Innovative aliphatic-aromatic biobased polyurethanes from different biomass - CERN Indico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Innovative aliphatic-aromatic biobased polyurethanes from different biomass. Pr. Luc Avérous BioTeam ICPEES – UMR CNRS 7515 ECPM : École Européenne de Chimie, Polymères et Matériaux (ECPM) Université de Strasbourg (UniStra) email : luc.averous@unistra.fr Website : www.BIODEG.NET Twitter : LucAverous
BioTeam Members: Ø Staff (3): • Pr. Luc Avérous (BioTeam leader) • Dr. Eric Pollet (A/Prof.) • Pr. Jean Marc Jeltsch (Vice-President UniStra) Ø Researchers: Ø Post-Doct. (3): • Dr. Zarah Walsh (European Project SYNPOL, 2015/2016) • Dr. Chengcheng Gao (ANR, 2015/2016) • Dr. Antoine Duval (European Project SYNPOL, 2015-2016) Ø PhD Students (7): • Stéphane Duchiron (Company, 2012-2016) • Marie Reulier (CIFRE. 2012-2016) • Thibaud Debuissy (European Project SYNPOL, 2013-2016) • Amparo Jimenez-Quero (Government, 2013-2016) • Pierre Furtwengler (Companies, 2014-3017) • Pietro Bueno (Luxembourg FRC, 2014-2017) • Audrey Magnin (European Project P4SB, 2015-2018) … + Masters and invited researchers BioTeam
General Topic (BioTeam): ► Biobased and/or Biodegradable Polymers, for Environmental and Biomedical Applications. Springer 2012 Wiley 2016
Biorefinery from different Biomasses Polyesters: PHAs, PLA … Extraction Fermentation Fatty acids (TG) Plants Biobased Micro-algae Starch Fractionation Thermosets or Mushroom, Thermoplastics crustaceans … Thermoplastic Polysaccharides Chitin. Chitosan Lignins. Tannins Clay BioMaterials Ligno-cellulose Nano-Biocomposites (Fibers) … Biocomposites
► Integration. from the biomass to final objects BioTeam Integration « Biochemistry/Chemistry & Process » Bio- Chemical Formulation Production Synthesis Process Characterization Biomass: Final Objects: Triglycerides, For automotive, Ligno-cellulose, Building, Textile, Tannins, Packaging, Starch, Agriculture, Chitin,
3 Main Thematics Biodegradable Polymers Materials (short-term applications & biomedical): • Thermoplastic starch, thermoplastic chitosan, • Bio(co)polyesters: PLA, PCL, PHAs, PBSA, PBS, PBAT ... • Synthesis by Enzymatic Catalysis of biopolyesters (eROP, polycondensation, ) • Biosynthesis of building blocks (Liquid and Solid fermentations) towards polymers elaboration. Biobased and Durable Polymers Materials (long-term applications): • New Vegetable oil-based polymers (from fatty acid, dimer …) • New aromatic macromolecular architectures, based on lignins and tannins, • Novative Biobased TPU, PU, NIPU & PA. Specific Biomedical Developments: • Wound dressings, • Tissue Engineering, scaffolds developed by electrospinning, • Biosensors, Drug Release ... 8
Biobased Polyurethanes Pr. Luc Avérous BioTeam ICPEES – UMR CNRS 7515 ECPM : École Européenne de Chimie. Polymères et Matériaux (ECPM) Université de Strasbourg (UniStra) email : luc.averous@unistra.fr Website : www.BIODEG.NET Twitter : LucAverous
Biobased Polyurethanes based on dimer fatty acid (DFA) Pr. Luc Avérous BioTeam ICPEES – UMR CNRS 7515 ECPM : École Européenne de Chimie, Polymères et Matériaux (ECPM) Université de Strasbourg (UniStra) email : luc.averous@unistra.fr Website : www.BIODEG.NET Twitter : LucAverous
New TPU architectures based on DFA Dr. Hablot TPUs: Multiblock copolymers Dr. Bueno Synthesis: Two-steps polymerization Ferrer 1st step: Prepolymer synthesis (with Reactive Mixing) 2 OCN―R―NCO HO OH OCN―R―NHCOO OCONH―R―NCO (Long Polyol) (Prepolymer) - Polyol: Bio-based polyester polyol based on dimer fatty acids from rapeseed oil [Mw 3000 g mol-1 ; OH value = 40 mg KOH g-1] - Isocyanate: 4.4’-diphenylmethane diisocyanate (MDI) (80⁰C) REACTI VE M I XI N G Bueno-Ferrer C et al. Polym Degrad and Stab 2012. 97, 1964-1969; Macromol Mat & Eng 2012. 297, 777–784
New TPU architectures based on DFA Dr. Hablot 2nd step: Synthesis of High MW TPU OCN―R―NHCOO OCONH―R―NCO HO―R’ ―OH (Chain extender) Dr. Bueno Ferrer ― CONHRNHCOO OCONHRNHCOO―R’―O― n • Add Chain extender (1.4 BD0): 180⁰C (Reactive mixing) • Curing in oven: 70⁰C • Compression-molding: 200⁰C • Quenching Different HS contents: (MDI+BDO) 10 to 40 wt% TPU10 TPU20 TPU30 • r = NCO/OH = 1 TPU40 • Mw: from 209.000 (10 wt%) to 33.000 (40 wt%) Bueno-Ferrer C et al. Polym Degrad and Stab 2012. 97, 1964-1969; Macromol Mat & Eng 2012. 297, 777–784
New TPU architectures based on DFA Dr. Hablot Uniaxial tensile tests Dr. Bueno ⇒ Typical curves of TPE, Ferrer at low HS content (< 30%) HS Max Strengh Deformation Modulus (wt%) (MPa) Break (%) (MPa) ⇒ HS/SS segregations 10 1.3 ± 0.1 > 500 0.7 ± 0.1 20 3.7 ± 0.1 > 500 2.5 ± 0.1 30 5.6 ± 0.3 428 ± 40 8.6 ± 0.5 DSC 40 1.5 ± 0.4 25 ± 7 11.1 ± 1.2 Bueno-Ferrer C et al. Polym Degrad and Stab 2012. 97, 1964-1969; Macromol Mat & Eng 2012. 297, 777–784 13
Aromatic Biobased Polyurethanes from lignins or tannins Pr. Luc Avérous BioTeam ICPEES – UMR CNRS 7515 ECPM : École Européenne de Chimie. Polymères et Matériaux (ECPM) Université de Strasbourg (UniStra) email : luc.averous@unistra.fr Website : www.BIODEG.NET Twitter : LucAverous
Lignins: Chemical structure Lignocelulosic Various chemical groups biomass: Wood. Straw. OH aliphatic 3 1 1 4 1 7 2 5 6 u Natural phenolic compounds, 1 Liaisons : largely available 1 β-O-4 1 2 α-O-4 u Variability, according to the 1 3 5-5 ressource and the extraction 3 4 β-β 5 4-O-5 process 6 β-5 OH phenolic 7 β-1 Laurichesse S., Avérous L. Progress in Polymer Science 2014. 39, 1266-1290
New PU architectures based on lignin Dr. Laurichesse OHs present low reactivity and accessibility Lignin must be modified to obtain an active macropolyol Different strategies: Synthesis of active macropolyols: ε-caprolactone Specific Lignins Propylene (Soda & Organosolv) Oxyde PU synthesis Fatty acid Laurichesse S. et al. Green Chem 2014. 16, 3958-3970; Polymer 2013. 54, 3882–3890
New PU architectures based on lignin and fatty acid Dr. Laurichesse u Chemical modification from oleic acid Oleic acid C18H34O2 u Hydrophobic properties Chloration u Bring insaturation and carboxyl group Esterification Epoxydation Ring opening Laurichesse S. et al. Green Chem 2014. 16, 3958-3970
New PU architectures based on lignin and fatty acid Dr. Laurichesse u Chemical modification from oleic acid Oleic acid C18H34O2 u Hydrophobic properties Chloration u Bring insaturation and carboxyl group Esterification Macropolyol 100% biobased Epoxydation Ring opening Laurichesse S. et al. Green Chem 2014. 16, 3958-3970
New PU architectures based on lignin and fatty acid Dr. Laurichesse PU Synthesis: PPG Biobased content: till 90% Laurichesse S. et al. Green Chem 2014. 16, 3958-3970
Aromatic Biobased Polyurethanes from lignins or tannins Pr. Luc Avérous BioTeam ICPEES – UMR CNRS 7515 ECPM : École Européenne de Chimie, Polymères et Matériaux (ECPM) Université de Strasbourg (UniStra) email : luc.averous@unistra.fr Website : www.BIODEG.NET Twitter : LucAverous
Tannins: Chemical structures OH phenolic u Natural phenolic compounds, largely available u Variability of the chemical structure, according to the ressource u High OH content = MacroPOLYOL Arbenz A., Avérous L. Green Chem 2015. 67, 2626-2646.
New PU architectures based on tannins and fatty acid Dr. Arbenz OHs present low reactivity and accessibility ⇒ Tannin must be modified to obtain an active macropolyol (OPT or OBT) ⇒ Oxyalkylation (OP, OB …): Polyether Polyol (liquid) Tannins Tannins = OH Catalyser (KOH) Oxyde 300 Réaction exothermique 25 250 20 200 Température en °C Pression en bar Under Pressure 15 u 150 10 u Fast kinetic 100 Consommation de l’oxyde 5 From solid (powder) to liquid 50 u T°/ P 0 0 u Need purification (Homopolymer) 00:00 00:20 00:40 01:00 01:20 01:40 Durée en h:min Arbenz A., Avérous L. Ind Crops and Prod 2015. 67, 295-304; RSC Adv 2015. 4, 61564 – 61572
100% Biobased Polyurethanes (with biobased polyisocyanates) Pr. Luc Avérous BioTeam ICPEES – UMR CNRS 7515 ECPM : École Européenne de Chimie, Polymères et Matériaux (ECPM) Université de Strasbourg (UniStra) email : luc.averous@unistra.fr Website : www.BIODEG.NET Twitter : LucAverous
100% biobased TPU M. Charlon • Soft Biobased Diisocyanate: 2-heptyl-3,4-bis(9-isocyanatononyl)-1- pentylcyclohexane (DDI). Obtained from FDA by Cognis-BASF. • Rigid Biobased Diols: 1,4 Butanediol (BDO): Isosorbide (ISO): • TPU structure: Charlon M. et al. European Polymer Journal 2014. 61, 197–205 24
100% biobased TPU M. Charlon • Thermal properties: 25% 50% 75% TPU (Diol) 0% ISO 0% BDO ISO ISO ISO DSC: Tg s (°C) -15 -13 -8 2 -1 DSC: Tm (°C) 60 50 50 84 82 • Mechanical properties: 25% 50% 75% TPU (Diol) 0% ISO 0% BDO ISO ISO ISO Elongation at break 700±200 350±100 100±10 150±20 30±20 (%) Modulus (MPa) 40±4 20±2 12±2 12±2 16±2 ⇒ No good HS/SS segregation to obtain a true TPE L ⇒ Striction under uniaxial tensile test 0% 25% 50% 75% 0% TPU (Diol) ISO ISO ISO ISO BDO Mw 45,000 31,800 23,100 21,200 11,400 Ɖ 2.55 2.48 2.06 2.16 2.95 ⇒ High dissymmetry mainly at low temperature (Petrovic et al. 2014) and lower reactivity of the OH (second./primary) (ISO/BDO) Charlon M. et al. European Polymer Journal 2014. 61, 197–205
Biobased Polyurethanes without isocyanates (NIPU) Pr. Luc Avérous BioTeam ICPEES – UMR CNRS 7515 ECPM : École Européenne de Chimie, Polymères et Matériaux (ECPM) Université de Strasbourg (UniStra) email : luc.averous@unistra.fr Website : www.BIODEG.NET Twitter : LucAverous
NIPUs: 3 main Pathways The most dev. PHU Tomita, H., et al., J. Polym. Sci. A Polym. Chem., 2001, 39(6), pp. 851-859. Deepa, P., et al., J. Polym. Sci. A Polym. Chem., 2008, 46(7), pp. 2445-2458. Palaskar, D.V., et al., Biomacromolecules, 2010, 11(5), pp. 1202-1211. 27
Short Conclusions Biobased PU = Ø A stimulating field Ø A huge potential of chemical pathways Ø Strong opportunities to develop innovative macromolecular archit., to obtain new materials prop., using a green chemistry (No solvent, No catalyzer, Biobased compounds, ) Ø A durable developing market in connection with a more sustainable development. 28
Strasbourg (Alsace-France) Luc.averous@unistra.fr www.biodeg.NET
You can also read