FUTURE LOAD SHIFT POTENTIALS OF ELECTRIC VEHICLES IN DIFFERENT CHARGING INFRASTRUCTURE SCENARIOS - TU Dresden

Page created by Ray Perry
 
CONTINUE READING
FUTURE LOAD SHIFT POTENTIALS OF ELECTRIC VEHICLES IN DIFFERENT CHARGING INFRASTRUCTURE SCENARIOS - TU Dresden
FUTURE LOAD SHIFT POTENTIALS
OF ELECTRIC VEHICLES IN DIFFERENT
CHARGING INFRASTRUCTURE SCENARIOS
Tobias Boßmann , Till Gnann, Julia Michaelis
Fraunhofer Institute for Systems and Innovation Research ISI

Enerday, Dresden, 08 April 2016

© Fraunhofer ISI
FUTURE LOAD SHIFT POTENTIALS OF ELECTRIC VEHICLES IN DIFFERENT CHARGING INFRASTRUCTURE SCENARIOS - TU Dresden
Agenda

 Motivation
 Methodology
 Case study
   Scenario set-up
   Results
 Conclusion and outlook

© Fraunhofer ISI
Seite 2
M o t i v a t i o n a n d re s e a rc h a i m

 Plug in electric vehicles (PEVs) as relevant option for decarbonization of transport sector
   What does the market penetration look like?
   Which types of PEVs and user groups are most likely to diffuse?
   What is the interaction between charging infrastructure and market uptake?

 Increasing share of RES-E generation => rising need for flexibility in the electricity system
   What is the demand response (DR) contribution of PEVs?
   What happens without DR?
   How does additional charging infrastructure influence the DR potential?

© Fraunhofer ISI
Seite 3
Methodology
The model cluster ALADIN - eLOAD

                   ALADIN      eLOAD

© Fraunhofer ISI
Seite 4
ALADIN: modeling the stock evolution of
     PEVs and charging points

                                                                                                                                                                                          4. Construction of
                                                                                                                                                                      t=t+1
                                                                                                                                                                                                charging
                 Earlier         model version*
                    1. Technische Ersetzbarkeit/Fahrstrecke von Fahrzeugen (Simulation Batterieladestand)                                                                                    infrastructure
                                                                                                                                                                 Sind alle Wege mit BEV
                           Ladezustand

                                                                                                                                                                 möglich?
                             Batterie

                                                                                                                                                   Gefahrene
                                                                                                                                                   Kilometer

                                                                                                                                                                 WelcherAnteilder
    Scenario                                                                                                                                                     Gesamtfahrstreckewird
                                                                                                                                                                 beimPHEV elektrisch
  parameters                                                                                                                                                     zurückgelegt?
 (energy prices,                                                                   1. Individual PEV
vehicle cost, …)
                           2. Ökonomisches Potenzial von Gruppen von Fahrzeugen (TCO-Analyse)                                                                                                                  3. Simulation of
                                                                                   simulation with                                                                                                                                   Load
                                            14.000
                                                          TCOa BEV               TCOa PHEV                TCOa ICEV               TCOa DIESEL
                                                                                                                                                                                                               charging of PEV
                                            12.000
                                                                                    given charging
                                                                                                 WelchesFahrzeug hat die
                                                                                                                                                                                                                                     curve
                            Jährliche TCO

                                                                                                 geringsten Total Cost of
  1m vehicle                                10.000
                                             8.000                                               Ownership?                                                                                                          stock
   driving                                   6.000
                                             4.000
                                                                                     infrastructure
   profiles                                  2.000
                                                 0
                                                                                                                                                     Minimale TCO-Option
                                                     0           10.000         20.000          30.000         40.000          50.000         60.000
                                                                                          Jahresfahrstrecke

                                                         Annahmen für Grafiken: technische Ersetzbarkeit: 1) Ladestrategie am Arbeitsplatz, zu Hause und am
                                                         Zweitwohnsitz 2) Batteriekapazität 32 kWh, Verbrauch 16 kWh/100 km; ökonomisches Potenzial: sämtliche
                                                         Annahmen in (Gnann et al. 2012)

                                                                                                                                                                                          2. Determination
                                                                                                                                                                                                                     PEV diffusion
                                                                                                                                                                                            of PEV stock

                                                                 *As published in (Plötz et al. 2014, Gnann et al. 2015)

     © Fraunhofer ISI
     Seite 5
Methodology
The model cluster ALADIN - eLOAD

                   ALADIN                             eLOAD

  Methodology
  Bottom-up PEV market diffusion simulation
     (PEV registrations) based on more than one
     million vehicle driving profiles
  Agent-based simulation model for PEV
     charging at public charging points (PEV stock)
  Differentiation of user groups (private,
     commercial fleet car)

  Results
  Market diffusion of plug-in electric vehicles
  Resulting load curve for different market
     diffusion scenarios and uncontrolled charging
  Differentiation of charging locations
     (domestic, commercial, work, public)

© Fraunhofer ISI
Seite 6
eLOAD: assessing changes in the system
load curve and the impact of DR
                                                      eLOAD

                                                                      System load curve
                              Projection module                                                                     Electricity
   FORECAST
                   Annual                                                                                            market
     model                      Consideration of
                   demand
                              structural changes in
                                                                                                                      model
                                    demand                         DR module
                                                   Process     Net load smoothing          Optimised
                                                 load curves                             net load curve

                                    Database
                                                                                    Net load / electricity prices
                    Load         Load profiles
   Load profile
                   profiles   ENTSO-E load curves
   generation
                                                                                                           Power plant expansion
                                 Weather data
                                                                                                                and dispatch
                                DR parameters
                                                                                                              Electricity prices
                                                                                                                 Emissions

© Fraunhofer ISI
Seite 7
Methodology
The model cluster ALADIN - eLOAD

                                            PEV stock and demand
                    ALADIN                  Charging profiles                      eLOAD

  Methodology                                              Methodology
  Bottom-up PEV market diffusion simulation               Long-term simulation of changes in hourly
     (PEV registrations) based on more than one              system load curve (8760h) using load profiles
     million vehicle driving profiles                      Mixed-integer cost optimisation from con-
  Agent-based simulation model for PEV                      sumer perspective for different DR programs
     charging at public charging points (PEV stock)          (e.g. RTP) to determine optimal load schedule
  Differentiation of user groups (private, fleet,         For PEVs: explicit modeling of storage
     company car)                                            constraints and availability of charging point

  Results                                                  Results
  Market diffusion of plug-in electric vehicles           Evolution of system load curve and peak load
  Resulting load curve for different market               Cost-optimal load profile and DR potential of
     diffusion scenarios and uncontrolled charging           individual end-uses
  Differentiation of charging locations                   Impact on net load, curtailment, power plant
     (domestic, commercial, work, public)                    expansion and dispatch

© Fraunhofer ISI
Seite 8
Case study
Scenario set-up
Germany, until 2030

  ALADIN                                                                          eLOAD
 PEV market penetration modeling                                                  DR modeling

  Driving profiles for the region of                                              Scenario framework: Leitstudie [2]
         Stuttgart for private and commercial                                       RES share: 35%/50% (2020/2030)
         vehicles [1]
                                                                                    Total electricity demand: -9% /-15%
                                                                                          vs. 2010 (523 TWh)
  Differentiation of charging
         infrastructure availability:
                                                                                   DR setting
Scenario            Domestic/            Work               Public
                                                                                    Modeling of private and fleet PEVs
                   commercial
S1                   3.7 kW                -                   -                    Net load as basis for optimisation
S2                   3.7 kW             3.7 kW                 -
                                                                                    No monetary parameters considered
S3                   3.7 kW             3.7 kW              3.7 kW
                                                                                    No other DR option considered
                       [1] (Hautzinger et al. 2013, Fraunhofer ISI 2015); [2] (Fraunhofer ISI 2015)
© Fraunhofer ISI
Seite 9
Case study
Results - PEV market penetration
                                                                                  6
 Substantial PEV market penetration

                                                                        million
                                                                                                    S1
                                                                                  5
       possible with only domestic/                                                                 S2
                                                                                  4                 S3
       commercial charging infrastructure

                                                  PEV stock
 Charging @work (S2) increases                                                   3

       market shares and PEV stock                                                2

 Public slow charging has no impact                                              1

                                                                                  0
                                                                                      2015               2020               2025          2030

 User groups
                                                                       100%
   2020: PEV stock dominated by                  share of PEV stock
                                                                       80%
              commercial fleet users
                                                                       60%                                                         fleet PHEV
         2030: larger shares for private                                                                                          fleet BEV
                                                                       40%
              PEVs 2030 (former fleet vehicles)                                                                                    private PHEV
                                                                       20%
 PEV types                                                                                                                        private BEV
                                                                          0%
   PHEVs dominate in 2020 and                                                          S1    S2         S3     S1    S2      S3

              2030                                                                           2020                    2030

© Fraunhofer ISI
Seite 10
Case study
Results – Electricity demand
                                                                                20

                                                 PEV electricity demand [TWh]
                                                                                18
Additional electricity demand                                                   16           fleet

 Private                                                                       14
                                                                                12
                                                                                             private

                                                                                10
   @work raises 2030 demand by 3.5 TWh                                          8
                                                                                 6
 Fleet PEVs same demand in all scenarios                                        4
                                                                                 2
 Total: +2-3 TWh (2020) = +0.6%                                                 0
                                                                                        S1             S2    S3        S1     S2         S3

   +14-17 TWh (2030) = +3-4%                                                                        2020                    2030

                                                                                                              2030
                                                                                3.5
Uncontrolled charging

                                                 Mean charging load [GW]
                                                                                 3           private
 Charging @home:                                                               2.5          fleet

   Private PEVs in evening hours: +3 GW                                         2
                                                                                1.5
   Fleet PEVs charge during the day =>                                          1
                                                                                0.5
              less impact on system load peaks
                                                                                 0
 Charging @work: additional morning peak                                             1 4 7 1013161922      3 6 9 1215182124 2 5 8 1114172023
                                                                                                S1                S2                S3
 Public charging has no impact

© Fraunhofer ISI
Seite 11
Case study
Results – Flexibility potentials
                                                                                Private PEVs, weekday, compared to S1
                                                                 6
Impact on charging profile                                                                                         S1 - Uncontr.
                                                                                                                  S1
                                                                                                                  S1 -- Uncontr.
                                                                                                                        Uncontr.
                                                                 5                                                 S1 - DR
 Shiftable load of smart charging @home:                                                                         S1
                                                                                                                  S1 -- DR
                                                                                                                        Uncontr.

                                            Charging load [GW]
                                                                                                                   S2 - DR
                                                                 4                                                S1
                                                                                                                  S2  - DR
                                                                                                                   S3--DR
                                                                                                                        DR
   In midday hours limited to 3 GW for                          3

              private PEVs                                       2

 @work/public: +5 GW for private PEVs;                          1
                                                                 0
       no impact on comm. PEVs                                         1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23
                                                                                   Summer                         Winter

Impact on peak load and curtailment                              50                                                        S1 - Uncontr.
                                                                                                                           S1 - DR
 Smart charging @home:                                          40
                                                                                                                           S2 - DR
                                                                 30                                                        S3 - DR
   Max. net load: -2.4GW / -3.6%
                                            Net load [GW]
                                                                 20
   Curtailment: -1.6 TWh / -26%                                 10
 + @work: Curtailment: -1.8 TWh / -30%;                          0
       but no further peak load reduction                        -10
                                                                       1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21
                                                                            Week            Sun            Week            Sun
 + @public: No additional impact                                -20
                                                                                   Summer                         Winter

© Fraunhofer ISI
Seite 12
Conclusion and outlook

 PEV market uptake already takes place with charging infrastructure at home
 PEV stock is dominated by PHEVs (80% in 2020 and 70% in 2030 in all scenarios)
   However, reduced DR potential due to smaller batteries and lower electricity demand
 Commercial fleet vehicles have significant shares but low impact on system peak load
 Smart charging facilitates the integration of private PEVs in the system

 Charging infrastructure at work facilitates PEV market penetration and increases
       flexibility potential
 Public charging infrastructure has no additional benefit on PEV diffusion AND load
       shifting potential.
 Smart charging smoothens the net load but may imply new system load peaks locally
       that may additionally challenge the grid.

 Consider impact of smart PEV charging on power market and prices
 Compare flexibility potential of PEVs with other flexiblity options

© Fraunhofer ISI
Seite 13
Thank you for your kind attention!

References
BCG (2013): Trendstudie 2030+ Kompetenzinitiative            July 2015, pp. 95-112                                     bei sich wandelnden Mobilitätsstilen:
   Energie des BDI. Studie der Boston Consulting                                                                       Tagungsbeiträge vom 08. und 09. März 2012 am
                                                         Hautzinger, H., Kagerbauer, M., Mallig, N., Pfeiffer, M.,
   Group im Auftrag des Bundesverbandes der                                                                            KIT, Karlsruhe, KIT Scientific Publishing, pages 81–
                                                             Zumkeller, D. Mikromodellierung für die Region
   Deutschen Industrie (BDI) BCG: München                                                                              108., Eds. Jochem, P. and Poganietz, W.-R. and
                                                             Stuttgart - Schlussbericht - INOVAPLAN GmbH,
                                                                                                                       Grunwald, A. and Fichtner, W., 2013.
Boßmann, T. (2015). The contribution of electricity          Institute for Transport Studies at the Karlsruhe
    consumers to peak shaving and the integration of         Institute of Technology (KIT), Institut für           Plötz, P., Gnann, T., and Wietschel, M. Modelling
    renewable energy sources by means of demand              angewandte Verkehrs- und Tourismusforschung               market diffusion of electric vehicles with real world
    response. Dissertation, KIT Karlsruhe.                   e.V., Karlsruhe, Heilbronn, 2013                          driving data – part i: Model structure and validation.
                                                                                                                       Ecological Economics, 107(0):411 – 421, 2014.
Fraunhofer ISI. REM2030 Driving Profiles Database        International Energy Agency (IEA). World Energy
    V2014-07. Fraunhofer Institute of Systems and            Outlook 2012, 2012.                                   Schlesinger, M., Lindenberger, D., und Lutz, C. (2011):
    Innovation Research ISI, Karlsruhe, July 2014.                                                                     Energieszenarien 2011, Basel/Köln/Osnabrück,
                                                         Leipziger Institut für Energie GmbH (2012): Entwicklung
                                                                                                                       Prognos AG, Energiewirtschaftliches Institut an der
Fraunhofer ISI, Consentec, Ifeu, R2b, EEG TU Wien, and       der Preise für Strom und Erdgas in Baden-
                                                                                                                       Universität zu Köln (EWI), Gesellschaft für
    TEP Energy (2015). Langfristszenarien und                Württemberg bis 2020, Endbericht, Leipzig
                                                                                                                       wirtschaftliche Strukturforschung (GWS)
    Strategien für den Ausbau der Erneuerbaren
                                                         McKinsey (2012): Die Energiewende in Deutschland –
    Energien in Deutschland unter besonderer
                                                             Anspruch, Wirklichkeit und Perspektiven. McKinsey
    Berücksichtigung der nachhaltigen Entwicklung
                                                             & Company
    sowie regionaler Aspekte - Leitstudie. Under
    publication.                                         MOP. Mobilitätspanel Deutschland 1994-2010.
                                                             Technical report, Project conducted by the Institute
Gnann, T. (2015). Market diffusion of plug-in electric
                                                             for Transport Studies at the Karlsruhe Institute of
    vehicles and their charging infrastructure.
                                                             Technology (KIT). Available at: www.clearingstelle-
    Dissertation, KIT Karlsruhe.
                                                             verkehr.de, 2010.
Gnann, T.; Plötz, P.; Kühn, A.; Wietschel, M.: Modelling
                                                         Pfahl, S.. Alternative Antriebskonzepte: Stand der
    Market Diffusion of Electric Vehicles with Real
                                                             Technik und Perspektiven–Die Sicht der
    World Driving Data – German market and Policy
                                                             Automobilindustrie. In Alternative Antriebskonzepte
    options. Transportation Research Part A, Vol. 77,

© Fraunhofer ISI
Seite 14
You can also read