rev.Lett., £J, 1549 (1982).
37 24. Y.Chikashige, R.JT.Mohapatra, R.D.Peccei, Phys.Lett., J18B, 265 (1981); Phys.Rev.Lett., 4J5, 1926 (1980). 25. G.B.Gelmini, M.Roncadelli. Phya.Lett., 9JB, 411 (1981). 26. M.E.Peekin. Nucl.Phys.. B175. 197 (1980). 27. J . P r e s k i l l . Nucl.Phys., B177. 21 (1980). 28. Е.Б.Александров, А.А.Аясвльм, Ю.В.Павлов, Р.М.Умарходжавв. ЖЭТФ, 85, 1890 (1983). 29. СНАВМ Collaboration. P h y s . L e t t . , 121B. 429 (1983). 30. R.Barbieri, S.Ferrara. CERN TH 3547. 3 1 . R.Barbieri, N.Cabibbo, L.Maiani, S.Petrarca. IPPD, li&irch 1983. 32. J . E l l i s , J.Hagelin, D.Nanopouloa, M.Srednicki. CERIJ TH 3527, SLAC/ PUB-3094 (1983). 3 3 . R.Barnet, K.Lackner, H.Haber. SLAC P1B-3O66 (1983).
38 Supplement. Gauge Theories; from 1919 till 193в, Reprinta and Excerpts of Selected Paper» by P.Pock. P«London. 0. Klein and H.Weyl 1. H.Weyl. Elne neue Erweiterung der Relativitatstheorie. Annalen der Physik j>9_, 101-133 (1919) (excerpts: p.p. 101, 114-115). 2. O.Klein. Quantum Theorie und funfdimensionale Relatiritats- theorie. Zeitschrift fiir Fhysik 3J, 895-906 (1926) (excerpts: p.p. 895, 904-906). 3* V.Pock. Ober die inrarianten Form der Wellen- und der Bewegungsgleichungen fur einen geladenen Maesenpunkt. Zeitschrift fur Physik ;J9_, 226-232 (1926). 4* P.London. Quantenmechanische Deutung der Theorie топ Weyl. Zeitschrift fur Physik 42, 375-389 (1927) (excerpts: p.p. 375-379, 388. 389). 5» H.Weyl. Electron und Gravitation. I. Zeitschrift fur Physik j>6, 330-352 (1929) (excerpts: p.p. 330-333, 348, 349). 6. O.Klein. On the Theory of charged Fields, in "New Theories in Physics". Conference organized in collaboration with the International Union of Physics and the Polish Intellectual Co-operation Committee. Warsaw, May, 30th - June 3rd, 1938.
39 1919. JS 10. ANNALEN DER PHYSIK VIERTE FOLGE. UKD 59. 1. Eine neue Erweiterung der Relativitätstheorie; von H. Weyl. Kap. I. Oflomatriaeh« Grundlag«. Einleitung. Um den physikalischen Zustand der Welt an einer Weltstelle durch Zahlen charakterisieren zu können, muß 1. die Umgebung dieser Stelle aof Koordinaten bezogen sein und müssen 2. gevrisse Maßeinheiten festgelegt werden. Die bisherige Einst einsehe Relativitätstheorie bezieht sich nur auf den ersten Punkt, die Willkürlichkeit des Koordinaten- systems; doch gilt es, eine ebenso prinzipielle Stellungnahme zu dem zweiten Punkt, der Willkürlichkeit der Maßeinheiten, zu gewinnen. Davon soll im folgenden die E^de sein. Die Welt ist ein vierdimensionales Kontinuum und läßt sich deshalb auf vier Koordinaten xQ x, xt s, beziehen. Der Übergang zu einem anderen Koordinatensystem x, wird durch stetige Transformationsformeln (1) *« = ft (Vi***a) (*' = 0, 1, 2, S) vermittelt. An sich ist unter den verschiedenen möglichen Koordinatensystemen keines aasgezeichnet. Die Relativ- koordinaten dXi eines zu dem Punkte P = (a:,) unendlich benachbarten P'—(x{+dxt) sind die Komponenten der in- finitesimalen Verschiebung P P' (eines „Linienelementes" in P). Sie transformieren sich beim Übergang (1) zu einem anderen Koordinatensystem xt linear: (2) dz.-^€cjdxk; k aj sind die Werte der Ableitungen dft}dxk im Punkfee P. In der gleichen Weise transformieren sich die Komponenten !' irgendeines Vektors in P. Mit einem die Umgebung von P bedeckenden Koordinatensystem ist ein „Achsenkreuz" in P verknüpft, bestehend aus den „Einheitsvektoren" e< mit den Komponenten d,°, d,1,
114 H.Weff An seine Stelle aber trat bei Berücksichtigung der Gravitation der Gegensatz von elektromagnetischem Feld („Materie im weiteren Sinne", "wie Einstein sagt) und Gravitationsfeld; er zeigt sich am deutlichsten in der Zweiteilung der Hamilton- sehen Funktion, welche der £insteinschen Theorie zugrunde liegt.1) Auch dieser Zwiespalt wird durch unsere Theorie überwunden. Der Integr^nd der Wirkungsgröße /SB dz muß eine aus der Metrik entspringende skalare Dichte SB sein, und die Naturgesetze sind zusammengefaßt in dem Hamilton« sehen Prinzip: Für jede infinitesimale Änderung 6 der Welt- metrik, die außerhalb eines endlichen Bereichs verschwindet, ist die Änderung öj$&dx=fö$&dx der gesamten Wirkungsgröße = 0 (die Integrale erstrecken * sich über die ganze Welt oder, was auf dasselbe hinauskommt, über einen endlichen Bereich, außerhalb dessen die Variation ö verschwindet). Die Wirkungsgröße ist in unserer Theorie not- wendig eine reine Zahl; anders kann es ja auch nicht sein, wenn ein Wirkungsquantum existieren soll. Von SB werden wir an- nehmen, daß es ein Ausdruck 2. Ordnung ist, d. h. aufgebaut ist einerseits aus den g{k und deren Ableitungen 1. und 2. Ord- nung, andererseits aus den
I 41 Eine neue Erveiterung der RelativtiäUthcom. 115 Integral, dessen Integrand nur noch eine lineare Kombination von &
*!>;-. 42 Quantentheorie und fünfdimonsionalcRelativitätstheorie. VIJII O.skur klein in Kopi uli.i:;. it. (l-iiiiv'i ^iiiKi'ii »in - * • Ajiril l'.i.ii.) Auf ili-n folp'mkn Seiten iin'icliti' icli ,iuf ini'ii einfachen Ztis.'iiiimenb.'in;: hm- weisen «wischen der von Ksiliixa 1 ) \«»r^fsrhln^encii Theorie für den Zusammen hanj; /.wischen Klektnmiacnetismus uml «iravitatmn einerseits und 1I1T von ilr H r ii ^1 >«' *) '""' Sr hnid inger ') .IH^I'^CIICIICII Methode zur IlLliiiHiiluiiy der Quiiuti'npnibleiiiC andererseits. I>ie Theorie vuu Knlur.n ^'t'lit darauf hinaus, du zehn Kinstcinschrii (ir:ivitations|Hitintialc y.. und die vier clektroiiiiigneti.vlieh i'iilcnli.ile , der gewtSiiniiclie» lielatix i- tiitstlieorie zu kommen, müssen wir gewisse spezielle Annahmen m.nhen. KrsdiiK müssen vier der Koordinaten, NII^CII wir ./•', ' s , ' 8 , r*, slet.- diu /rcWidinliihrii Zeitraum ihaiaklerisiereti. Zweitens diirlon die (iittücn ') Th. KitlUKa, Sit/uii^her. d. iterl. Akad. I'.CM, S. '.Hill. a ) \.. d. Urojjlie., Ann. d. I*II>-K. (10) », ii, J'.IL,5. ThAs-s, Paris JSKM. ') K. Sehr.idingKr, Ann. d. I'hys. 7«, '.«Ol und lö'J, 19-J'i. Ziil.chrih lur rbyik. Hd. XXXVII. 55,
43 904 Oikar Ckm, rieh die Wellen nach den Gesetzen der geometrischen Optik ausbreiten. Es mag noch hervorgehoben werden, daß wegen (42) die Beziehungen (44), (45) bei den Koordinatentransformationen (2) invariant bleiben. Betrachten wir nun auch die Gleichung (24) in dem Falle, wo u nicht so groß ist, daß wir nur die in o quadratischen Glieder zu berück- sichtigen brauchen. Wir beschranken uns dabei auf den einfachen Fall eines elektrostatischen Feldes. Dann haben wir in "kartesischen Koor- dinaten : ds* = dy* x dp* X dr» — r» dt*. I Also ergibt sich: H = - (j>* X j>J + j>») - ^ t x e Vpt)* x ÜL*. ,«. (47) In der Gleichung (24) können wir nun die mit |' ' proportionalen Größen vernachlässigen, denn die Dreiindizessvmbole sind in diesem Falle nach (17) kleine mit der Gravitationskonstante x proportionale Größen. Wir bekommen also1): !(?[' 2rV d*V , / . . *M-\
44 Quateataeetie «adftkafdimemtioaaleSeUtmtltrtkMrie. 905 den ans der H e i s e n b e r g sehen Quantentheorie berechneten Energie- werten identisch sind. Wie man sieht, ist £ in dem Grenzfall der geo- metrischen Optik gleich der aal gewöhnliche Weise definierten mecha- nischen Energie. Die Freqnenzbedingung besagt, wie S c h r ö d i n g e r hervorgehoben hat, nach (51), daß die zu dem System gehörenden Licht- frequenzen den ans den verschiedenen Werten der Frequenz v gebildeten Differenzen gleich sind. § 3. Schlußbemerkungen'. Wie die Arbeiten von de B r o g l i e sind obenstehende Überlegungen ans dem Bestreben entstanden, die .Analogie zwischen Mechanik und Optik, die in der Hamiltonschen Methode zum Vorschein kommt, für ein tieferes Verständnis der Quanten- erscheinungen auszunutzen. Daß dieser Analogie ein reellei physi- kalischer Sinn zukommt, scheint ja die Ähnlichkeit der Bedingungen für die stationären Zustände mn Atnmsystemen mit den Interferenz- erscheinungen der Optik anzudeuten. Nun stehen bekanntlich Begriffe wie Punktladung und materieller Punkt schon der klassischen Feld- pbvsik fremd gegenüber. Auch wurde ja öfters die Hypothese aus- gesprochen, daß die materiellen Teilchen als spezielle Lösungen der Feldgleichungen aufzufassen 6ind, welche das Gravitationsfeld und da= elektromagnetische Feld bestimmen. Es liegt nahe, die genannte Ana- logie zu dieser Verstellung in Beziehung zu bringen. Denn nach dieser Hypothese ist es ja nicht s>> befremdend, daß die Bewegung der mate- riellen Teikben Ähnlichkeiten aufweist mit der Ausbreitung V>JU Well^i, l.He in Hede stehende Analogie ist jedoch unvollständig, solange man eine Wellenausbreitung in einem Raum von nur vier Dimensionen !*•- trachtet. Dies kommt schon in der variablen Gesehwindiffkeit der materiellen Teilchen zum Vorschein. Deukt man sich aber die beob- achtete Bewegung als eine Art Projektion auf den Zeiträum von einer YVcileuausbieitung. die in einem Kaum von fünf Dimensionen stattfindet, %h läßt sich, wie wir sahen, die Analogie vollständig machen. Mathe- matisch ausgedrückt heißt dies, daß die Hamilton-.Tacohische Glei- chung nicht als CharakteristikeugleiHiung einer vierdiroensionalen. wohl aber einer fünfdimensi'malen Wellcngleiehung aufgefal't wor.len Linn lu dieser Weise wird man zu der Theorie von K a l u z a geführt. Oliwohl die Einführung einer fünften Dimension in u«*ere physi- kalischen Betrachtungen von vornherein befremdend sein mag. wird eine radikale Modifikation der den Feldgleichungen zugrunde selegten Geometrie doch wieder in ganz anderer Weise durch die Quantentheorie nahegelegt Denn es ist bekanntlich immer weniger wahrscheinlich
45 90ft Oskar Klein, Quantentheorie und tamfdiiiienaioaale Relativitätstheorie. geworden, daß die Cjnantenerscheinnngen eine einheitliche raamzeitliche Beschreibung zulassen, wogegen die Möglichkeit, diese Erscheinungen durch ein System von fünfdimensionalen Feldgleichungen darzustellen, wohl nicht von vornherein auszuschließen ist l). Ob hinter diesen An- deutungen von Möglichkeiten etwas Wirkliches besteht, muß natürlich die Zukunft entscheiden. Jedenfalls muß betont werden, daß die in dieser Note versuchte Behandlungsweise. sowohl \va< die Feldgleichungen als auch die Theorie der stationären Zustände betrifft, al> canz provisorisch zu betrachten ist. Dies kommt wohl besonders in der auf >. ,-r*> er- wähnten schematischen Behandlungsweise der Materie zum Vorschein, •=o\vic in dem Umstand, daß die zwei Arten von elekrris< heu Teilchen durch verschiedene Gleichungen vom S c h r ö d i n ^ e r s e h e n Typu- behandelt werden. Auch wird die Frage ganz offen gelassen, ob man siih bei der Beschreibung der physikalischen Vorsänge mit den 14 Potentialen be- gnügen kann, oder ob die S c h r ö d i n g e r s e h e Methode dit Einführung einer neuen Zustandsgröße bedeutet. Mit den in dieser Xote mitgeteilten L'berleiruniren iiai»- ich mich sowohl in ' dem Physikalischen Institut der Fniver-itv of Michisran. ABU Arbor. wie in ilent hiesigen Institut für theoretische Physik beschäftigt. Ich möchte auch aii dieser Stelle Prof. H. M. H a n d a l i und Prot. N" Bohr meinen wärmsten Dank aussprechen. 'i Bemerkungen diese Art. dl* Prof. Bohr l»-i iite'irt-r-n «r^lt-cenivit» u gfmaWn iiat. li.iii-.-a ein«-n enisrhicj-neu Eioiiull auf d;;- Enwrhrn der \'»r- li'^en'len Xot- schabt.
You can also read