FUTURE LOAD SHIFT POTENTIALS OF ELECTRIC VEHICLES IN DIFFERENT CHARGING INFRASTRUCTURE SCENARIOS - TU Dresden
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
FUTURE LOAD SHIFT POTENTIALS OF ELECTRIC VEHICLES IN DIFFERENT CHARGING INFRASTRUCTURE SCENARIOS Tobias Boßmann , Till Gnann, Julia Michaelis Fraunhofer Institute for Systems and Innovation Research ISI Enerday, Dresden, 08 April 2016 © Fraunhofer ISI
Agenda Motivation Methodology Case study Scenario set-up Results Conclusion and outlook © Fraunhofer ISI Seite 2
M o t i v a t i o n a n d re s e a rc h a i m Plug in electric vehicles (PEVs) as relevant option for decarbonization of transport sector What does the market penetration look like? Which types of PEVs and user groups are most likely to diffuse? What is the interaction between charging infrastructure and market uptake? Increasing share of RES-E generation => rising need for flexibility in the electricity system What is the demand response (DR) contribution of PEVs? What happens without DR? How does additional charging infrastructure influence the DR potential? © Fraunhofer ISI Seite 3
Methodology The model cluster ALADIN - eLOAD ALADIN eLOAD © Fraunhofer ISI Seite 4
ALADIN: modeling the stock evolution of PEVs and charging points 4. Construction of t=t+1 charging Earlier model version* 1. Technische Ersetzbarkeit/Fahrstrecke von Fahrzeugen (Simulation Batterieladestand) infrastructure Sind alle Wege mit BEV Ladezustand möglich? Batterie Gefahrene Kilometer WelcherAnteilder Scenario Gesamtfahrstreckewird beimPHEV elektrisch parameters zurückgelegt? (energy prices, 1. Individual PEV vehicle cost, …) 2. Ökonomisches Potenzial von Gruppen von Fahrzeugen (TCO-Analyse) 3. Simulation of simulation with Load 14.000 TCOa BEV TCOa PHEV TCOa ICEV TCOa DIESEL charging of PEV 12.000 given charging WelchesFahrzeug hat die curve Jährliche TCO geringsten Total Cost of 1m vehicle 10.000 8.000 Ownership? stock driving 6.000 4.000 infrastructure profiles 2.000 0 Minimale TCO-Option 0 10.000 20.000 30.000 40.000 50.000 60.000 Jahresfahrstrecke Annahmen für Grafiken: technische Ersetzbarkeit: 1) Ladestrategie am Arbeitsplatz, zu Hause und am Zweitwohnsitz 2) Batteriekapazität 32 kWh, Verbrauch 16 kWh/100 km; ökonomisches Potenzial: sämtliche Annahmen in (Gnann et al. 2012) 2. Determination PEV diffusion of PEV stock *As published in (Plötz et al. 2014, Gnann et al. 2015) © Fraunhofer ISI Seite 5
Methodology The model cluster ALADIN - eLOAD ALADIN eLOAD Methodology Bottom-up PEV market diffusion simulation (PEV registrations) based on more than one million vehicle driving profiles Agent-based simulation model for PEV charging at public charging points (PEV stock) Differentiation of user groups (private, commercial fleet car) Results Market diffusion of plug-in electric vehicles Resulting load curve for different market diffusion scenarios and uncontrolled charging Differentiation of charging locations (domestic, commercial, work, public) © Fraunhofer ISI Seite 6
eLOAD: assessing changes in the system load curve and the impact of DR eLOAD System load curve Projection module Electricity FORECAST Annual market model Consideration of demand structural changes in model demand DR module Process Net load smoothing Optimised load curves net load curve Database Net load / electricity prices Load Load profiles Load profile profiles ENTSO-E load curves generation Power plant expansion Weather data and dispatch DR parameters Electricity prices Emissions © Fraunhofer ISI Seite 7
Methodology The model cluster ALADIN - eLOAD PEV stock and demand ALADIN Charging profiles eLOAD Methodology Methodology Bottom-up PEV market diffusion simulation Long-term simulation of changes in hourly (PEV registrations) based on more than one system load curve (8760h) using load profiles million vehicle driving profiles Mixed-integer cost optimisation from con- Agent-based simulation model for PEV sumer perspective for different DR programs charging at public charging points (PEV stock) (e.g. RTP) to determine optimal load schedule Differentiation of user groups (private, fleet, For PEVs: explicit modeling of storage company car) constraints and availability of charging point Results Results Market diffusion of plug-in electric vehicles Evolution of system load curve and peak load Resulting load curve for different market Cost-optimal load profile and DR potential of diffusion scenarios and uncontrolled charging individual end-uses Differentiation of charging locations Impact on net load, curtailment, power plant (domestic, commercial, work, public) expansion and dispatch © Fraunhofer ISI Seite 8
Case study Scenario set-up Germany, until 2030 ALADIN eLOAD PEV market penetration modeling DR modeling Driving profiles for the region of Scenario framework: Leitstudie [2] Stuttgart for private and commercial RES share: 35%/50% (2020/2030) vehicles [1] Total electricity demand: -9% /-15% vs. 2010 (523 TWh) Differentiation of charging infrastructure availability: DR setting Scenario Domestic/ Work Public Modeling of private and fleet PEVs commercial S1 3.7 kW - - Net load as basis for optimisation S2 3.7 kW 3.7 kW - No monetary parameters considered S3 3.7 kW 3.7 kW 3.7 kW No other DR option considered [1] (Hautzinger et al. 2013, Fraunhofer ISI 2015); [2] (Fraunhofer ISI 2015) © Fraunhofer ISI Seite 9
Case study Results - PEV market penetration 6 Substantial PEV market penetration million S1 5 possible with only domestic/ S2 4 S3 commercial charging infrastructure PEV stock Charging @work (S2) increases 3 market shares and PEV stock 2 Public slow charging has no impact 1 0 2015 2020 2025 2030 User groups 100% 2020: PEV stock dominated by share of PEV stock 80% commercial fleet users 60% fleet PHEV 2030: larger shares for private fleet BEV 40% PEVs 2030 (former fleet vehicles) private PHEV 20% PEV types private BEV 0% PHEVs dominate in 2020 and S1 S2 S3 S1 S2 S3 2030 2020 2030 © Fraunhofer ISI Seite 10
Case study Results – Electricity demand 20 PEV electricity demand [TWh] 18 Additional electricity demand 16 fleet Private 14 12 private 10 @work raises 2030 demand by 3.5 TWh 8 6 Fleet PEVs same demand in all scenarios 4 2 Total: +2-3 TWh (2020) = +0.6% 0 S1 S2 S3 S1 S2 S3 +14-17 TWh (2030) = +3-4% 2020 2030 2030 3.5 Uncontrolled charging Mean charging load [GW] 3 private Charging @home: 2.5 fleet Private PEVs in evening hours: +3 GW 2 1.5 Fleet PEVs charge during the day => 1 0.5 less impact on system load peaks 0 Charging @work: additional morning peak 1 4 7 1013161922 3 6 9 1215182124 2 5 8 1114172023 S1 S2 S3 Public charging has no impact © Fraunhofer ISI Seite 11
Case study Results – Flexibility potentials Private PEVs, weekday, compared to S1 6 Impact on charging profile S1 - Uncontr. S1 S1 -- Uncontr. Uncontr. 5 S1 - DR Shiftable load of smart charging @home: S1 S1 -- DR Uncontr. Charging load [GW] S2 - DR 4 S1 S2 - DR S3--DR DR In midday hours limited to 3 GW for 3 private PEVs 2 @work/public: +5 GW for private PEVs; 1 0 no impact on comm. PEVs 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 Summer Winter Impact on peak load and curtailment 50 S1 - Uncontr. S1 - DR Smart charging @home: 40 S2 - DR 30 S3 - DR Max. net load: -2.4GW / -3.6% Net load [GW] 20 Curtailment: -1.6 TWh / -26% 10 + @work: Curtailment: -1.8 TWh / -30%; 0 but no further peak load reduction -10 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 Week Sun Week Sun + @public: No additional impact -20 Summer Winter © Fraunhofer ISI Seite 12
Conclusion and outlook PEV market uptake already takes place with charging infrastructure at home PEV stock is dominated by PHEVs (80% in 2020 and 70% in 2030 in all scenarios) However, reduced DR potential due to smaller batteries and lower electricity demand Commercial fleet vehicles have significant shares but low impact on system peak load Smart charging facilitates the integration of private PEVs in the system Charging infrastructure at work facilitates PEV market penetration and increases flexibility potential Public charging infrastructure has no additional benefit on PEV diffusion AND load shifting potential. Smart charging smoothens the net load but may imply new system load peaks locally that may additionally challenge the grid. Consider impact of smart PEV charging on power market and prices Compare flexibility potential of PEVs with other flexiblity options © Fraunhofer ISI Seite 13
Thank you for your kind attention! References BCG (2013): Trendstudie 2030+ Kompetenzinitiative July 2015, pp. 95-112 bei sich wandelnden Mobilitätsstilen: Energie des BDI. Studie der Boston Consulting Tagungsbeiträge vom 08. und 09. März 2012 am Hautzinger, H., Kagerbauer, M., Mallig, N., Pfeiffer, M., Group im Auftrag des Bundesverbandes der KIT, Karlsruhe, KIT Scientific Publishing, pages 81– Zumkeller, D. Mikromodellierung für die Region Deutschen Industrie (BDI) BCG: München 108., Eds. Jochem, P. and Poganietz, W.-R. and Stuttgart - Schlussbericht - INOVAPLAN GmbH, Grunwald, A. and Fichtner, W., 2013. Boßmann, T. (2015). The contribution of electricity Institute for Transport Studies at the Karlsruhe consumers to peak shaving and the integration of Institute of Technology (KIT), Institut für Plötz, P., Gnann, T., and Wietschel, M. Modelling renewable energy sources by means of demand angewandte Verkehrs- und Tourismusforschung market diffusion of electric vehicles with real world response. Dissertation, KIT Karlsruhe. e.V., Karlsruhe, Heilbronn, 2013 driving data – part i: Model structure and validation. Ecological Economics, 107(0):411 – 421, 2014. Fraunhofer ISI. REM2030 Driving Profiles Database International Energy Agency (IEA). World Energy V2014-07. Fraunhofer Institute of Systems and Outlook 2012, 2012. Schlesinger, M., Lindenberger, D., und Lutz, C. (2011): Innovation Research ISI, Karlsruhe, July 2014. Energieszenarien 2011, Basel/Köln/Osnabrück, Leipziger Institut für Energie GmbH (2012): Entwicklung Prognos AG, Energiewirtschaftliches Institut an der Fraunhofer ISI, Consentec, Ifeu, R2b, EEG TU Wien, and der Preise für Strom und Erdgas in Baden- Universität zu Köln (EWI), Gesellschaft für TEP Energy (2015). Langfristszenarien und Württemberg bis 2020, Endbericht, Leipzig wirtschaftliche Strukturforschung (GWS) Strategien für den Ausbau der Erneuerbaren McKinsey (2012): Die Energiewende in Deutschland – Energien in Deutschland unter besonderer Anspruch, Wirklichkeit und Perspektiven. McKinsey Berücksichtigung der nachhaltigen Entwicklung & Company sowie regionaler Aspekte - Leitstudie. Under publication. MOP. Mobilitätspanel Deutschland 1994-2010. Technical report, Project conducted by the Institute Gnann, T. (2015). Market diffusion of plug-in electric for Transport Studies at the Karlsruhe Institute of vehicles and their charging infrastructure. Technology (KIT). Available at: www.clearingstelle- Dissertation, KIT Karlsruhe. verkehr.de, 2010. Gnann, T.; Plötz, P.; Kühn, A.; Wietschel, M.: Modelling Pfahl, S.. Alternative Antriebskonzepte: Stand der Market Diffusion of Electric Vehicles with Real Technik und Perspektiven–Die Sicht der World Driving Data – German market and Policy Automobilindustrie. In Alternative Antriebskonzepte options. Transportation Research Part A, Vol. 77, © Fraunhofer ISI Seite 14
You can also read