Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
1 Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany Published on 2016-11-21. Author : SpecialChem ESSEN, Germany -- Evonik has announced to expand its production facilities in Birmingham (Alabama, USA) and Darmstadt (Germany). This will create additional capacity for the production of biodegradable polymers marketed globally under the brand names RESOMER® and RESOMER® SELECT. These poly-lactic-glycolic-acid (PLGA) copolymers are primarily used to manufacture bioresorbable medical devices and controlled- release formulations for parenteral drug delivery. Bioresorbable Polymer Market Leadership Paul Spencer, Head of Biomaterials at Evonik’s Health Care Business Line, explained: "We expect the global demand for biodegradable polymers to continue to grow in the coming years. With this in mind, we are currently investing to increase the capacity of our production facilities in order to serve our global customer base." The expansion will involve construction of a new building adjacent to Evonik’s existing facility in Birmingham. Besides greater production capacity, the project will also result in new production clean rooms and a laboratory for polymer contract research projects. Commissioning is slated for late 2018. The expanded plant in Birmingham is the second investment to serve the growing market demand after the inauguration of the new manufacturing site in Darmstadt two years ago. The Darmstadt unit capacity will also be increased with the opening of a new production line. Paul Spencer added: "By serving the market from two state-of-the-art locations, Evonik strengthens its role as a reliable partner for its customers and underpin its commitment to this market". Applied Technology Laboratory Moreover, Evonik will open an applied technology laboratory in Darmstadt at the end of the year to support its customers in the medical device field. Its first facility of this kind was completed in 2015 in Shanghai (China). At these laboratories, customers receive prompt support for product development and training in the use of Evonik products. The upcoming revision of the EU Fertilisers Regulation and the benefits of biodegradable plastic mulch films Kristy-Barbara Lange, Deputy Managing Director / Regulatory Affairs, EUBP 24/11/16
2 As part of the EU Circular Economy Package’s Action Plan, the European Commission has proposed a revision of the Fertiliser Regulation. Discussions in the Parliament and the Council are in full swing. In this context, European Bioplastics is advocating to consider the benefits of biodegradable plastic mulch films for modern agriculture. Kristy-Barbara Lange, Deputy Managing Director / Regulatory Affairs from European Bioplastics answers some questions about the benefits of biodegradable mulch films and their role in a revised EU Fertiliser Directive. What is the current market situation for mulch films in Europe? Europe has a grave microplastic problem that is partly caused by fossil-based plastic mulch films, which are hard to collect and recycle due to the thinness of the film and heavy soiling. The mulch film market in Europe amounts to about 80,000 tonnes, 95% of which are still, fossil-based and non-biodegradable thin polyethylene films that are mostly produced outside of Europe. Agriculture Plastics Environment (APE) Europe estimates hat of these 76,000 tonnes, more than 30% remain on the field and in the soil. Assessed conservatively, this generates about 15,000 tonnes of microplastics each year that remain in fields across Europe. The accumulation of plastic particles in the soil in some regions of Europe, such as southern Spain, is already showing negative effects on plant growth and crop yields. Could modern agriculture practises eliminate the need for mulch films altogether? No. Plastic mulch films have many benefits and positive agronomical effects, including increasing the yields, weed control, and soil improvement by reducing irrigation water and mitigating wind and water soil erosion. Growing on bare soil would decrease yields drastically – a scenario nobody can afford and which was substantiated amongst others by a recent study of the University of Montpellier with regard to the fruiting yield of vineyards (Touchaleaume et al., 2016). How can biodegradable plastic mulches contribute to modern agriculture?
3 Biodegradable mulch films provide the same positive agronomical effects as conventional mulches, while at the same time easing the burden on the soil. Biodegradable mulches can be left on the field and ploughed under at the end of the crop cycle as they do not accumulate in the soil but biodegrade to water, CO2, and biomass, without leaving toxic residues in the soil. What legislative action is needed to support the uptake of biodegradable mulch films? In some EU Members States, such as in France and Italy, standards for biodegradation of mulches in soil already exist. Furthermore, the European Committee for Standardization (CEN) is currently developing a European standard, which will be available early next year. Clear criteria for biodegradation, ecotoxicology, and characteristics of biodegradable mulch films are currently being defined. Biodegradable mulches can help to decrease the generation of microplastics in agriculture, while ensuring high yields. Furthermore, unlike conventional thin mulch films that are imported from outside of Europe, biodegradable mulch films are mainly produced within the EU. With regard to the revision of the European Fertilisers Regulation, European Bioplastics recommends to include biodegradable mulch films as soil improver – as it is already implicitly covered by definitions and given in the annexes. Mentioning it explicitly would harmonise and boost the market across Europe and help farmers to deal with the growing problem of microplastics while keeping yields high. Certification of bio-based content By Harmen Willemse MSc, Consustant Bio-based Economy at NEN – Netherlands Standardization Institute 24/11/16 Bio-based products are products, which are wholly or partly derived from biomass. Therefore, it is essential to characterize the amount of biomass contained in the product. The bio-based content includes not only the amount of carbon, but also the elements hydrogen, oxygen, and nitrogen. A new ‘Bio-based content certification scheme’ developed by NEN – Netherlands Standardization Institute will be launched at the 11th European Bioplastics Conference on 29/30 November 2016 in Berlin, by issuing the first certificates to products from Corbion and Kraton. Rethinking determination of bio-based content The new method for the determination of the bio-based content was developed and validated in two European 7th Framework Programme research projects: Knowledge Based Bio-based
4 Products’ Pre-Standardization (KBBPPS) and OpenBio; and captured in a European Standard based on a standardization request by the European Commission (M/492). This European standard, EN 16785-1:2015, describes the method for determination of the bio-based content of solid, liquid and gaseous products, using radiocarbon analysis and elemental analyses. It can be applied to any raw material, chemical, intermediate, semi-finished product or finished product. Enhancing communication Reliable communication and credible claims about the bio-based content of products are critical success factors for the acceptance of bio-based products and the deployment of the bio-based economy. A group of European stakeholders has developed a certification system, which can be used by organizations to make a validated claim on the (minimum share of) bio- based content in their products. Certify your product The first certificates will be issued by the certification bodies DIN CERTCO and Vinçotte to bio-based products produced by Corbion and Kraton. From then on, certification is open to all suppliers of bio-based products. Any product containing biomass qualifies for certification. Certification enables clear and transparent communication of the total bio-based content of products, by means of a certificate and label with the percentage bio-based content. Independent assessment The „Bio-based content certification scheme“ is the single European certification scheme that enables independent assessment of claims about the bio-based content of products, based on the European standard EN 16785-1. It contains provisions for the determination, verification and monitoring of the bio-based content of products or product families. Bio-on & Italeri Start Final Phase Testing of Minerv PHA Bioplastic Published on 2016-11-21. Author : SpecialChem BOLOGNA -- The final phase testing Minerv PHA Supertoys for making scale models has begun, launched by Bio-on in collaboration with Italeri. The results will be presented in February 2017 in Nuremberg, Germany during the "Play and toys fair", the sector's largest and most prestigious event.
5 Minerv PHA Supertoys • 100% naturally biodegradable in water and soil • Product is obtained through the natural fermentation of bacteria • Currently in use in the plastic industry and can cover a vast range of strategic applications • The Minerv PHA Supertoys special grade contains no substances classified as carcinogenic, mutagenic or toxic Testing is applied to specific areas of Italeri's vast offer, such as its toy soldiers (3 cm tall) which require extreme precision. The tests run thus far have been positive and the two companies confirm the goal of producing one of the world's first scale models made of the special Minerv PHA Supertoys grade Minerv PHA Supertoys, a bioplastic developed by Bio-on's laboratories for the toys of the future. Biodegradable Formulations for Toys Based on Bio-on's revolutionary biopolymer, 100% naturally biodegradable and already tested in dozens of applications, from automotive to design to biomedical, Supertoys is safe, hygienic and biodegradable, it meets and exceeds the provisions of the recent European Directive 2009/48/EC, known as the TDS (Toy Safety Directive), implemented into the standard international procedure for toy safety evaluation EN 71. The Minerv PHA Supertoys project, launched by Bio-on in late 2015, aims to demonstrate that specific, eco-sustainable and also completely biodegradable formulations can be created for making models and toys that are safe for children and the environment, without losing out on the end product's functionality and aesthetic. "We are extremely pleased to present to the world the results of this important collaboration with Italeri, a company that has written the history of global modeling," explains Bio-On S.p.A. Chairman Marco Astorri, "because it is offering us the opportunity to develop new uses for PHAs Supertoys biopolymers in thousands of different items with extremely high levels of precision." "It is very interesting and promising to create new models with a completely natural eco- sustainable material," says Gian Pietro Parmeggiani and Giuliano Malservisi, the founders of Italeri S.p.A.. In the toys sector, the future will increasingly demand more eco-sustainable products and our company will play a leading role this time too." Bio-on bioplastics are made from renewable waste plant sources, with no competition with food supply chains, and are 100% naturally biodegradable. "Working with Italeri is very important," explains Astorri, "because it allows us to create highly complex models that can also be used on a large scale. Minimum tolerances and high quality enable us to make product grades that can be used in any other item in the sector." The Minerv PHA Supertoys research and development project launched in December 2015 is dedicated to all companies around the world working on toy design and aims to create two types of bioplastic by the end of 2017: Minerv PHA Supertoys type "R", rigid and strong, and Minerv PHA Supertoys type "F", ductile and flexible. Bag litter numbers fall at UK beaches PRW November 23, 2016
6 The 5-pence charge has been introduced across the year over the last four years, starting in Wales. The now United Kingdom-wide charge for single use plastic retail bags has had a significant impact on the amount being carelessly thrown away by consumers, according to the Marine Conservation Society (MCS). In its latest Great British Beach Clean report, the MCS said the number of plastic bags found across 364 beaches around the U.K. — which had been "swept" by nearly 6,000 volunteers over one weekend in September — had fallen by 40 percent in a year. The northwest of England saw the greatest reduction in bags found along 100-meter-long stretches of coastline, down 67 percent, while the southwest witnessed a 63 percent fall. In the southeast the figure was 51 percent lower than last year. In Scotland, where a 5-pence charge has been in place since 2014, the decline was smaller, at 10 percent, while Wales, which introduced a charge five years ago, saw littered bags down by a third. MCS Beachwatch Manager Lauren Eyles, said the charge had been vindicated in terms of lessening the impact of bags on the country’s beaches: “In the last decade, our Great British Beach Clean volunteers have found an average of 10 single use carrier bags for every 100 meters of coastline cleaned. “This year, for the first time since the charges were introduced, we’ve seen a significant drop in the number and that can only be as a result of the charge which is now in place in all the home nations. “It vindicates the charge, which we predicted would be good news for the marine environment. Thanks to our thousands of fantastic volunteers who collect beach litter data, we can now see the impact these charges have had.” However Eyles said the figure of 268,384 individual pieces of plastic picked up by MCS beach cleaners was a “disaster,” despite the amount being less than last year’s tidy-up operation. Analysis from the MCS said that 43 percent of the litter found on U.K. beaches was too small to identify, and it was impossible to accurately predict where it had come from. While the figure of an average of 649 littered items collected per 100 meters was a 4 percent decrease on last year, data collected by Great British Beach Clean volunteers also showed a rise of more than 4 percent in the quantity of drinks containers found — including plastic bottles, bottle tops and aluminum cans. Iowa State University Scientists Explore Environmental Advantages Of Horticultural Bioplastics (Nov 23, 2016)
7 New bioplastic materials may enable gardeners to tend their plants more sustainably and could even help plants “self-fertilize” and grow healthier roots, according to research conducted by Iowa State University horticulturists. Bioplastics present a range of environmental advantages, such as improved biodegradability, that conventional petroleum-based plastics can’t claim, said William Graves, associate dean of the ISU Graduate College and professor of horticulture. Graves, along with James Schrader, an associate scientist in horticulture, and a team of researchers recently concluded a five-year study of bioplastics in an attempt to identify materials that show promise for horticultural uses, such as the plastic pots and flats that retailers use to sell immature plants. Bioplastics come from renewable biological sources, such as plants, and large-scale adoption in the marketplace could ease dependence on fossil fuels, he said. The study looked at numerous options for bioplastic derived from sources such as polylactic acid and the more biodegradable polyhydroxyalkanoates. They also included byproducts that result from the production of corn, soybeans and ethanol. “We narrowed the available materials down to a small number and found a handful of options that can be the solutions, depending largely on the length of use,” Graves said. They found bioplastic containers have the potential to offer another major advantage that petroleum products can’t: the ability to self-fertilize plants. Graves said plastics made from bio-based materials can release nutrients as the plastic degrades. That may lessen the workload for gardeners, and it also encourages root growth that will improve a plant’s performance once transplanted into soil or into another container, he said. The study, funded by a $1.94 million grant from the U.S. Department of Agriculture’s National Institute for Food and Agriculture, turned up some surprising results while conducting market research on consumer preferences regarding bioplastics. The researchers expected consumers to prefer bioplastic products that resembled petroleum plastics as closely as possible in appearance, color and texture. The results, however, showed some consumers wanted something different from more environmentally friendly options. “A lot of people want a biocontainer to look earthy and not artificial,” Graves said. That preference might free bioplastic manufacturers from the need to recreate the appearance of conventional plastics, he said. The study concluded that pots derived from bioplastic cost between two and 11 cents more per unit to manufacture than pots made from conventional petroleum plastics. But Schrader said some gardeners may be willing to pay a little extra for products they perceive as helpful for the environment. He sees bioplastics as an opportunity to cater to a niche market that could expand over time.
8 “Our results show that people may be willing to pay a premium for sustainability and for the fertilizer option,” Schrader said. “The market will start small, with smaller growers selling to environmentally minded clients, but that’ll get the ball rolling, and market share will evolve as prices for bioplastic approach equilibrium with petroleum-based plastic.” How 3D printing could help save diabetics’ soles (ndlr: c’est pas du biodegradable mais c’est quand même très intéressant !) Ben Coxworth November 14th, 2016 A prototype LAUF insole(Credit: Fraunhofer) Because diabetics often lack feeling in their feet, it is vitally important that they have footwear that fits. If they don't, they can develop pressure sores that will take a long time to heal, and sometimes even lead to amputation. That's why they frequently get custom orthopedic insoles made for their shoes. Now, it's looking like 3D printing could make those insoles even better. The printed insoles are being developed via Germany's LAUF (laser-assisted construction of customized footwear) project. Patients start by getting a 3D scan of their feet done, as opposed to having plaster casts made. That scan is used to create computer models that not only show the shape of their feet, but that also indicate pressure points along their soles. Based on that information, computer models of the insoles are created. Utilizing those models, a laser sintering process is used to selectively melt thermoplastic polyurethane powder, building the insoles up one layer at a time. By varying the internal structure of the insoles, it's possible to control how rigid or soft they are in different areas, allowing for either firm support or cushioning as needed. As is the case with the 3D-printed orthopedic corsets we recently heard about, the printed insoles are said to be more effective than their handmade counterparts, plus they can be made quicker and at a lower cost.
9 It is estimated that software for creating the insoles may be commercially available within about two years. In the meantime, both Wiivv and Sols are also developing 3D-printed insoles – although not specifically for diabetics. Protein feed and bioplastic from farm biogas 17/11/2016 VTT VTT has developed a solution for converting even small sources of methane-rich biogas into raw materials for animal feed or bioplastic on farms, landfills and wastewater treatment plants. This emission-reducing solution is based on the ability of methanotrophic bacteria to grow on methane in gas fermentors. Methane-rich biogas is generated on farms, landfills and wastewater treatment plants in anaerobic digestion of biological material. Until now, the processing of such gas into biomethane has only been viable on large biogas-producing sites; small biogas sources such as farms have remained largely unexploited. The method developed by VTT would reduce emissions, increase the use of biogas and improve protein self-sufficiency. It is based on the ability of methanotrophic bacteria to grow in aerobic conditions in gas fermentors, using methane as the source for carbon and energy. The process is as follows: The methane gas generated by anaerobic digestion is fed into a gas fermentor. A growth medium containing the methanotrophic bacteria circulates through the pipes of the gas fermentor, creating a single-cell protein biomass with a protein content of around 60%. The cell mass is filtered, pasteurised and dried. The methanotrophic bacteria and (depending on the growth conditions) cell mass may also contain polyhydroxybutyrate plastic (PHB) – a natural substance in the cells that enables them to store conserve energy. For example, PHB can be used as a raw material for biodegradable packaging material, instead of oil-based and non-biodegradable plastics such as polypropylene (PP). The cell mass may contain 50% half of the PHB, in which case the protein content is around 30%. Extraction is used to separate the PHB and protein fractions from the dried cell mass. The production rate of VTT's method needs to be improved: a couple of years of development work lies ahead. In addition, the protein fraction's suitability as a feed component needs to be tested.
10 Based on previous studies, single-cell proteins produced using micro-organisms can be substituted for ingredients such as meat, soya, egg whites or fish in food and feed. Finland is import-dependent with respect to soya: a fluctuating worldwide crop causes price fluctuations and uncertainty about the availability of this foodstuff. In Europe and Finland, attempts are being made to meet the challenge of protein feed for domesticated animals by improving protein self-sufficiency. This mainly involves promoting the production of vegetable protein. The production of single-cell proteins represents a good opportunity to improve our protein self-sufficiency. Infographic: VTT's gas fermentation process Photo 1: Metanotrophic protein biomass (Photo: VTT) Photo 2: Metanotrophic bacteria culture (Photo: VTT)
11 Photo 3: Gas fermentor (Photo: VTT) Natural pigments and useful raw materials from autumn leaves for industry 01/11/2016 VTT Autumn leaves contain a range of interesting substances such as pigments, carbohydrates, proteins and compounds that inhibit the growth of harmful bacteria. VTT Technical Research Centre of Finland is developing leaf-processing technologies, which could be used by the cosmetics, textile and feed and food industries. Very little use has been made of fallen leaves so far. They are either left on the ground, composted or burned resulting in full landfills and a growing carbon dioxide load. Autumn leaves derive their colour from orange and yellow carotenoids and red anthocyanins. In addition to pigments, autumn leaves contain many beneficial compounds, such as phenols, lignin, carbohydrates and protein. There is a fast-growing need for natural pigments in various industries around the world - for example, these natural pigments can even have health- promoting effects and use as nutraceuticals. In a process developed by VTT, leaves gathered in gardens and parks are dried and ground, and compounds are extracted. The processing stages were developed by VTT in laboratory experiments; R&D has now entered the piloting stage, using leaf material collected in the Otaniemi area by waste disposal company Lassila & Tikanoja. Special attention has been paid to the environmental friendliness of the overall process and the safety of the compounds produced. "In laboratory experiments, we discovered several, promising alternative ways of utilising leaves. Piloting assays are under way, in which we are examining how our methods work in practice and what quantities of valuable compounds can be extracted from the leaves," comments Liisa Nohynek, Senior Scientist at VTT. Pigments for cosmetics and textiles
12 Pigments from autumn leaves can be used to colour cosmetics and textiles. The chemical composition of leaves varies largely between different tree species. Added value can be obtained by processing the autumn leaves of certain tree types only, thereby producing well- defined compounds suitable for new products. Residual biomass, which is remaining after extraction, is high in nutrients and suitable for soil improvement in home gardens. On the other hand, this waste can also be further processed to compounds that inhibit the growth of harmful microbes, thus being suitable e.g. for cosmetic and hygiene products. Nohynek believes that the methods developed by VTT are applicable for raw material processors and for example in textile and cosmetic industries. In addition, the residual material offers business opportunities for firms in the horticultural, cosmetics, hygiene and pharmaceutical sectors. Future prospects: bioactive compounds and nutritional supplements Furthermore, also other applications could be developed for autumn leaves. Compounds obtained from the leaves may be suitable for use as food colouring and preservatives, and as nutritional supplements. In addition, these colourants could be used to improve the nutritional properties of edible plant cells under development at VTT. New bioactive compounds could be obtained for the cosmetic and pharmaceutical industries, by using biotechnological methods to modify pigments. In addition, the carbohydrates from the extraction residue could be used to produce protein-rich feed for livestock and protein supplements for people. This nutrient-rich residual biomass can also have domestic applications, for example in growing mushrooms. Furthermore, also other applications could be developed for autumn leaves. Compounds obtained from the leaves may be suitable for use as food colouring and preservatives, and as nutritional supplements. In addition, these colourants could be used to improve the nutritional properties of edible plant cells under development at VTT. New bioactive compounds could be obtained for the cosmetic and pharmaceutical industries, by using biotechnological methods to modify pigments. In addition, the carbohydrates from the extraction residue could be used to produce protein-rich feed for livestock and protein supplements for people. Furthermore, the nutrient-rich residual biomass can also have domestic applications, for example in growing mushrooms.
13 Reverdia and Xinfu Sign Agreement for Biosuccinium® Supply and Collaboration 15 November 2016 (Ndlr: les français ont refusé toute collaboration…c’est les américains qui prennent la place. Xinfu est un des premiers fabricants de PBAT en Chine) Reverdia announced today that it has signed a strategic partnership with Hangzhou Xinfu Science & Technology Co., Ltd. (Xinfu). The partnership represents a collaboration to adopt Biosuccinium® in bio-based polymers and co-polymers for the packaging industry, as well as a long-term supply agreement. Xinfu is a global pioneer in fully biodegradable resins and films. It will exclusively use Biosuccinium® for producing bio-based polymers, derivatives and new cutting-edge biomaterials for packaging applications such as (compostable) single-use bags. Mr. Lin, Executive Director at Xinfu and Member of the Board said, “We have been working with Reverdia since 2011 and proudly commit to this long-term partnership, which will develop more sustainable technologies and materials.” “These new materials will target the biodegradable packaging market,” said Marcel Lubben, President of Reverdia. “We’re excited to work with an industry pioneer like Xinfu on bio- based solutions and this agreement is yet another example of Reverdia’s global leadership in value chain innovation.” Xinfu is based in Hangzhou, the capital city of Zhejiang Province, China About Hangzhou Xinfu Science & Technology Co., Ltd. Based in China, Hangzhou Xinfu is a global industry pioneer in fully biodegradable resins and films. It possesses leading in-house R&D from manufacturing to business development and builds a strong portfolio on its new generation of bio-based plastics. About Reverdia Reverdia enables the bio-based materials of tomorrow with its industry-leading Biosuccinium® offering. It works with brand owners and manufacturers on application co- development for sustainable products. Produced since 2012, Biosuccinium® is sold globally. The Biosuccinium® Technology is also offered under license to value chain partners and co- producers.
14 Sacs en plastique : quand le marché s’emballe ! Lundi 28 Novembre 2016 Josiane Mambou Loukoula (Afrique Centrale-Bassin du Congo) Halte aux « Niaou » ! Depuis l’interdiction des sachets, le conditionnement de certains produits demeure un casse-tête. Bien d’alternatives sont prises, annonçant ainsi une guerre « intelligente » causée par le manque d’alternatives concluantes pour certains commerçants ambulants. Photo1: Le yaourt local conditionné dans du sachet-interdit, (DR) De nombreux pays interdisent désormais les conditionnements non biodégradables. Entre les sociétés proposant des alternatives, la compétition est lancée. Des sociétés françaises acheminent vers le continent 1800 tonnes d’emballages alimentaires par an, pour un chiffre d’affaires de 4 millions d’euros. Plus qu’une tendance, l’Afrique se lance dans la chasse aux emballages non biodégradables, véritable fléau dont les sacs en plastique échoués sur tout le continent sont devenus un symbole encombrant. L’interdiction de la production et de l’importation des emballages en plastique a donc des motivations économiques tant qu’écologiques. Solide, étanche, sans danger pour la santé lorsqu’il est traité pour le contact alimentaire, le plastique possède des propriétés qui en font un matériau difficilement remplaçable, notamment dans l’industrie agroalimentaire. Face à la pollution, les sacs biodégradables ou oxo-biodégradables, en papier, en tissus, sont là des alternatives aux sacs non dégradables. Photo 3: papier des journaux servant d'emballage pour les cacahuètes (DR Seuls hic : son prix. Environ 75 % de plus qu’un sac classique. Le prix ne joue donc pas en faveur des bioplastiques. Il y a cinq ans environ, un sac plastique fin revenait à 25 Fcfa, aujourd’hui un sac biodégradable coûte 100 Fcfa voire 150 à 250 Fcfa. En conséquence, cette mesure ne favorise qu’une catégorie de commerçants et de consommateurs. Alors qu’en est-il des petits commerçants exerçant dans l’informel ? Comme nous le savons tous, ce secteur est le plus dynamique au Congo. Pour ne pas être en déphasage
15 avec la loi, bien de commerçants trouvent des alternatives pour combler ce vide. Les vendeurs de farine de manioc, de chips (fait maison), pop-corn et autres, utilisent généralement des papiers de journaux ; des pots en plastique, en papier, en aluminium, et autres pour emballer leurs produits. Photo 2: Papier emballage (DR) Mais de l’autre côté, naît un phénomène dit « Niaou » ou « Bord ezanga kombo ». Bien que la production, l’importation, la commercialisation et l’utilisation des sacs et des films en plastique soient interdite, un marché noir voit le jour au mépris de la loi. Pour cause : aucune alternative concluante pour les commerçants ambulants, surtout ceux vendant des produits en liquide à l’instar du bissap, du jus de fruits, du ski, de l'eau glacée et autres. Pourtant voué à l’interdit, le sachet continue, pour de tierces raisons, à être commercialisé sous les manteaux au risque d’une amende et de peines d’emprisonnement. Pour arrêter l’hémorragie d’un marché favorisant la spoliation de l’environnement, il faut donc accélérer l'émergence d'alternatives compostables et biosourcées. Ainsi, face à la perspective d'une perte de marché, les industriels de la plasturgie se doivent de produire des emballages plus épais, tout en étant plus petits, pour conditionner des jus de fruits, yaourt (local), eau glacée et autres liquides. Ainsi, pour mettre fin à cette guerre « intelligente », qui s’annonce sous une forme pacifique, il est plus que temps d’ouvrir un marché parallèle pour ces petits commerçants, à l’instar de celui des emballages biodégradables, lavables, durables, réutilisables et récupérables en fin de vie ; qui du reste demeurent insuffisants au regard des activités de packaging de plus en plus importantes dans le commerce informel. Les multiples difficultés pour la collecte, le transfert et l’élimination des déchets ont des impacts tant environnementaux, que sanitaires. L’incinération des déchets plastiques dont la matière première est d’origine fossile, émet du dioxyde de carbone, ce qui accentue le réchauffement climatique. Même si les défenseurs de l’environnement pensent que l’interdiction des sacs en plastique n’est qu’une partie émergée de l’iceberg, face à l’immense quantité de déchets ; des alternatives sont plus importantes à l’heure où l’écosystème se dégrade peu à peu par simple inattention. La valeur environnementale de création d’une alternative solide aux emballages en plastiques est donc de mise.
16 Perturbateurs endocriniens : halte à la manipulation de la science. “Il n’est plus acceptable de nous taire”, Près de cent scientifiques dénoncent la fabrication du doute par les industriels, déjà à l’œuvre dans la lutte contre le changement climatique. LE MONDE | 29.11.2016 NDLR : pour rappel, SERPBIO peut déterminer de manière exhaustive la présence ou non de perturbateurs endocriniens dans vos matériaux. N’hésitez pas à demander une certification en vous adressant directement à cesar.guy@neuf.fr Depuis des décennies, la science est la cible d’attaques dès lors que ses découvertes touchent de puissants intérêts commerciaux. Des individus dans le déni de la science ou financés par des intérêts industriels déforment délibérément des preuves scientifiques afin de créer une fausse impression de controverse. Cette manufacture du doute a retardé des actions préventives et eu de graves conséquences pour la santé des populations et l’environnement. Les « marchands de doute » sont à l’œuvre dans plusieurs domaines, comme les industries du tabac et de la pétrochimie ou le secteur agrochimique. A elle seule, l’industrie pétrochimique est la source de milliers de produits toxiques et contribue à l’augmentation massive des niveaux de dioxyde de carbone atmosphérique, à l’origine du changement climatique. La lutte pour la protection du climat est entrée dans une nouvelle ère avec l’accord de Paris de 2015, malgré la farouche opposition de climatosceptiques sourds au consensus établi par les scientifiques engagés pour travailler dans l’intérêt général. Une lutte comparable fait actuellement rage autour de la nécessaire réduction de l’exposition aux perturbateurs endocriniens. La Commission européenne s’apprête à mettre en place la première réglementation au monde sur le sujet. Bien que de nombreux pays aient également manifesté leur inquiétude à l’égard de ces produits chimiques, aucun n’a instauré de réglementation qui les encadrerait globalement. Jamais l’humanité n’a été confrontée à un fardeau aussi important de maladies en lien avec le système hormonal Jamais l’humanité n’a été confrontée à un fardeau aussi important de maladies en lien avec le système hormonal : cancers du sein, du testicule, de l’ovaire ou de la prostate, troubles du développement du cerveau, diabète, obésité, non-descente des testicules à la naissance, malformations du pénis et détérioration de la qualité spermatique. La très grande majorité des scientifiques activement engagés dans la recherche des causes de ces évolutions préoccupantes s’accordent pour dire que plusieurs facteurs y contribuent, dont les produits chimiques capables d’interférer avec le système hormonal.
17 Des sociétés savantes signalent que ces produits chimiques, appelés les perturbateurs endocriniens, constituent une menace mondiale pour la santé. Parmi ceux-ci : les retardateurs de flamme présents dans les meubles et l’électronique, les agents plastifiants dans les matières plastiques et les produits d’hygiène, ou encore les résidus de pesticides dans notre alimentation. Ils peuvent interférer avec les hormones naturelles lors de périodes critiques du développement, pendant la grossesse ou la puberté, lorsque notre organisme est particulièrement vulnérable. Une réglementation nécessaire On ne peut faire face à ce fardeau croissant de maladies à l’aide de meilleurs traitements médicaux : non seulement ces traitements n’existent pas toujours, mais les effets des perturbateurs endocriniens sur la santé sont bien souvent irréversibles. Les possibilités de réduire notre exposition à un niveau individuel en évitant certains produits de consommation sont, elles aussi, limitées. La plupart de ces substances atteignent notre organisme par le biais de notre alimentation. Seule solution pour enrayer la hausse des maladies liées au système hormonal : prévenir l’exposition aux produits chimiques à l’aide une réglementation plus efficace. Or le projet d’établir une réglementation de ce type dans l’Union européenne est activement combattu par des scientifiques fortement liés à des intérêts industriels, produisant l’impression d’une absence de consensus, là où il n’y a pourtant pas de controverse scientifique. Cette même stratégie a été utilisée par l’industrie du tabac, contaminant le débat, semant le doute dans la population et minant les initiatives des dirigeants politiques et des décideurs pour développer et adopter des réglementations plus efficaces. Les discussions sur le changement climatique et sur les perturbateurs endocriniens ont toutes deux souffert de cette déformation des preuves scientifiques par des acteurs financés par l’industrie. La plupart des scientifiques pensent qu’exprimer publiquement leur point de vue sur des questions politiques et participer aux débats de société pourrait compromettre leur objectivité et leur neutralité. Ce serait effectivement inquiétant si nos opinions politiques obscurcissaient notre jugement scientifique. Mais ce sont ceux qui nient la science qui laissent leurs opinions politiques obscurcir leur jugement. Avec, pour conséquence, des dommages irréparables. La manipulation de la science concernant les effets de la fumée du tabac a coûté des millions de vies. Nous ne devons pas refaire la même erreur. Une urgence Nous considérons qu’il n’est plus acceptable de nous taire. En tant que scientifiques, nous avons en fait l’obligation de participer au débat et d’informer le public. Nous avons la responsabilité de rendre visibles les implications de nos travaux pour la société et les générations futures, et d’attirer l’attention sur les graves dangers qui nous menacent. Les enjeux sont importants, et l’action politique pour endiguer l’exposition aux perturbateurs endocriniens et les conséquences des émissions de gaz à effet de serre est devenue une urgence.
18 Scientifiques spécialistes des perturbateurs endocriniens ou du changement climatique, nous avons uni nos forces, car un grand nombre d’actions essentielles à la limitation des effets des perturbateurs endocriniens contribueront également à lutter contre le changement climatique. La plupart des substances chimiques synthétisées par l’homme sont des dérivés de combustibles fossiles produits par l’industrie pétrochimique. Une réduction de la quantité de pétrole raffiné permettra aussi de réduire la quantité de sous-produits utilisés dans les plastiques et celle de plastifiants : ces produits chimiques compromettent la santé reproductive masculine et contribuent au risque de certains cancers. Une réduction de la dépendance aux combustibles fossiles et un encouragement au développement des énergies alternatives entraîneront non seulement une baisse des émissions de gaz à effet de serre, mais aussi de celles de mercure. Ce dernier, un contaminant issu du charbon, émis dans l’air et accumulé dans le poisson, finit par atteindre nos organismes et compromet le développement du cerveau. Créer l’équivalent du GIEC Bien que de nombreux Etats aient exprimé la volonté politique de traiter le problème des gaz à effet de serre, la traduction des connaissances scientifiques sur le changement climatique en action politique effective a été bloquée, notamment à cause de la désinformation du public et des dirigeants. Les gouvernements sont déjà en retard. Il est important de ne pas répéter ces erreurs avec les perturbateurs endocriniens, et d’apprendre de l’expérience des scientifiques du climat et de la recherche en santé publique. Dans la pratique, il sera très difficile de reconnaître une substance dangereuse comme perturbateur endocrinien dans l’Union européenne La Commission européenne a maintenant l’opportunité de choisir des instruments de réglementation qui pourront fixer de nouveaux standards pour le monde entier afin de nous protéger des effets nocifs des perturbateurs endocriniens. Nous sommes cependant préoccupés par les options réglementaires que propose aujourd’hui Bruxelles, très éloignées des mesures nécessaires pour protéger notre santé et celle des générations futures. Les options proposées pour identifier les perturbateurs endocriniens requièrent un niveau de preuve bien plus élevé que pour d’autres substances dangereuses, comme celles cancérigènes. Dans la pratique, il sera très difficile de reconnaître une substance dangereuse comme perturbateur endocrinien dans l’Union européenne. Des actions urgentes sont nécessaires sur les deux thèmes. Pour cette raison, nous appelons au développement et à la mise en œuvre de mesures qui s’attaqueraient aux perturbateurs endocriniens et au changement climatique de façon coordonnée. Un moyen efficace pourrait être la création, sous les auspices de l’Organisation des Nations unies, d’un groupe ayant le même statut international et les mêmes prérogatives que le Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC). Ce groupe serait chargé d’évaluer les connaissances scientifiques destinées aux responsables politiques dans l’intérêt
19 général et mettrait la science à l’abri de l’influence des intérêts privés. Nous le devons aux générations qui vivront demain. Les premiers signataires de ce texte sont : Andreas Kortenkamp, université Brunel (Royaume-Uni) ; Barbara Demeneix, CNRS/Muséum national d’histoire naturelle ; Rémy Slama, Inserm, université Grenoble-Alpes ; Edouard Bard, Collège de France ; Ake Bergman, université de Stockholm (Suède) ; Paul R. Ehrlich, université Stanford (Etats-Unis) ; Philippe Grandjean, Harvard Chan School of Public Health (Etats-Unis) ; Michael E. Mann, université Penn State (Etats-Unis) ; John P. Myers, université Carnegie Mellon (Etats- Unis) ; Naomi Oreskes, université Harvard (Etats-Unis) ; Eric Rignot, université de Californie (Etats-Unis) ; Thomas Stocker, université de Berne (Suisse) ; Kevin Trenberth, National Centre for Atmospheric Research (Etats-Unis) ; Jean-Pascal van Ypersele, université catholique de Louvain (Belgique) ; Carl Wunsch, Massachusetts Institute of Technology (Etats-Unis) ; et R. Thomas Zoeller, université du Massachusetts à Amherst (Etats-Unis). Sont également signataires de ce texte Ernesto Alfaro-Moreno, centre de recherche Swetox (Suède) ; Anna Maria Andersson, Rigshospitalet (Danemark) ; Natalie Aneck-Hahn, université de Pretoria (Afrique du Sud) ; Patrik Andersson, université d’Umeå (Suède) ; Michael Antoniou, King’s College (Royaume-Uni) ; Thomas Backhaus, université de Göteborg (Suède) ; Robert Barouki, université Paris-Descartes (France) ; Alice Baynes, université Brunel (Royaume-Uni) ; Bruce Blumberg, université de Californie à Irvine (Etats-Unis) ; Carl-Gustaf Bornehag, université de Karlstad (Suède) ; Riana Bornman, université de Pretoria (Afrique du Sud) ; Jean-Pierre Bourguignon, université de Liège (Belgique) ; François Brion, Ineris (France) ; Marie-Christine Chagnon, Inserm (France) ; Sofie Christiansen, université Technique du Danemark (Danemark) ; Terry Collins, université Carnegie Mellon (Etats-Unis) ; Sylvaine Cordier, Irset (France) ; Xavier Coumol, université Paris-Descartes (France) ; Susana Cristobal, université de Linköping (Suède) ; Pauliina Damdimopoulou, hôpital universitaire Karolinska (Suède) ; Steve Easterbrook, université de Toronto (Canada) ; Sibylle Ermler, université Brunel (Royaume-Uni) ; Silvia Fasano, université de Campania - Luigi Vanvitelli (Italie) ; Michael Faust, F + B Environmental Consulting (Allemagne) ; Marieta Fernandez, université de Grenade (Espagne) ; Jean-Baptiste Fini, CNRS/Muséum national d’histoire naturelle (France) ; Steven G. Gilbert, Institute of neurotoxicology & neurological disorders (Etats-Unis) ; Andrea Gore, université du Texas (Etats-Unis) ; Eric Guilyardi, université de Reading (Royaume-Uni) ; Åsa Gustafsson, Swetox (Suède) ; John Harte, université de Californie à Berkeley (Etats-Unis) ; Terry Hassold, université d’Etat de Washington (Etats-Unis) ; Tyrone Hayes, université de Californie à Berkeley (Etats-Unis) ; Shuk-Mei Ho, université de Cincinnati (Etats-Unis) ; Patricia Hunt, université d’Etat de Washington (Etats-Unis) ; Olivier Kah, université de Rennes (France) ; Harvey Karp, université de Californie du Sud (Etats-Unis) ; Tina Kold Jensen, université du Danemark du Sud (Danemark) ; Sheldon Krimsky, université Tufts (Etats-Unis) ; Henrik Kylin, université de Linköping (Suède) ; Susan Jobling, université Brunel (Royaume-Uni) ; Maria Jönsson, université d’Uppsala (Suède) ; Bruce Lanphear, université Simon Fraser (Canada) ; Juliette Legler, université Brunel (Royaume-Uni) ; Yves Levi, université Paris Sud (France) ; Olwenn Martin, université Brunel (Royaume-Uni) ; Angel Nadal, université Miguel Hernández (Espagne) ; Nicolas Olea, université de Grenade (Espagne) ; Peter Orris, université de l’Illinois (Etats-Unis) ; David Ozonoff, université de Boston (Etats-Unis) ; Martine Perrot-Applanat, Inserm (France) ; Jean-Marc Porcher, Ineris (France) ; Christopher Portier, Thun, (Suisse) ; Gail Prins, université de l’Illinois (Etats-Unis) ; Henning Rodhe, université de Stockholm (Suède) ; Edwin J. Routledge, université Brunel (Royaume-Uni) ; Christina Rudén, université de Stockholm (Suède) ; Joan Ruderman, Harvard Medical School (Etats-Unis) ; Joelle Ruegg, institut Karolinska (Suède) ; Martin Scholze, université Brunel (Royaume-Uni) ; Elisabete Silva, université Brunel (Royaume-Uni) ; Niels Eric Skakkebaek, Rigshospitalet (Danemark) ; Olle Söder, institut Karolinska (Suède) ; Carlos Sonnenschein, université Tufts (Etats-Unis) ; Ana Soto, université Tufts (Etats- Unis) ; Shanna Swann, Icahn School of Medicine (Etats-Unis) ; Giuseppe Testa, université de Milan (Italie) ; Jorma Toppari, université de Turku (Finlande) ; Leo Trasande, université de New York (Etats-Unis) ; Diana Ürge-Vorsatz, université d’Europe centrale (Hongrie) ; Daniel Vaiman, Inserm (France) ; Laura Vandenberg, université du Massachusetts, (Etats-Unis) ; Anne Marie Vinggaard, université technique du Danemark (Danemark) ; Fred vom Saal, université du Missouri (Etats-Unis) ; Jean-Pascal van Ypersele, université catholique de Louvain (Belgique) ; Bernard Weiss, université de Rochester (Etats-Unis) ; Wade Welshons, université de Missouri (Etats-Unis) ; Tracey Woodruff, université de Californie à San Francisco (Etats-Unis).
20 PolyOne’s OnColor™ BIO Colorants Receive Certification from Vinçotte Published on 2016-11-10. Author : SpecialChem DÜSSELDORF, Germany -- PolyOne has announced that its OnColor™ BIO color concentrates have received OK compost HOME certification from Vinçotte. By selecting these advanced masterbatch colorants, manufacturers who produce bio- degradable polymer packaging can avoid the significant costs and time required to test their products for at-home compostability. Bio-solutions for Packaging Producers PolyOne offers OK compost HOME certification for a full range of color concentrates compatible with bio-degradable polymers. Application of OnColor™ BIO • Each of these color concentrates is based on biopolymer carriers and can be used at normal loadings and dosed in the standard way. • OnColor BIO colorants can be processed by injection, extrusion and blow molding processes, and are used in a wide variety of end-use applications. Bio-solutions for Packaging • PolyOne also offers OnColor Smartbatch™ BIO concentrates, which combine OnColor BIO colorants and OnCap™ BIO additives into a single masterbatch. “Our OnColor BIO concentrates have been specifically designed to help our customers comply with new, increasingly rigorous home composting legislation,’’ said Christoph Palm, vice president, general manager, Color and Additives EMEA & India for PolyOne. “Combining our advanced colorant technology with bio-based polymers reduces the risk and cost of post-process testing, allowing processors to take full advantage of the emerging market for bags and packaging capable of home composting.” Plastic Packaging OnColor BIO solutions address a previously unmet market need by enabling packaging producers to proactively meet toughening legislation, such as France’s new Energy Transition Law. Beginning January 1, 2017, the new law will require single-use carrier bags thinner than 50 microns – often called fruit and vegetable bags – to meet the French standard (T51-800 standard) for home composting. The law also applies to plastic packaging used for mail publications. OnColor BIO color concentrates perform well with the bioplastics used in these applications. Available in a full palette of color choices, these colorants do not compromise the organic decomposition of the polymers they enhance. PolyOne displayed products made with these concentrates in Hall 8a, stand J15 during K 2016 in Düsseldorf, Germany.
21 Global bioplastics industry growing steadily By Plastics News Europe 30 November 2016 Photo by European Bioplastics The bioplastics market is set to grow by 50% over the next few years says European Bioplastics. Presented at the 11th European Bioplastics Conference in Berlin, Germany, the European Bioplastics' market update has revealed that the global bioplastics industry's production capacity is set to increase from around 4.2 million tonnes in 2016 to 6.1 million tonnes in 2021. “The market is predicted to grow by 50% over the coming years despite the low oil price,” said François de Bie, Chairman of European Bioplastics. The organisation states that packaging remains the largest market for bioplastics, taking almost 40% (1.6 million tonnes) of the total bioplastics share in 2016. The report shows an increase in the uptake of bioplastics in sectors such as consumer goods (22% or 0.9 million tonnes) and the automotive and transport sector (14% or 0.6 million tonnes). Also the construction and building sector has seen a rise in bioplastic use (13% or 0.5 million tonnes), where technical performance plastics are being used. Bio-based, non-biodegradable plastics, such as polyurethanes (PUR) and bio-based PE and bio-based PET, are the main drivers of this growth, with PUR1 making up around 40% and PET over 20% of the global bioplastics production capacities, says European Bioplastics. Production capacities of biodegradable plastics, such as PLA, PHA, and starch blends, are also growing steadily, says the organisation, and predicts them to increase from around 0.9 million tonnes in 2016 to almost 1.3 million tonnes in 2021. Around a quarter of the global bioplastics production capacity is estimated to be located in Europe by 2021. “The data illustrates an important trend, driven by changing consumer demands, to make plastic products more resource efficient and to reduce greenhouse gas emissions and the dependency on fossil resources. This trend is the result of substantial investments in research and development by the many innovative small and large companies that concentrate their strengths on the development of bio-based products designed with the circular economy in mind,” states de Bie.
You can also read