XIDer - an X-ray Integrating Detector - for the ESRF-EBS Upgrade David Schimansky
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
XIDer – an X-ray Integrating Detector for the ESRF-EBS Upgrade David Schimansky !"#$%&'()*&+"#(,- '(0 !,.'%$&,/(
Contents • About me • The European Synchrotron Radiation Facility (ESRF) & its upgrade program (EBS) • XIDer: A New Multi-Purpose Detector for Time-Resolved X-Ray Experiments at the ESRF • Requirements & Chosen Concept • My Job: Readout ASIC • Conclusion & Outlook !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 1
About me • PhD student in Prof. Fischer‘s group LSuS @ ZITI • Studies (2011 – 2017): • B. Sc. and M. Sc. in Physics @ University of Heidelberg • Focus on particle, medical and detector physics as well as ASIC design • Work @ KIP in Prof. Schultz-Coulon‘s group F11 (2015 – 2018): • Bachelor and master thesis on ASIC characterisation and design • Work @ ZITI in Prof. Fischer‘s group LSuS (2018 – tbd): • PhD Thesis (May 2018 - tbd) !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 2
European Synchrotron Radiation Facility (ESRF) !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 3
European Synchrotron Radiation Facility (ESRF) • Joint research facility in Grenoble, France (founded in 1988) • Funded by 22 countries (France, Germany, Italy, ..) • Electron synchrotron x-ray source (up to ~150keV) • First 3rd generation synchrotron (opened in 1994) • Circumference: 844m • 2000 publications per year • Advertises itself as „user facility“ • Research topics (among others): • X-ray spectroscopy • X-ray tomography • X-ray diffraction !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 4
Research at the ESRF !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 5
Research at the ESRF Other: Training, Surfaces & feasibility tests, Interfaces proprietary Chemistry research 12% 10% 4% Electronic & Magnetic Soft Condensed Properties Matter 12% 10% Crystals Methods & &Ordered Instrumentation Structures 2% 10% Medicine Disordered 4% Systems 4% Macromolecular Applied Crystallography Environment & Materials, 15% Culture Engineering 7% 10% !"#$%&'()*&+"#(,- Beamtime used at the ESRF (2010 data) '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 6
and the phonon-related lattice dynamics in thermo- zinc antimonide (Zn-Sb) binary systems with their intricate phase terials. In the following, we will briefly review the most diagram [11e18], clathrates [19e24] and filled skutterudites Synchrotron light sources around the world ancements obtained using different synchrotron radia- ques. [22,25e27] featuring guest-framework characteristics, Zintl com- pounds possessing large unit cells [28e31], half-Heusler alloys with > 50 sources worldwide !"#$%&'()*&+"#(,- Taken from „The complexity of thermoelectric materials: why we need powerful and brilliant synchrotron radiation sources?“ (W. Xu, Y. Liu, A. Marcelli, P.P. Shang, W.S. Liu, '(0 !,.'%$&,/( . World in map of the Today Materials main synchrotron radiation Physics, Volume facilities in all continents. At present, SR facilities are not present only in Africa. SR, synchrotron radiation. 6, 2018) 03.04.19 - HighRR BiWeekly Seminar David Schimansky 7
and the phonon-related lattice dynamics in thermo- zinc antimonide (Zn-Sb) binary systems with their intricate phase terials. In the following, we will briefly review the most diagram [11e18], clathrates [19e24] and filled skutterudites Synchrotron light sources around the world ancements obtained using different synchrotron radia- ques. [22,25e27] featuring guest-framework characteristics, Zintl com- pounds possessing large unit cells [28e31], half-Heusler alloys with > 50 sources worldwide High energy sources (6-8 GeV e- in storage rings) World‘s first 4th generation synchrotrons (@ 3 GeV) !"#$%&'()*&+"#(,- Taken from „The complexity of thermoelectric materials: why we need powerful and brilliant synchrotron radiation sources?“ (W. Xu, Y. Liu, A. Marcelli, P.P. Shang, W.S. Liu, '(0 !,.'%$&,/( . World in map of the Today Materials main synchrotron radiation Physics, Volume facilities in all continents. At present, SR facilities are not present only in Africa. SR, synchrotron radiation. 6, 2018) 03.04.19 - HighRR BiWeekly Seminar David Schimansky 8
ESRF Upgrade Program (Road to Fourth Generation) • Extremely-Brilliant Source (ESRF-EBS): • Storage ring upgrade program over the period 2015-2022 • Improve energy efficiency (30% cost reduction) • Increase brilliance of x-ray beam • Detector Development Program (DDP): • Reach out to external laboratories • Build new detectors tailored to the upgraded source • R&D Phase from 2017 to 2021 • Engineering Phase from 2020 to 2024 !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 9
ESRF Upgrade Program (Road to Fourth Generation) • Extremely-Brilliant Source (ESRF-EBS): • Storage ring upgrade program over the period 2015-2022 • Improve energy efficiency (30% cost reduction) • Increase brilliance of x-ray beam • Detector Development Program (DDP): • Reach out to external laboratories • Build new detectors tailored to the upgraded source • R&D Phase from 2017 to 2021 • Engineering Phase from 2020 to 2024 !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 10
Why SuS? Experience with similar setup: DSSC (DePFET Sensor with Signal Compression) @ European XFEL 15 mm Full processing chain in every pixel • Low noise x-ray detector • Specs: • 0.5-6 keV 204 µm • Single photon sensitivity 4096 Pixels • Dynamic range of >104 ph • Burst data rates of IO and Control 150Gbps/chip 236 µm • SuS‘s job: Integration of readout ASIC parts, ASIC control block, ASIC readout, in-pixel RAM, ... • Fully assembled detector: 1MPix, 32 sensors, 256 ASICs !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 11
XIDer: X-ray Integrating Detector !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 12
Project Outline !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( XIDer: • 4-year funding: Shared 50/50 by ESRF and University of Heidelberg • Two PhD students and half a postdoc in Heidelberg • One PhD student and staff @ ESRF !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 13
Detector Requirements Build detector for any kind of (time-resolved) x-ray diffraction experiment at the ESRF: • Energy range: 10-100keV • Different spatial resolutions: 100µm vs. 200µm pixel pitch (clusterable pixels) %& • Dynamic range: Single Photons up to > 10$$ ''( ) • Cope with different bunch filling modes for storage ring • Time-resolved ( >100k frames/s) • Flexible readout schemes (single frame, accumulated frames ..) !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 14
Detector Requirements: Bunch modes Electron bunches Detector Signal Storage ring t One orbit !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 15
Detector Requirements: Bunch modes Electron bunches Detector Signal Storage ring t One orbit !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 16
Detector Requirements: Bunch modes/ Photon Fluxes Example cases of possible bunch modes 7/8 + 1 Bunch Mode 16 Bunch Mode 16 bunch mode 7/8 +1 bunch mode 868 bunches 1 bunch 175 ns 2.45 μs 175 ns 175 ns 1 16 One orbit 2.8 μs (2.8µs) 2.8 μs One orbit (2.8µs) • Pulsed illumination for time-resolved experiments • Quasi-continuous illumination for 7/8 of the orbital period • Single bunches have to be recorded and processed • Integrate many bunches into one image %& • Need single photon sensitivity • Expected > 10$$ ''() Big dynamic range !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 17
Detector Requirements: Frame Rates See „Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage“ (A. Rack, M. Scheel, A. N. Danilewsky in IUCrJ, Volume 3, 2016) • Preliminary goal: >100k frames per second (e.g. Si fracture observed @ ~35kHz) • Main challenge: Data rates • Example: 900k pixels, 8 bit per pixel, 100kHz frame-rate ⇒ 90GB/s !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 18
Preliminary Detector Concept 2D hybrid integrating pixel detector Pixel 1 Pixel 2 Pixel 3 ... HV (-) h+ e- Semiconductor sensor (CdTe) Readout ASIC !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 19
Preliminary Detector Concept 2D hybrid integrating pixel detector Pixel 1 Pixel 2 Pixel 3 ... HV (-) h+ Designed in Grenoble e- Semiconductor sensor (CdTe) Our job Readout ASIC !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 20
Preliminary Detector Concept: Floorplan 100 µm ... Pixel ... (192 pixels) 19.2 mm ... 100 µm ASIC (4 ASICs) ~77 mm Detector Module ... 12.8 mm (128 pixels) • ~25k pixels per ASIC ~115 mm (9 ASICs) • 36 ASICs • ~900k pixel in total ≙ 90cm2 detector surface !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 21
Picking the Sensor Material 10-1 100 101 102 103 104 105 106 107 eV Infrared Ultraviolet X-rays 10-100keV 300µm Si ≈ 1-2% absorption Thicknesses needed for 99% absorption !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 22
Readout ASIC Brainstorming and first steps !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 23
ASIC: Essentials Channel Signal Pixel Front-End Storage Readout Processing Logic !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 24
ASIC: Channel with Integrating Front-End Δ-)./ ~'()* ⇒ Δ-)./ ~!"# 2 !"# = ℎ&"# 1 '()* ~!"# Isig Vint 0010 Sensor ADC Storage • Sensor generates charge signal when an incoming photon is absorbed • Charge sensitive amplifier integrates charge in capacitor: Vint ~ Qsig • Well known energy of x-ray photons allows calculating the amount of photons from the integrated charge by the CSA • However: Dynamic range is limited by depth of ADC (and supply voltage) !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 25
ASIC: Integrating Front-End, ADC Saturation 'ℎ Per 100x100µm2 pixel! 100Mcps ≙ 10%& ))* + • Depending on the photon flux and amount of bits, ADC saturates in a matter of µs 11 bit ⇒ not suited for long exposure times up to a few ms in 7/8 bunch mode 10 bit • Possible solutions (among others): • Digital Integration 9 bit • „Continuous Conversion“/Charge Removal 8 bit 7 bit !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 26
ASIC: Integrating Front-End, Continuous Conversion FE without continuous conversion: • Sensor charge is collected and measured Sensor by CSA SA C !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 27
ASIC: Integrating Front-End, Continuous Conversion FE without continuous conversion: • Sensor charge is collected and measured Sensor by CSA • If bucket full (ADC saturates): Additional charge is lost SA C !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 28
ASIC: Integrating Front-End, Continuous Conversion Idea of continuous conversion: • CSA indicates if there is charge in the Sensor bucket • Use „spoons“ to empty charge bucket SA C !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 29
ASIC: Integrating Front-End, Continuous Conversion Idea of continuous conversion: • CSA indicates if there is charge in the Sensor bucket • Use „spoons“ to empty charge bucket SA C !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 30
ASIC: Integrating Front-End, Continuous Conversion Idea of continuous conversion: • CSA indicates if there is charge in the Sensor bucket • Use „spoons“ to empty charge bucket SA C !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 31
ASIC: Integrating Front-End, Continuous Conversion Idea of continuous conversion: • CSA indicates if there is charge in the Sensor bucket • Use „spoons“ to empty charge bucket • Remember amount of spoons needed SA • Calculate charge via spoon size and C amount => Conversion !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 32
ASIC: Integrating Front-End, Continuous Conversion DigOut Counter (=0) Charge Pump Comparator Vint ~ Qsig Signal peak Charge Sensitive Sensor Isig Amplifier Vint !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 33
ASIC: Integrating Front-End, Continuous Conversion DigOut Counter (=0) Charge Pump Comparator Vint ~ Qsig Signal peak Charge Sensitive Sensor Isig Amplifier Vint !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 34
ASIC: Integrating Front-End, Continuous Conversion Comparator fires if Vint is above threshold and activates charge pump and DigOut Counter counter (=0) Comparator applies threshold to Vint Charge Pump Comparator Vint ~ Qsig Signal peak Charge Sensitive Sensor Isig Amplifier Vint !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 35
ASIC: Integrating Front-End, Continuous Conversion Counts injected Comparator fires if Vint is charge packages above threshold and activates charge pump and DigOut Counter Counter counter (=1) Comparator applies threshold to Vint Injects well defined Charge Pump Charge Pump Comparator Comparator charge packages (e.g. ~ single photon) Vint ~ Qsig Signal Vint is discharged peak and falls below threshold Charge Sensitive Charge Sensitive Sensor Isig Amplifier Amplifier Charge pump VVint int injects negative signal !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 36
ASIC: Integrating Front-End, Continuous Conversion #$ • Similar circuits reach counting rates up to 1010 #%&'()* (see „High Dynamic Range X-Ray Detector Pixel Architectures Utilizing Charge Removal“ , IEEE Trans. Nucl. Sci, vol. 64, no. 4, April 2017) #$ • With 100µm pixels that is a manageable flux of 10+, --.* #$ (requirement: > 10++ ) --.* !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 37
ASIC: Integrating Front-End, First Prototype gain = 8 charge à equal CPs input • 1st stage pumps 8 ph • 2nd stage pumps 1 ph • fpump ~ 100 MHz à 1st stage: 100 ph in 175ns &' à 10# − 10% &()*+,- serial digital output !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 38
ASIC – SUS65T1 First Submission Nov. 14, 2018 !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 39
SUS65T1 • SuS‘s first submission in the TSMC 65nm technology • Main goals: • Get to know the technology • Test prototype structures (bond pads, I/O circuits, synthesized digital blocks, JTAG, FE, ..) • Gain experience with sensor connection (bump bonding) and characterisation • Implemented blocks are not optimised for performance • The manufactured chip arrived a month ago !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 40
SUS65T1: Block diagram OUT_PX_MUX SUS65T1 Pixel connection FE1 FE_Out[0] PixelBus ... FE2 FE_Out[1] MUX_ctrl FE_ctrl cnt_en ControlBlock (JTAG, ... Other sequencer, serial data DACs output) cmn_ctrl CommonPx CLK TCK TDI TMS TDO RUN MON_DIG !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( SER_OUT 03.04.19 - HighRR BiWeekly Seminar David Schimansky 41
SUS65T1: Layout Pixel bump bond I/O & power pads matrix: 28 pads (50x50µm2) for 100µm and 200µm pitch configurations Pixel wire bonds: 28 pads Analogue output buffers connected to the matrix to monitor one FE 5 multiplexers + switches to common potential 2 frontends + charge other injection circuits Control block: JTAG interface for slow control (MUX, DACs etc.) + sequencer for dynamic control of FEs + pixel logic DACs !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 42
SUS65T1: First Signs of Life !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 43
SUS65T1: First Signs of Life !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 44
SUS65T1: First Signs of Life keep CSA in permanent reset DDYN_RESET=1 SUS65T1 FE output buffer Oscilloscope - FE_OUT VREF + (via DAC) (DAC15) Buffer bias Vc, Ilegs Frontend , Itail CSA (DAC5) (DAC4,10,11) This first test shows qualitatively: • I/O pads work • JTAG slow control works • DACs work • Frontend amplifier works !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 45
Conclusion & Outlook !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 46
Conclusion • Project name: XIDer • General aim: Multi-purpose detector for time-resolved x-ray experiments at the ESRF • My job: • Design, characterisation & test of the readout ASIC • Verify feasibility • Parallel development of readout ASIC (in Heidelberg) and sensor (in Grenoble) has begun • ASIC with first prototype readout structures arrived a month ago and is currently under test • First sensor prototype structures for testing have recently arrived and are under test • First tests with ASIC show qualitative functionality of most of the prototype structures !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 47
Outlook Next steps in the project: • Continue functional tests of prototype ASIC SUS65T1 • Quantitative analysis of prototype frontend performance • Design of alternative readout architectures & improvements • Test different procedures of bump bonding the sensor to the ASIC • Sensor prototype characterisation !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 48
Backup !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 49
Backup CdTe !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 50
CdTe Crystals Taken from H. Shiraki et al „THM growth and characterization of 100 mm diameter CdTe single crystals“, IEEE Trans. Nucl. Sci, vol. 54, pp. 117-1723, 2009 • 100mm diameter, 300mm length !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 51
tion is the end result of the creation o Cd(Zn)Te Polarisation electric field, and the method can be s "1! The amount of charge, denoted sary to collapse the electric field at a lated. "2! The time dependence, Q"T!, of Count rate collapses for high(a)Resulting photoncounts fluxes: above threshold charge density within the detector is c "3! Polarization results when the "i.e., steady state value! of the build exceeds that necessary to collapse th pinch point. Mathematically, thi limT→" Q"T! = Q*. The result of the third step, as we w functional dependence of the maximum critical flux #!*! on device design and A. Necessary positive We begin by considering a photon flux #! describing the number of ph intersect the cathode surface of the d The source is assumed to be mono taken as the mean value of the x-ray and denoted by Ē!. The generation rat Taken fromcounts (b)Measured „Nature of polarization in wide-bandgap semiconductor detectors under above threshold within the detector, therefore, is ex high-flux irradiation: Application to semi-insulating Cd Zn Te“ (D. S. Bale, C. Szeles, and has the form 1-x x !"#$%&'()*&+"#(,- Phys. Rev. B, 2008) '(0 !,.'%$&,/( FIG. 5. "a! Simulated counts above a 25 keV threshold as the photon flux rate "x-ray tube current! is increased. "b! Measured Ē! 1 − 03.04.19 - HighRR BiWeekly Seminar $"Z!52= #! e counts for 256 channelsDavid of aSchimansky polarizing detector as the photon flux %czt & rate "tube current! is increased.
Backup Sensor-Prototype !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 53
Sensor Prototype 4mm For bump bonding on ASIC 300µm For bump bonding or gluing on interconnector 100µm 4mm • 4x4 pixel test prototypes • Three different pitches (100µm, 200µm, 300µm) 200µm • Different bond pad configurations (centered, cornered) for bump bonding onto ASIC as well as interconnector • Will be sent out for manufacturing soon !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 54
Sensor Prototype: Possible ASIC Connections Interconnector Test ASIC Test ASIC Test ASIC ⇒ Test ASIC needs a flexible bonding structure for its connection to the pixel matrix !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 55
Backup Synchrotrons !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 56
Synchrotron Radiation Brilliance photon flux SR Brilliance = (ΔA) (ΔΩ) (Δλ/λ) source area spectral interval solid angle • The figure of merit for a synchrotron‘s performance • High brilliance ≙ high flux of useful photons at the sample and detector !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 57
Synchrotron Generations average Brilliance peak photons/s/mm2/mrad2/0.1%BW 1035 • 1st : Particle accelerators that generate 4th generation FELs synchrotron light as a parasitic effect 1030 1025 • 2nd : Dedicated synchrotron light production planned 3rd generation current 1020 • 3rd : Higher brilliance by introducing insertion devices (wigglers/undulators) dedicated 1015 low emittance 2nd generation • 4th : Even higher brilliance and coherence parasitic 1st generation 10 10 Synchrotron sources X-ray tubes 105 1900 1920 1940 1960 1980 2000 2020 2040 !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( Year 03.04.19 - HighRR BiWeekly Seminar David Schimansky 58
Backup ESRF !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 59
Research at the ESRF • ~50 x-ray beam lines publicly available to external research groups as well as industry • Six major research groups maintain these beam lines and tailor them to specific areas of research: • Structure of materials • Structural biology • Electronic Structure, Magnetism and Dynamics • Matter at extremes • Complex systems & biomedical sciences • X-ray nanoprobes !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 60
Research at the ESRF Structure of Materials: 1 ID3 • Study composition, atomic structure and crystalline state of materials via diffraction and spectroscopy • Observe defects and traps in materials • Example: Formation of a crack in a silicon wafer observed with x-ray diffraction imaging (35kHz) ID 22 See „Real-time direct and diffraction Scheel, A. N. Danilewsky in IUCrJ, X-ray imaging of irregular silicon wafer breakage“ (A. Rack, M. ID1 9 Volume 3, 2016) ID11 5 A ID1 !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 61
Research at the ESRF Matter at extremes • Study behaviour of matter in extreme conditions with ID27 pressures beyond 200GPa and temperatures up to 5000K • Example: Use diamond anvil cells and laser heating to ID24 BM emulate conditions in earth‘s core 23 ID 06 ID18 5 B ID1 !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 62
Backup Sensor !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 63
Sensor Material 10-1 100 101 102 103 104 105 106 107 eV • Energy range: 10-100keV Infrared Ultraviolet X-rays • Usual aim: Build detector with high stopping power to absorb as 10-100keV many photons as possible &' • Dominant process in our energy regime: Photo effect "#$ ~ * ( )+ ⇒ The higher the energy, the less absorption (via p.e.) ⇒ Use material with high Z (and high density) !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 64
Cd(Zn)Te Sensor • Tendency towards using Cd(Zn)Te due to: + High stopping power (Z, !) in desired energy region + Low noise @ room temperature due to band gap size (1.44eV compared to Germanium: 0.66eV) • However, Cd(Zn)Te entails many challenges: - Large crystals hard to produce - Hole trapping - Afterglow - Polarisation - Brittle - Sensitive to heat - Oxidizes in contact to air !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 65
Backup Frontend !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 66
ASIC: Integrating Front-End, Digital Integration ADC conversion + reset • Split integration into sub intervals Integrate • Summate sub images in storage • Choice of integration window size depends on bunch structure, photon rate, Exposure time conversion time, # ADC bits, ADU, DNL etc. e.g. 100 + 100 = 200 Vint !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 67
SUS65T1: Pixel Matrix Connection Wire bonds ASIC • 28 pads allow connecting sensors with ... 100µm and 200µm pitch 200µm 100µm • Additional wire bond pads connected to pixel matrix (not shown) ... !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 68
SUS65T1: Pixel Matrix Connection Wire bonds ASIC • 28 pads allow connecting sensors with ... 100µm and 200µm pitch 200µm 100µm • Additional wire bond pads connected to pixel matrix (not shown) ... 100µm pitch !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 69
SUS65T1: Pixel Matrix Connection Wire bonds ASIC • 28 pads allow connecting sensors with ... 100µm and 200µm pitch 200µm 100µm • Additional wire bond pads connected to pixel matrix (not shown) ... 200µm pitch !"#$%&'()*&+"#(,- '(0 !,.'%$&,/( 03.04.19 - HighRR BiWeekly Seminar David Schimansky 70
You can also read