Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany

Page created by Amber Turner
 
CONTINUE READING
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
1

Biodegradable PLGA Polymer Capacity Expansion by
Evonik in USA & Germany
Published on 2016-11-21. Author : SpecialChem

ESSEN, Germany -- Evonik has announced to expand its production facilities in Birmingham
(Alabama, USA) and Darmstadt (Germany). This will create additional capacity for the
production of biodegradable polymers marketed globally under the brand names
RESOMER® and RESOMER® SELECT. These poly-lactic-glycolic-acid (PLGA)
copolymers are primarily used to manufacture bioresorbable medical devices and controlled-
release formulations for parenteral drug delivery.

Bioresorbable Polymer Market Leadership
Paul Spencer, Head of Biomaterials at Evonik’s Health Care Business Line, explained:
"We expect the global demand for biodegradable polymers to continue to grow in the coming
years. With this in mind, we are currently investing to increase the capacity of our production
facilities in order to serve our global customer base."

The expansion will involve construction of a new building adjacent to Evonik’s existing
facility in Birmingham. Besides greater production capacity, the project will also result in new
production clean rooms and a laboratory for polymer contract research projects.
Commissioning is slated for late 2018.
The expanded plant in Birmingham is the second investment to serve the growing market
demand after the inauguration of the new manufacturing site in Darmstadt two years ago. The
Darmstadt unit capacity will also be increased with the opening of a new production line.

Paul Spencer added:
"By serving the market from two state-of-the-art locations, Evonik strengthens its role as a
reliable partner for its customers and underpin its commitment to this market".

Applied Technology Laboratory
Moreover, Evonik will open an applied technology laboratory in Darmstadt at the end of the
year to support its customers in the medical device field. Its first facility of this kind was
completed in 2015 in Shanghai (China). At these laboratories, customers receive prompt
support for product development and training in the use of Evonik products.

The upcoming revision of the EU Fertilisers Regulation
and the benefits of biodegradable plastic mulch films

Kristy-Barbara Lange, Deputy Managing Director / Regulatory Affairs, EUBP 24/11/16
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
2

As part of the EU Circular Economy Package’s Action Plan, the European Commission has
proposed a revision of the Fertiliser Regulation. Discussions in the Parliament and the
Council are in full swing. In this context, European Bioplastics is advocating to consider the
benefits of biodegradable plastic mulch films for modern agriculture.

Kristy-Barbara Lange, Deputy Managing Director / Regulatory Affairs from European
Bioplastics answers some questions about the benefits of biodegradable mulch films and their
role in a revised EU Fertiliser Directive.

What is the current market situation for mulch films in Europe?

Europe has a grave microplastic problem that is partly caused by fossil-based plastic mulch
films, which are hard to collect and recycle due to the thinness of the film and heavy soiling.

The mulch film market in Europe amounts to about 80,000 tonnes, 95% of which are still,
fossil-based and non-biodegradable thin polyethylene films that are mostly produced outside
of Europe. Agriculture Plastics Environment (APE) Europe estimates hat of these 76,000
tonnes, more than 30% remain on the field and in the soil. Assessed conservatively, this
generates about 15,000 tonnes of microplastics each year that remain in fields across Europe.
The accumulation of plastic particles in the soil in some regions of Europe, such as southern
Spain, is already showing negative effects on plant growth and crop yields.

Could modern agriculture practises eliminate the need for mulch films altogether?

No. Plastic mulch films have many benefits and positive agronomical effects, including
increasing the yields, weed control, and soil improvement by reducing irrigation water and
mitigating wind and water soil erosion. Growing on bare soil would decrease yields
drastically – a scenario nobody can afford and which was substantiated amongst others by a
recent study of the University of Montpellier with regard to the fruiting yield of vineyards
(Touchaleaume et al., 2016).

How can biodegradable plastic mulches contribute to modern agriculture?
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
3

Biodegradable mulch films provide the same positive agronomical effects as conventional
mulches, while at the same time easing the burden on the soil. Biodegradable mulches can be
left on the field and ploughed under at the end of the crop cycle as they do not accumulate in
the soil but biodegrade to water, CO2, and biomass, without leaving toxic residues in the soil.

What legislative action is needed to support the uptake of biodegradable mulch films?

In some EU Members States, such as in France and Italy, standards for biodegradation of
mulches in soil already exist. Furthermore, the European Committee for Standardization
(CEN) is currently developing a European standard, which will be available early next year.
Clear criteria for biodegradation, ecotoxicology, and characteristics of biodegradable mulch
films are currently being defined.

Biodegradable mulches can help to decrease the generation of microplastics in agriculture,
while ensuring high yields. Furthermore, unlike conventional thin mulch films that are
imported from outside of Europe, biodegradable mulch films are mainly produced within the
EU.

With regard to the revision of the European Fertilisers Regulation, European Bioplastics
recommends to include biodegradable mulch films as soil improver – as it is already
implicitly covered by definitions and given in the annexes. Mentioning it explicitly would
harmonise and boost the market across Europe and help farmers to deal with the growing
problem of microplastics while keeping yields high.

Certification of bio-based content

By Harmen Willemse MSc, Consustant Bio-based Economy at NEN – Netherlands Standardization Institute
24/11/16

Bio-based products are products, which are wholly or partly derived from biomass. Therefore,
it is essential to characterize the amount of biomass contained in the product. The bio-based
content includes not only the amount of carbon, but also the elements hydrogen, oxygen, and
nitrogen.

A new ‘Bio-based content certification scheme’ developed by NEN – Netherlands
Standardization Institute will be launched at the 11th European Bioplastics Conference on
29/30 November 2016 in Berlin, by issuing the first certificates to products from Corbion and
Kraton.

Rethinking determination of bio-based content

The new method for the determination of the bio-based content was developed and validated
in two European 7th Framework Programme research projects: Knowledge Based Bio-based
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
4

Products’ Pre-Standardization (KBBPPS) and OpenBio; and captured in a European Standard
based on a standardization request by the European Commission (M/492). This European
standard, EN 16785-1:2015, describes the method for determination of the bio-based content
of solid, liquid and gaseous products, using radiocarbon analysis and elemental analyses. It
can be applied to any raw material, chemical, intermediate, semi-finished product or finished
product.

Enhancing communication

Reliable communication and credible claims about the bio-based content of products are
critical success factors for the acceptance of bio-based products and the deployment of the
bio-based economy. A group of European stakeholders has developed a certification system,
which can be used by organizations to make a validated claim on the (minimum share of) bio-
based content in their products.

Certify your product

The first certificates will be issued by the certification bodies DIN CERTCO and Vinçotte to
bio-based products produced by Corbion and Kraton. From then on, certification is open to all
suppliers of bio-based products. Any product containing biomass qualifies for certification.
Certification enables clear and transparent communication of the total bio-based content of
products, by means of a certificate and label with the percentage bio-based content.

Independent assessment

The „Bio-based content certification scheme“ is the single European certification scheme that
enables independent assessment of claims about the bio-based content of products, based on
the European standard EN 16785-1. It contains provisions for the determination, verification
and monitoring of the bio-based content of products or product families.

Bio-on & Italeri Start Final Phase Testing of Minerv PHA
Bioplastic
Published on 2016-11-21. Author : SpecialChem

BOLOGNA -- The final phase testing Minerv PHA Supertoys for making scale models has
begun, launched by Bio-on in collaboration with Italeri. The results will be presented in
February 2017 in Nuremberg, Germany during the "Play and toys fair", the sector's largest
and most prestigious event.
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
5

Minerv PHA Supertoys
    •   100% naturally biodegradable in water and soil
    •   Product is obtained through the natural fermentation of bacteria
    •   Currently in use in the plastic industry and can cover a vast
        range of strategic applications
    •   The Minerv PHA Supertoys special grade contains no
        substances classified as carcinogenic, mutagenic or toxic

Testing is applied to specific areas of Italeri's vast offer, such as its toy
soldiers (3 cm tall) which require extreme precision. The tests run thus
far have been positive and the two companies confirm the goal of
producing one of the world's first scale models made of the special
                                                                                Minerv PHA Supertoys
grade Minerv PHA Supertoys, a bioplastic developed by Bio-on's
laboratories for the toys of the future.

Biodegradable Formulations for Toys

Based on Bio-on's revolutionary biopolymer, 100% naturally biodegradable and already
tested in dozens of applications, from automotive to design to biomedical, Supertoys is safe,
hygienic and biodegradable, it meets and exceeds the provisions of the recent European
Directive 2009/48/EC, known as the TDS (Toy Safety Directive), implemented into the
standard international procedure for toy safety evaluation EN 71.
The Minerv PHA Supertoys project, launched by Bio-on in late 2015, aims to demonstrate
that specific, eco-sustainable and also completely biodegradable formulations can be
created for making models and toys that are safe for children and the environment, without
losing out on the end product's functionality and aesthetic.
"We are extremely pleased to present to the world the results of this important collaboration
with Italeri, a company that has written the history of global modeling," explains Bio-On
S.p.A. Chairman Marco Astorri, "because it is offering us the opportunity to develop new uses
for PHAs Supertoys biopolymers in thousands of different items with extremely high levels of
precision."
"It is very interesting and promising to create new models with a completely natural eco-
sustainable material," says Gian Pietro Parmeggiani and Giuliano Malservisi, the founders of
Italeri S.p.A.. In the toys sector, the future will increasingly demand more eco-sustainable
products and our company will play a leading role this time too."
Bio-on bioplastics are made from renewable waste plant sources, with no competition with
food supply chains, and are 100% naturally biodegradable. "Working with Italeri is very
important," explains Astorri, "because it allows us to create highly complex models that can
also be used on a large scale. Minimum tolerances and high quality enable us to make
product grades that can be used in any other item in the sector."
The Minerv PHA Supertoys research and development project launched in December 2015 is
dedicated to all companies around the world working on toy design and aims to create two
types of bioplastic by the end of 2017: Minerv PHA Supertoys type "R", rigid and strong, and
Minerv PHA Supertoys type "F", ductile and flexible.

Bag litter numbers fall at UK beaches
PRW November 23, 2016
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
6

  The 5-pence charge has been introduced across the year over the last four years, starting in
                                              Wales.
The now United Kingdom-wide charge for single use plastic retail bags has had a significant
impact on the amount being carelessly thrown away by consumers, according to the Marine
Conservation Society (MCS).
In its latest Great British Beach Clean report, the MCS said the number of plastic bags found
across 364 beaches around the U.K. — which had been "swept" by nearly 6,000 volunteers
over one weekend in September — had fallen by 40 percent in a year.
The northwest of England saw the greatest reduction in bags found along 100-meter-long
stretches of coastline, down 67 percent, while the southwest witnessed a 63 percent fall. In the
southeast the figure was 51 percent lower than last year.
In Scotland, where a 5-pence charge has been in place since 2014, the decline was smaller, at
10 percent, while Wales, which introduced a charge five years ago, saw littered bags down by
a third.
MCS Beachwatch Manager Lauren Eyles, said the charge had been vindicated in terms of
lessening the impact of bags on the country’s beaches: “In the last decade, our Great British
Beach Clean volunteers have found an average of 10 single use carrier bags for every 100
meters of coastline cleaned.
“This year, for the first time since the charges were introduced, we’ve seen a significant drop
in the number and that can only be as a result of the charge which is now in place in all the
home nations.
“It vindicates the charge, which we predicted would be good news for the marine environment.
Thanks to our thousands of fantastic volunteers who collect beach litter data, we can now see
the impact these charges have had.”
However Eyles said the figure of 268,384 individual pieces of plastic picked up by MCS
beach cleaners was a “disaster,” despite the amount being less than last year’s tidy-up
operation.
Analysis from the MCS said that 43 percent of the litter found on U.K. beaches was too small
to identify, and it was impossible to accurately predict where it had come from.
While the figure of an average of 649 littered items collected per 100 meters was a 4 percent
decrease on last year, data collected by Great British Beach Clean volunteers also showed a
rise of more than 4 percent in the quantity of drinks containers found — including plastic
bottles, bottle tops and aluminum cans.

Iowa State University Scientists Explore Environmental
Advantages Of Horticultural Bioplastics (Nov 23, 2016)
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
7

New bioplastic materials may enable gardeners to tend their plants more sustainably and
could even help plants “self-fertilize” and grow healthier roots, according to research
conducted by Iowa State University horticulturists.

Bioplastics present a range of environmental advantages, such as improved biodegradability,
that conventional petroleum-based plastics can’t claim, said William Graves, associate dean
of the ISU Graduate College and professor of horticulture. Graves, along with James Schrader,
an associate scientist in horticulture, and a team of researchers recently concluded a five-year
study of bioplastics in an attempt to identify materials that show promise for horticultural uses,
such as the plastic pots and flats that retailers use to sell immature plants.
Bioplastics come from renewable biological sources, such as plants, and large-scale adoption
in the marketplace could ease dependence on fossil fuels, he said.
The study looked at numerous options for bioplastic derived from sources such as polylactic
acid and the more biodegradable polyhydroxyalkanoates. They also included byproducts that
result from the production of corn, soybeans and ethanol.
“We narrowed the available materials down to a small number and found a handful of options
that can be the solutions, depending largely on the length of use,” Graves said.
They found bioplastic containers have the potential to offer another major advantage that
petroleum products can’t: the ability to self-fertilize plants.
Graves said plastics made from bio-based materials can release nutrients as the plastic
degrades. That may lessen the workload for gardeners, and it also encourages root growth that
will improve a plant’s performance once transplanted into soil or into another container, he
said.
The study, funded by a $1.94 million grant from the U.S. Department of Agriculture’s
National Institute for Food and Agriculture, turned up some surprising results while
conducting market research on consumer preferences regarding bioplastics. The researchers
expected consumers to prefer bioplastic products that resembled petroleum plastics as closely
as possible in appearance, color and texture. The results, however, showed some consumers
wanted something different from more environmentally friendly options.
“A lot of people want a biocontainer to look earthy and not artificial,” Graves said.
That preference might free bioplastic manufacturers from the need to recreate the appearance
of conventional plastics, he said.
The study concluded that pots derived from bioplastic cost between two and 11 cents more
per unit to manufacture than pots made from conventional petroleum plastics. But Schrader
said some gardeners may be willing to pay a little extra for products they perceive as helpful
for the environment. He sees bioplastics as an opportunity to cater to a niche market that
could expand over time.
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
8

“Our results show that people may be willing to pay a premium for sustainability and for the
fertilizer option,” Schrader said. “The market will start small, with smaller growers selling to
environmentally minded clients, but that’ll get the ball rolling, and market share will evolve
as prices for bioplastic approach equilibrium with petroleum-based plastic.”

How 3D printing could help save diabetics’ soles
(ndlr: c’est pas du biodegradable mais c’est quand même très intéressant !)

Ben Coxworth
November 14th, 2016

                           A prototype LAUF insole(Credit: Fraunhofer)

Because diabetics often lack feeling in their feet, it is vitally important that they have
footwear that fits. If they don't, they can develop pressure sores that will take a long time to
heal, and sometimes even lead to amputation. That's why they frequently get custom
orthopedic insoles made for their shoes. Now, it's looking like 3D printing could make those
insoles even better.
The printed insoles are being developed via Germany's LAUF (laser-assisted construction of
customized footwear) project.
Patients start by getting a 3D scan of their feet done, as opposed to having plaster casts made.
That scan is used to create computer models that not only show the shape of their feet, but that
also indicate pressure points along their soles. Based on that information, computer models of
the insoles are created.
Utilizing those models, a laser sintering process is used to selectively melt thermoplastic
polyurethane powder, building the insoles up one layer at a time. By varying the internal
structure of the insoles, it's possible to control how rigid or soft they are in different areas,
allowing for either firm support or cushioning as needed.
As is the case with the 3D-printed orthopedic corsets we recently heard about, the printed
insoles are said to be more effective than their handmade counterparts, plus they can be made
quicker and at a lower cost.
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
9

It is estimated that software for creating the insoles may be commercially available within
about two years. In the meantime, both Wiivv and Sols are also developing 3D-printed insoles
– although not specifically for diabetics.

Protein feed and bioplastic from farm biogas
17/11/2016 VTT

  VTT has developed a solution for converting even small sources of methane-rich biogas
     into raw materials for animal feed or bioplastic on farms, landfills and wastewater
treatment plants. This emission-reducing solution is based on the ability of methanotrophic
                      bacteria to grow on methane in gas fermentors.

Methane-rich biogas is generated on farms, landfills and wastewater treatment plants in
anaerobic digestion of biological material. Until now, the processing of such gas into
biomethane has only been viable on large biogas-producing sites; small biogas sources such
as farms have remained largely unexploited.

The method developed by VTT would reduce emissions, increase the use of biogas and
improve protein self-sufficiency.

It is based on the ability of methanotrophic bacteria to grow in aerobic conditions in gas
fermentors, using methane as the source for carbon and energy. The process is as follows: The
methane gas generated by anaerobic digestion is fed into a gas fermentor. A growth medium
containing the methanotrophic bacteria circulates through the pipes of the gas fermentor,
creating a single-cell protein biomass with a protein content of around 60%. The cell mass is
filtered, pasteurised and dried.

The methanotrophic bacteria and (depending on the growth conditions) cell mass may also
contain polyhydroxybutyrate plastic (PHB) – a natural substance in the cells that enables them
to store conserve energy. For example, PHB can be used as a raw material for biodegradable
packaging material, instead of oil-based and non-biodegradable plastics such as
polypropylene (PP). The cell mass may contain 50% half of the PHB, in which case the
protein content is around 30%. Extraction is used to separate the PHB and protein fractions
from the dried cell mass.

The production rate of VTT's method needs to be improved: a couple of years of development
work lies ahead. In addition, the protein fraction's suitability as a feed component needs to be
tested.
Biodegradable PLGA Polymer Capacity Expansion by Evonik in USA & Germany
10

Based on previous studies, single-cell proteins produced using micro-organisms can be
substituted for ingredients such as meat, soya, egg whites or fish in food and feed. Finland is
import-dependent with respect to soya: a fluctuating worldwide crop causes price fluctuations
and uncertainty about the availability of this foodstuff. In Europe and Finland, attempts are
being made to meet the challenge of protein feed for domesticated animals by improving
protein self-sufficiency. This mainly involves promoting the production of vegetable protein.
The production of single-cell proteins represents a good opportunity to improve our protein
self-sufficiency.

                         Infographic: VTT's gas fermentation process

                    Photo 1: Metanotrophic protein biomass (Photo: VTT)

                    Photo 2: Metanotrophic bacteria culture (Photo: VTT)
11

                            Photo 3: Gas fermentor (Photo: VTT)

Natural pigments and useful raw materials from autumn
leaves for industry
01/11/2016 VTT

Autumn leaves contain a range of interesting substances such as pigments, carbohydrates,
  proteins and compounds that inhibit the growth of harmful bacteria. VTT Technical
 Research Centre of Finland is developing leaf-processing technologies, which could be
               used by the cosmetics, textile and feed and food industries.

Very little use has been made of fallen leaves so far. They are either left on the ground,
composted or burned resulting in full landfills and a growing carbon dioxide load.
Autumn leaves derive their colour from orange and yellow carotenoids and red anthocyanins.
In addition to pigments, autumn leaves contain many beneficial compounds, such as phenols,
lignin, carbohydrates and protein. There is a fast-growing need for natural pigments in various
industries around the world - for example, these natural pigments can even have health-
promoting effects and use as nutraceuticals.
In a process developed by VTT, leaves gathered in gardens and parks are dried and ground,
and compounds are extracted. The processing stages were developed by VTT in laboratory
experiments; R&D has now entered the piloting stage, using leaf material collected in the
Otaniemi area by waste disposal company Lassila & Tikanoja. Special attention has been paid
to the environmental friendliness of the overall process and the safety of the compounds
produced.
"In laboratory experiments, we discovered several, promising alternative ways of utilising
leaves. Piloting assays are under way, in which we are examining how our methods work in
practice and what quantities of valuable compounds can be extracted from the leaves,"
comments Liisa Nohynek, Senior Scientist at VTT.
Pigments for cosmetics and textiles
12

Pigments from autumn leaves can be used to colour cosmetics and textiles. The chemical
composition of leaves varies largely between different tree species. Added value can be
obtained by processing the autumn leaves of certain tree types only, thereby producing well-
defined compounds suitable for new products.
Residual biomass, which is remaining after extraction, is high in nutrients and suitable for soil
improvement in home gardens. On the other hand, this waste can also be further processed to
compounds that inhibit the growth of harmful microbes, thus being suitable e.g. for cosmetic
and hygiene products.
Nohynek believes that the methods developed by VTT are applicable for raw material
processors and for example in textile and cosmetic industries. In addition, the residual
material offers business opportunities for firms in the horticultural, cosmetics, hygiene and
pharmaceutical sectors.
Future prospects: bioactive compounds and nutritional supplements
Furthermore, also other applications could be developed for autumn leaves. Compounds
obtained from the leaves may be suitable for use as food colouring and preservatives, and as
nutritional supplements. In addition, these colourants could be used to improve the nutritional
properties of edible plant cells under development at VTT. New bioactive compounds could
be obtained for the cosmetic and pharmaceutical industries, by using biotechnological
methods to modify pigments. In addition, the carbohydrates from the extraction residue could
be used to produce protein-rich feed for livestock and protein supplements for people. This
nutrient-rich residual biomass can also have domestic applications, for example in growing
mushrooms.
Furthermore, also other applications could be developed for autumn leaves. Compounds
obtained from the leaves may be suitable for use as food colouring and preservatives, and as
nutritional supplements. In addition, these colourants could be used to improve the nutritional
properties of edible plant cells under development at VTT. New bioactive compounds could
be obtained for the cosmetic and pharmaceutical industries, by using biotechnological
methods to modify pigments. In addition, the carbohydrates from the extraction residue could
be used to produce protein-rich feed for livestock and protein supplements for people.
Furthermore, the nutrient-rich residual biomass can also have domestic applications, for
example in growing mushrooms.
13

Reverdia and Xinfu Sign Agreement for Biosuccinium®
Supply and Collaboration
15 November 2016

(Ndlr: les français ont refusé toute collaboration…c’est les américains qui prennent la place. Xinfu est un des
premiers fabricants de PBAT en Chine)

Reverdia announced today that it has signed a strategic partnership with Hangzhou Xinfu
Science & Technology Co., Ltd. (Xinfu). The partnership represents a collaboration to adopt
Biosuccinium® in bio-based polymers and co-polymers for the packaging industry, as well as
a long-term supply agreement.

Xinfu is a global pioneer in fully biodegradable resins and films. It will exclusively use
Biosuccinium® for producing bio-based polymers, derivatives and new cutting-edge
biomaterials for packaging applications such as (compostable) single-use bags.

Mr. Lin, Executive Director at Xinfu and Member of the Board said, “We have been working
with Reverdia since 2011 and proudly commit to this long-term partnership, which will
develop more sustainable technologies and materials.”

“These new materials will target the biodegradable packaging market,” said Marcel Lubben,
President of Reverdia. “We’re excited to work with an industry pioneer like Xinfu on bio-
based solutions and this agreement is yet another example of Reverdia’s global leadership in
value chain innovation.”

            Xinfu is based in Hangzhou, the capital city of Zhejiang Province, China

About Hangzhou Xinfu Science & Technology Co., Ltd.
Based in China, Hangzhou Xinfu is a global industry pioneer in fully biodegradable resins and
films. It possesses leading in-house R&D from manufacturing to business development and
builds a strong portfolio on its new generation of bio-based plastics.

About Reverdia
Reverdia enables the bio-based materials of tomorrow with its industry-leading
Biosuccinium® offering. It works with brand owners and manufacturers on application co-
development for sustainable products. Produced since 2012, Biosuccinium® is sold globally.
The Biosuccinium® Technology is also offered under license to value chain partners and co-
producers.
14

Sacs en plastique : quand le marché s’emballe !
Lundi 28 Novembre 2016 Josiane Mambou Loukoula (Afrique Centrale-Bassin du Congo)

Halte aux « Niaou » ! Depuis l’interdiction des sachets, le conditionnement de certains
produits demeure un casse-tête. Bien d’alternatives sont prises, annonçant ainsi une guerre
« intelligente » causée par le manque d’alternatives concluantes pour certains commerçants
ambulants.

               Photo1: Le yaourt local conditionné dans du sachet-interdit, (DR)

De nombreux pays interdisent désormais les conditionnements non biodégradables. Entre les
sociétés proposant des alternatives, la compétition est lancée. Des sociétés françaises
acheminent vers le continent 1800 tonnes d’emballages alimentaires par an, pour un chiffre
d’affaires de 4 millions d’euros. Plus qu’une tendance, l’Afrique se lance dans la chasse aux
emballages non biodégradables, véritable fléau dont les sacs en plastique échoués sur tout le
continent sont devenus un symbole encombrant.

L’interdiction de la production et de l’importation des emballages en plastique a donc des
motivations économiques tant qu’écologiques. Solide, étanche, sans danger pour la santé
lorsqu’il est traité pour le contact alimentaire, le plastique possède des propriétés qui en font
un matériau difficilement remplaçable, notamment dans l’industrie agroalimentaire. Face à la
pollution, les sacs biodégradables ou oxo-biodégradables, en papier, en tissus, sont là des
alternatives aux sacs non dégradables.

          Photo 3: papier des journaux servant d'emballage pour les cacahuètes (DR

Seuls hic : son prix. Environ 75 % de plus qu’un sac classique. Le prix ne joue donc pas en
faveur des bioplastiques. Il y a cinq ans environ, un sac plastique fin revenait à 25 Fcfa,
aujourd’hui un sac biodégradable coûte 100 Fcfa voire 150 à 250 Fcfa.

En conséquence, cette mesure ne favorise qu’une catégorie de commerçants et de
consommateurs. Alors qu’en est-il des petits commerçants exerçant dans l’informel ? Comme
nous le savons tous, ce secteur est le plus dynamique au Congo. Pour ne pas être en déphasage
15

avec la loi, bien de commerçants trouvent des alternatives pour combler ce vide. Les vendeurs
de farine de manioc, de chips (fait maison), pop-corn et autres, utilisent généralement des
papiers de journaux ; des pots en plastique, en papier, en aluminium, et autres pour emballer
leurs produits.

                                Photo 2: Papier emballage (DR)

Mais de l’autre côté, naît un phénomène dit « Niaou » ou « Bord ezanga kombo ». Bien que la
production, l’importation, la commercialisation et l’utilisation des sacs et des films en
plastique soient interdite, un marché noir voit le jour au mépris de la loi. Pour cause : aucune
alternative concluante pour les commerçants ambulants, surtout ceux vendant des produits en
liquide à l’instar du bissap, du jus de fruits, du ski, de l'eau glacée et autres. Pourtant voué à
l’interdit, le sachet continue, pour de tierces raisons, à être commercialisé sous les manteaux
au risque d’une amende et de peines d’emprisonnement.

Pour arrêter l’hémorragie d’un marché favorisant la spoliation de l’environnement, il faut
donc accélérer l'émergence d'alternatives compostables et biosourcées. Ainsi, face à la
perspective d'une perte de marché, les industriels de la plasturgie se doivent de produire des
emballages plus épais, tout en étant plus petits, pour conditionner des jus de fruits, yaourt
(local), eau glacée et autres liquides.

Ainsi, pour mettre fin à cette guerre « intelligente », qui s’annonce sous une forme pacifique,
il est plus que temps d’ouvrir un marché parallèle pour ces petits commerçants, à l’instar de
celui des emballages biodégradables, lavables, durables, réutilisables et récupérables en fin de
vie ; qui du reste demeurent insuffisants au regard des activités de packaging de plus en plus
importantes dans le commerce informel.

Les multiples difficultés pour la collecte, le transfert et l’élimination des déchets ont des
impacts tant environnementaux, que sanitaires. L’incinération des déchets plastiques dont la
matière première est d’origine fossile, émet du dioxyde de carbone, ce qui accentue le
réchauffement climatique. Même si les défenseurs de l’environnement pensent que
l’interdiction des sacs en plastique n’est qu’une partie émergée de l’iceberg, face à l’immense
quantité de déchets ; des alternatives sont plus importantes à l’heure où l’écosystème se
dégrade peu à peu par simple inattention. La valeur environnementale de création d’une
alternative solide aux emballages en plastiques est donc de mise.
16

Perturbateurs endocriniens : halte à la manipulation de la
science. “Il n’est plus acceptable de nous taire”,
Près de cent scientifiques dénoncent la fabrication du doute par les industriels, déjà à l’œuvre
dans la lutte contre le changement climatique.

LE MONDE | 29.11.2016

NDLR : pour rappel, SERPBIO peut déterminer de manière exhaustive la présence ou non de perturbateurs
endocriniens dans vos matériaux. N’hésitez pas à demander une certification en vous adressant directement à
cesar.guy@neuf.fr

Depuis des décennies, la science est la cible d’attaques dès lors que ses découvertes
touchent de puissants intérêts commerciaux. Des individus dans le déni de la science ou
financés par des intérêts industriels déforment délibérément des preuves scientifiques afin
de créer une fausse impression de controverse. Cette manufacture du doute a retardé des
actions préventives et eu de graves conséquences pour la santé des populations et
l’environnement.

Les « marchands de doute » sont à l’œuvre dans plusieurs domaines, comme les industries du
tabac et de la pétrochimie ou le secteur agrochimique. A elle seule, l’industrie pétrochimique
est la source de milliers de produits toxiques et contribue à l’augmentation massive des
niveaux de dioxyde de carbone atmosphérique, à l’origine du changement climatique.

La lutte pour la protection du climat est entrée dans une nouvelle ère avec l’accord de Paris de
2015, malgré la farouche opposition de climatosceptiques sourds au consensus établi par les
scientifiques engagés pour travailler dans l’intérêt général.

Une lutte comparable fait actuellement rage autour de la nécessaire réduction de l’exposition
aux perturbateurs endocriniens. La Commission européenne s’apprête à mettre en place la
première réglementation au monde sur le sujet. Bien que de nombreux pays aient également
manifesté leur inquiétude à l’égard de ces produits chimiques, aucun n’a instauré de
réglementation qui les encadrerait globalement.

Jamais l’humanité n’a été confrontée à un fardeau aussi important de maladies en lien avec le
système hormonal

Jamais l’humanité n’a été confrontée à un fardeau aussi important de maladies en lien avec le
système hormonal : cancers du sein, du testicule, de l’ovaire ou de la prostate, troubles du
développement du cerveau, diabète, obésité, non-descente des testicules à la naissance,
malformations du pénis et détérioration de la qualité spermatique.

La très grande majorité des scientifiques activement engagés dans la recherche des causes de
ces évolutions préoccupantes s’accordent pour dire que plusieurs facteurs y contribuent, dont
les produits chimiques capables d’interférer avec le système hormonal.
17

Des sociétés savantes signalent que ces produits chimiques, appelés les perturbateurs
endocriniens, constituent une menace mondiale pour la santé. Parmi ceux-ci : les retardateurs
de flamme présents dans les meubles et l’électronique, les agents plastifiants dans les matières
plastiques et les produits d’hygiène, ou encore les résidus de pesticides dans notre
alimentation. Ils peuvent interférer avec les hormones naturelles lors de périodes critiques du
développement, pendant la grossesse ou la puberté, lorsque notre organisme est
particulièrement vulnérable.

Une réglementation nécessaire
On ne peut faire face à ce fardeau croissant de maladies à l’aide de meilleurs traitements
médicaux : non seulement ces traitements n’existent pas toujours, mais les effets des
perturbateurs endocriniens sur la santé sont bien souvent irréversibles. Les possibilités de
réduire notre exposition à un niveau individuel en évitant certains produits de consommation
sont, elles aussi, limitées. La plupart de ces substances atteignent notre organisme par le biais
de notre alimentation.

Seule solution pour enrayer la hausse des maladies liées au système hormonal : prévenir
l’exposition aux produits chimiques à l’aide une réglementation plus efficace. Or le projet
d’établir une réglementation de ce type dans l’Union européenne est activement combattu par
des scientifiques fortement liés à des intérêts industriels, produisant l’impression d’une
absence de consensus, là où il n’y a pourtant pas de controverse scientifique. Cette même
stratégie a été utilisée par l’industrie du tabac, contaminant le débat, semant le doute dans la
population et minant les initiatives des dirigeants politiques et des décideurs pour développer
et adopter des réglementations plus efficaces.

Les discussions sur le changement climatique et sur les perturbateurs endocriniens ont toutes
deux souffert de cette déformation des preuves scientifiques par des acteurs financés par
l’industrie.

La plupart des scientifiques pensent qu’exprimer publiquement leur point de vue sur des
questions politiques et participer aux débats de société pourrait compromettre leur objectivité
et leur neutralité. Ce serait effectivement inquiétant si nos opinions politiques obscurcissaient
notre jugement scientifique. Mais ce sont ceux qui nient la science qui laissent leurs opinions
politiques obscurcir leur jugement. Avec, pour conséquence, des dommages irréparables. La
manipulation de la science concernant les effets de la fumée du tabac a coûté des millions de
vies. Nous ne devons pas refaire la même erreur.

Une urgence
Nous considérons qu’il n’est plus acceptable de nous taire. En tant que scientifiques, nous
avons en fait l’obligation de participer au débat et d’informer le public. Nous avons la
responsabilité de rendre visibles les implications de nos travaux pour la société et les
générations futures, et d’attirer l’attention sur les graves dangers qui nous menacent.

Les enjeux sont importants, et l’action politique pour endiguer l’exposition aux perturbateurs
endocriniens et les conséquences des émissions de gaz à effet de serre est devenue une
urgence.
18

Scientifiques spécialistes des perturbateurs endocriniens ou du changement climatique, nous
avons uni nos forces, car un grand nombre d’actions essentielles à la limitation des effets des
perturbateurs endocriniens contribueront également à lutter contre le changement climatique.

La plupart des substances chimiques synthétisées par l’homme sont des dérivés de
combustibles fossiles produits par l’industrie pétrochimique. Une réduction de la quantité de
pétrole raffiné permettra aussi de réduire la quantité de sous-produits utilisés dans les
plastiques et celle de plastifiants : ces produits chimiques compromettent la santé reproductive
masculine et contribuent au risque de certains cancers.

Une réduction de la dépendance aux combustibles fossiles et un encouragement au
développement des énergies alternatives entraîneront non seulement une baisse des émissions
de gaz à effet de serre, mais aussi de celles de mercure. Ce dernier, un contaminant issu du
charbon, émis dans l’air et accumulé dans le poisson, finit par atteindre nos organismes et
compromet le développement du cerveau.

Créer l’équivalent du GIEC
Bien que de nombreux Etats aient exprimé la volonté politique de traiter le problème des gaz
à effet de serre, la traduction des connaissances scientifiques sur le changement climatique en
action politique effective a été bloquée, notamment à cause de la désinformation du public et
des dirigeants. Les gouvernements sont déjà en retard. Il est important de ne pas répéter ces
erreurs avec les perturbateurs endocriniens, et d’apprendre de l’expérience des scientifiques
du climat et de la recherche en santé publique.

Dans la pratique, il sera très difficile de reconnaître une substance dangereuse comme
perturbateur endocrinien dans l’Union européenne

La Commission européenne a maintenant l’opportunité de choisir des instruments de
réglementation qui pourront fixer de nouveaux standards pour le monde entier afin de nous
protéger des effets nocifs des perturbateurs endocriniens.

Nous sommes cependant préoccupés par les options réglementaires que propose aujourd’hui
Bruxelles, très éloignées des mesures nécessaires pour protéger notre santé et celle des
générations futures.

Les options proposées pour identifier les perturbateurs endocriniens requièrent un niveau de
preuve bien plus élevé que pour d’autres substances dangereuses, comme celles cancérigènes.
Dans la pratique, il sera très difficile de reconnaître une substance dangereuse comme
perturbateur endocrinien dans l’Union européenne.

Des actions urgentes sont nécessaires sur les deux thèmes. Pour cette raison, nous appelons au
développement et à la mise en œuvre de mesures qui s’attaqueraient aux perturbateurs
endocriniens et au changement climatique de façon coordonnée.

Un moyen efficace pourrait être la création, sous les auspices de l’Organisation des Nations
unies, d’un groupe ayant le même statut international et les mêmes prérogatives que le Groupe
d’experts intergouvernemental sur l’évolution du climat (GIEC). Ce groupe serait chargé
d’évaluer les connaissances scientifiques destinées aux responsables politiques dans l’intérêt
19

général et mettrait la science à l’abri de l’influence des intérêts privés. Nous le devons aux
générations qui vivront demain.

Les premiers signataires de ce texte sont : Andreas Kortenkamp, université Brunel (Royaume-Uni) ; Barbara
Demeneix, CNRS/Muséum national d’histoire naturelle ; Rémy Slama, Inserm, université Grenoble-Alpes ;
Edouard Bard, Collège de France ; Ake Bergman, université de Stockholm (Suède) ; Paul R. Ehrlich,
université Stanford (Etats-Unis) ; Philippe Grandjean, Harvard Chan School of Public Health (Etats-Unis) ;
Michael E. Mann, université Penn State (Etats-Unis) ; John P. Myers, université Carnegie Mellon (Etats-
Unis) ; Naomi Oreskes, université Harvard (Etats-Unis) ; Eric Rignot, université de Californie (Etats-Unis) ;
Thomas Stocker, université de Berne (Suisse) ; Kevin Trenberth, National Centre for Atmospheric Research
(Etats-Unis) ; Jean-Pascal van Ypersele, université catholique de Louvain (Belgique) ; Carl Wunsch,
Massachusetts Institute of Technology (Etats-Unis) ; et R. Thomas Zoeller, université du Massachusetts à
Amherst (Etats-Unis).

Sont également signataires de ce texte

Ernesto Alfaro-Moreno, centre de recherche Swetox (Suède) ; Anna Maria Andersson, Rigshospitalet
(Danemark) ; Natalie Aneck-Hahn, université de Pretoria (Afrique du Sud) ; Patrik Andersson, université
d’Umeå (Suède) ; Michael Antoniou, King’s College (Royaume-Uni) ; Thomas Backhaus, université de
Göteborg (Suède) ; Robert Barouki, université Paris-Descartes (France) ; Alice Baynes, université Brunel
(Royaume-Uni) ; Bruce Blumberg, université de Californie à Irvine (Etats-Unis) ; Carl-Gustaf Bornehag,
université de Karlstad (Suède) ; Riana Bornman, université de Pretoria (Afrique du Sud) ; Jean-Pierre
Bourguignon, université de Liège (Belgique) ; François Brion, Ineris (France) ; Marie-Christine Chagnon,
Inserm (France) ; Sofie Christiansen, université Technique du Danemark (Danemark) ; Terry Collins, université
Carnegie Mellon (Etats-Unis) ; Sylvaine Cordier, Irset (France) ; Xavier Coumol, université Paris-Descartes
(France) ; Susana Cristobal, université de Linköping (Suède) ; Pauliina Damdimopoulou, hôpital universitaire
Karolinska (Suède) ; Steve Easterbrook, université de Toronto (Canada) ; Sibylle Ermler, université Brunel
(Royaume-Uni) ; Silvia Fasano, université de Campania - Luigi Vanvitelli (Italie) ; Michael Faust, F + B
Environmental Consulting (Allemagne) ; Marieta Fernandez, université de Grenade (Espagne) ; Jean-Baptiste
Fini, CNRS/Muséum national d’histoire naturelle (France) ; Steven G. Gilbert, Institute of neurotoxicology
& neurological disorders (Etats-Unis) ; Andrea Gore, université du Texas (Etats-Unis) ; Eric Guilyardi,
université de Reading (Royaume-Uni) ; Åsa Gustafsson, Swetox (Suède) ; John Harte, université de Californie à
Berkeley (Etats-Unis) ; Terry Hassold, université d’Etat de Washington (Etats-Unis) ; Tyrone Hayes, université
de Californie à Berkeley (Etats-Unis) ; Shuk-Mei Ho, université de Cincinnati (Etats-Unis) ; Patricia Hunt,
université d’Etat de Washington (Etats-Unis) ; Olivier Kah, université de Rennes (France) ; Harvey Karp,
université de Californie du Sud (Etats-Unis) ; Tina Kold Jensen, université du Danemark du Sud (Danemark) ;
Sheldon Krimsky, université Tufts (Etats-Unis) ; Henrik Kylin, université de Linköping (Suède) ; Susan Jobling,
université Brunel (Royaume-Uni) ; Maria Jönsson, université d’Uppsala (Suède) ; Bruce Lanphear, université
Simon Fraser (Canada) ; Juliette Legler, université Brunel (Royaume-Uni) ; Yves Levi, université Paris Sud
(France) ; Olwenn Martin, université Brunel (Royaume-Uni) ; Angel Nadal, université Miguel Hernández
(Espagne) ; Nicolas Olea, université de Grenade (Espagne) ; Peter Orris, université de l’Illinois (Etats-Unis) ;
David Ozonoff, université de Boston (Etats-Unis) ; Martine Perrot-Applanat, Inserm (France) ; Jean-Marc
Porcher, Ineris (France) ; Christopher Portier, Thun, (Suisse) ; Gail Prins, université de l’Illinois (Etats-Unis) ;
Henning Rodhe, université de Stockholm (Suède) ; Edwin J. Routledge, université Brunel (Royaume-Uni) ;
Christina Rudén, université de Stockholm (Suède) ; Joan Ruderman, Harvard Medical School (Etats-Unis) ;
Joelle Ruegg, institut Karolinska (Suède) ; Martin Scholze, université Brunel (Royaume-Uni) ; Elisabete Silva,
université Brunel (Royaume-Uni) ; Niels Eric Skakkebaek, Rigshospitalet (Danemark) ; Olle Söder, institut
Karolinska (Suède) ; Carlos Sonnenschein, université Tufts (Etats-Unis) ; Ana Soto, université Tufts (Etats-
Unis) ; Shanna Swann, Icahn School of Medicine (Etats-Unis) ; Giuseppe Testa, université de Milan (Italie) ;
Jorma Toppari, université de Turku (Finlande) ; Leo Trasande, université de New York (Etats-Unis) ; Diana
Ürge-Vorsatz, université d’Europe centrale (Hongrie) ; Daniel Vaiman, Inserm (France) ; Laura Vandenberg,
université du Massachusetts, (Etats-Unis) ; Anne Marie Vinggaard, université technique du Danemark
(Danemark) ; Fred vom Saal, université du Missouri (Etats-Unis) ; Jean-Pascal van Ypersele, université
catholique de Louvain (Belgique) ; Bernard Weiss, université de Rochester (Etats-Unis) ; Wade Welshons,
université de Missouri (Etats-Unis) ; Tracey Woodruff, université de Californie à San Francisco (Etats-Unis).
20

PolyOne’s OnColor™ BIO Colorants Receive Certification from Vinçotte
Published on 2016-11-10. Author : SpecialChem

DÜSSELDORF, Germany -- PolyOne has announced that its OnColor™ BIO color
concentrates have received OK compost HOME certification from Vinçotte.
By selecting these advanced masterbatch colorants, manufacturers who produce bio-
degradable polymer packaging can avoid the significant costs and time required to test their
products for at-home compostability.

Bio-solutions for Packaging
Producers
PolyOne offers OK compost HOME certification
for a full range of color concentrates compatible
with bio-degradable polymers.

Application of OnColor™ BIO

   •   Each of these color concentrates is based
       on biopolymer carriers and can be used at
       normal loadings and dosed in the standard
       way.
   •   OnColor BIO colorants can be processed
       by injection, extrusion and blow molding
       processes, and are used in a wide variety
       of end-use applications.
                                                      Bio-solutions for Packaging
   •   PolyOne also offers OnColor
       Smartbatch™ BIO concentrates, which combine OnColor BIO colorants and OnCap™
       BIO additives into a single masterbatch.

 “Our OnColor BIO concentrates have been specifically designed to help our customers
comply with new, increasingly rigorous home composting legislation,’’ said Christoph Palm,
vice president, general manager, Color and Additives EMEA & India for PolyOne.
“Combining our advanced colorant technology with bio-based polymers reduces the risk and
cost of post-process testing, allowing processors to take full advantage of the emerging
market for bags and packaging capable of home composting.”

Plastic Packaging
OnColor BIO solutions address a previously unmet market need by enabling packaging
producers to proactively meet toughening legislation, such as France’s new Energy Transition
Law. Beginning January 1, 2017, the new law will require single-use carrier bags thinner than
50 microns – often called fruit and vegetable bags – to meet the French standard (T51-800
standard) for home composting. The law also applies to plastic packaging used for mail
publications.
OnColor BIO color concentrates perform well with the bioplastics used in these applications.
Available in a full palette of color choices, these colorants do not compromise the organic
decomposition of the polymers they enhance.
PolyOne displayed products made with these concentrates in Hall 8a, stand J15 during K 2016
in Düsseldorf, Germany.
21

Global bioplastics industry growing steadily
By Plastics News Europe 30 November 2016

Photo by European Bioplastics The bioplastics market is set to grow by 50% over the next few
                                years says European Bioplastics.
Presented at the 11th European Bioplastics Conference in Berlin, Germany, the European
Bioplastics' market update has revealed that the global bioplastics industry's production
capacity is set to increase from around 4.2 million tonnes in 2016 to 6.1 million tonnes in
2021.
“The market is predicted to grow by 50% over the coming years despite the low oil price,”
said François de Bie, Chairman of European Bioplastics.
The organisation states that packaging remains the largest market for bioplastics, taking
almost 40% (1.6 million tonnes) of the total bioplastics share in 2016.
The report shows an increase in the uptake of bioplastics in sectors such as consumer goods
(22% or 0.9 million tonnes) and the automotive and transport sector (14% or 0.6 million
tonnes). Also the construction and building sector has seen a rise in bioplastic use (13% or 0.5
million tonnes), where technical performance plastics are being used.
Bio-based, non-biodegradable plastics, such as polyurethanes (PUR) and bio-based PE and
bio-based PET, are the main drivers of this growth, with PUR1 making up around 40% and
PET over 20% of the global bioplastics production capacities, says European Bioplastics.
Production capacities of biodegradable plastics, such as PLA, PHA, and starch blends, are
also growing steadily, says the organisation, and predicts them to increase from around 0.9
million tonnes in 2016 to almost 1.3 million tonnes in 2021.
Around a quarter of the global bioplastics production capacity is estimated to be located in
Europe by 2021.
“The data illustrates an important trend, driven by changing consumer demands, to make
plastic products more resource efficient and to reduce greenhouse gas emissions and the
dependency on fossil resources. This trend is the result of substantial
investments in research and development by the many innovative small and large
companies that concentrate their strengths on the development of bio-based products
designed with the circular economy in mind,” states de Bie.
You can also read