The Danish National Water Resources Model (DK-model) - BGR
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
IHME workshop, Berlin, 22-23. August 2013 The Danish National Water Resources Model (DK-model) - Support for decision making and WFD implementation Anker Lajer Højberg & Klaus Hinsby Geological Survey of Denmark and Greenland Danish Ministry of Climate, Energy and Building
The National Water Resources Model (DK-model) 60 man3 • Numerical hydrological 50 40 model 30 20 10 0 DK-model concept -1 0 -2 0 – 43,000 km2, 7 sub-models -3 0 -4 0 MIKE SHE/MIKE Abstractions: 11 > 40.000 screens -5 0 3D groundwater – Coupled SW-GW model -6 0 -7 0 Head Rivers obs: > 30.000 (not all time series) (MIKE SHE/MIKE 11) -8 0 Root zone Climate data(built into root zone module) -9 0 Irrigation – Data from national databases 0 500 0 100 00 150 00 200 00 250 00 300 00 350 00 – Hydrogeological description River Snow discharge:~ 200 stations 60 Flow model 500 m grid 50 – 3D geological interpretation 40 12 – 15 vertical layers 30 – Inverse calibration - PEST 20 Daily time steps 10 0 -1 0 – Public accessible -2 0 -3 0 – Stored in national model -4 0 -5 0 database -6 0 -7 0 -8 0 -9 0 0 500 0 100 00 150 00 200 00 250 00 300 00 350 00 (Højberg et al., 2013; Stisen et al., 2012)
Vision • DK-model – unifying platform – Hydrological model and database – Reference for all water management related aspects at all levels • Regularly update as new knowledge and data becomes available • Continuous development
History • 1996 – 2003: 1. version of the DK-model (Henriksen et al., 2003) o Improved estimate of the national water balance (replacing simple analytical estimate) – Research project – National interpretations – National databases • 2005 – 2009: Extensive model update (Højberg et al., 2013) – Collaboration with regional water authorities – Regional and local studies (> 50) • 2010 – 2013: Various improvements based on national, regional and local scale studies – New geological models funded by the Danish Nature Agencies must be prepared for inclusion in DK-model – Collaboration between GEUS, water authorities and consultancies
Model applications Climate change impacts and adaptions Quantitative Chemical status status Groundwater Groundwater Surface water Surface water Applications Users • WFD/GWD implementation • Research institutions • National & regional assessments • National water authorities • Basis for local studies • Regional authorities • Research projects • Municipalities • Water companies ~25 SCI listed papers since 2003, directly or indirectly based on the DK-model (> 2 per year)
The DK-model in WFD implementation Groundwater quantitative Groundwater chemical status status e.g.: e.g.: 1) Aquifer safe yield (Henriksen et al., 2008) 1) Threshold values to protect 2) Eflows (flow quantity and quality terrestrial ecosystems required to sustain surface water 2) Threshold values to protect aquatic ecosystems) (Olsen et al., 2012) ecosystems and e.g. reduce risk of 3) Terrestrial ecosystems harmful algal blooms (Hinsby et al., 2008, 2012) 4) Flooding risks (coastal and 3) Saltwater intrusion. (Rasmussen et al., 2013) hinterland) (Sonnenborg et al., 2012) Harmful Algal Bloom (Cyanobacteria) Baltic Sea between Denmark and Germany – 25.8.2006 (Sonnenborg et al., 2012) Foto: Klaus Hinsby, GEUS (Hinsby et al., 2008) (Hinsby et al., 2012).
Quantitative status Integrated national assessment Henriksen et al., 2008 Climate variability Decreased groundwater table: Extraction related to natural recharge Increased deep recharge Reduced streamflow: Mean flow Eflow
Monitoring programme • Conceptual hydrogeological model -> 3D delineation of GW bodies and link to national database on quantity and quality – Basis for reporting to EU • Design of GW monitoring programme • Estimates of water balance – quantitative status DK-model Corrected DK-model • Interpolation Observed and extra- Q (mm/day) polation of freshwater discharges Windolf et al., 2007
Calculations of climate change effects on hydrology and groundwater Present Climate Change in shallow gw-level (m) 2 scaling Bias Correction Future Climate Global Regional Hydrological Models 100-250 km 10-25 km 50-500 m Skala Several regional studies to estimate effects of CC and uncertainty related to the simulations
Risk for GW flooding or reduced recharge Min, mean and max changes in GW levels based on analysis of 9 GCMRCM combinations Groundwater level 2021-2050 versus 1961-1990 Groundwater recharge 2021-2050 versus 1961-1990 Changes in meter Changes in mm/year 10
Results available from public portal Changes in extreme flow Climate factors, Qmax, T=100 year 11
CC effects on N-mass fluxes Predicted future N- flux (A2 emission CC will scenario) generally increase stream flow Observed N- flux as function of discharge Increasing precipitation and runoff will increase nutrient loads– and hence require reduced groundwater threshold values (assuming no land use change) (Sonnenborg et al., 2011)
Present studies: Nitrogen load to coastal areas Development of model complex (DSS). Collaboration between national research institutes N-leaching Danish Centre for Food and Agriculture (DCA) Surface water Danish Centre for Environment Groundwater and Energy GEUS (DCE) Basis for implementation of the WFD – 2nd cycle Funded by • Estimates of nitrate load to Fjords and marine areas • Danish Nature Agency • Danish Environmental • Estimate reduction in GW and surface water systems Agency • Locate optimal mitigation measures and location • Danish AgriFish Agency • Estimate effect of mitigation measures
New BONUS research project ”Soils2Sea” Partners from: DK (coordinator), DE, PL, RU and SE Topic: reduction of nutrient loadings to the Baltic Sea and the impacts of climate change.
Selected references directly or indirectly using the DK-model Hansen AL, Refsgaard JC, Christensen BSB, Jensen KH (2013), Water Resources Research 49: 585-603 DOI 10.1029/2011wr011783 Hansen JR, Refsgaard JC, Ernstsen V, Hansen S, Styczen M, Poulsen RN (2009), Hydrology Research 40: 347-363 DOI 10.2166/nh.2009.035 Henriksen HJ, Refsgaard JC, Hojberg AL, Ferrand N, Gijsbers P, Scholten H (2009) Water Resources Modelling. Water Resources Management 23: 2539-2554 DOI 10.1007/s11269-008-9395-9 Henriksen HJ, Troldborg L, Hojberg AL, Refsgaard JC (2008) Journal of Hydrology 348: 224-240 DOI 10.1016/j.jhydrol.2007.09.056 Henriksen HJ, Troldborg L, Nyegaard P, Sonnenborg TO, Refsgaard JC, Madsen B (2003). Journal of Hydrology 280: 52-71 DOI 10.1016/s0022- 1694(03)00186-0 Hinsby K, de Melo MTC, Dahl M (2008). Science of the Total Environment 401: 1-20 Hinsby K, Markager S, Kronvang B, Windolf J, Sonnenborg TO, Thorling L (2012). Hydrology and Earth System Sciences 16: 2663-2683 DOI 10.5194/hess-16-2663-2012 Hojberg AL, Troldborg L, Stisen S, Christensen BBS, Henriksen HJ (2013). Environmental Modelling & Software 40: 202-213 DOI 10.1016/j.envsoft.2012.09.010 Kidmose J, Refsgaard JC, Troldborg L, Seaby LP, Escriva MM (2013). Hydrology and Earth System Sciences 17: 1619-1634 DOI 10.5194/hess-17-1619- 2013 Rasmussen J, Sonnenborg TO, Stisen S, Seaby LP, Christensen BSB, Hinsby K (2012). Hydrology and Earth System Sciences 16: 4675-4691 DOI 10.5194/hess-16-4675-2012 Rasmussen P, Sonnenborg TO, Goncear G, Hinsby K (2013). Hydrology and Earth System Sciences 17: 421-443 DOI 10.5194/hess-17-421-2013 Refsgaard JC, Hojberg AL, Moller I, Hansen M, Sondergaard V (2010). Ground Water 48: 633-648 DOI 10.1111/j.1745-6584.2009.00634.x Seaby LP, Refsgaard JC, Sonnenborg TO, Stisen S, Christensen JH, Jensen KH (2013). Journal of Hydrology 486: 479-493 DOI 10.1016/j.jhydrol.2013.02.015 Seifert D, Sonnenborg TO, Refsgaard JC, Hojberg AL, Troldborg L (2012). Water Resources Research 48 DOI 10.1029/2011wr011149 Seifert D, Sonnenborg TO, Scharling P, Hinsby K (2008). Hydrogeology Journal 16: 659-674 DOI 10.1007/s10040-007-0252-3 Sonnenborg TO, Hinsby K, van Roosmalen L, Stisen S (2012). Climatic Change 113: 1025-1048 DOI 10.1007/s10584-011-0367-3 Stisen S, Hojberg AL, Troldborg L, Refsgaard JC, Christensen BSB, Olsen M, Henriksen HJ (2012). Hydrology and Earth System Sciences 16: 4157-4176 DOI 10.5194/hess-16-4157-2012 Troldborg L, Jensen KH, Engesgaard P, Refsgaard JC, Hinsby K (2008). Journal of Hydrologic Engineering 13: 1037-1048 DOI 10.1061/(asce)1084- 0699(2008)13:11(1037) van Roosmalen L, Christensen BSB, Sonnenborg TO (2007). Vadose Zone Journal 6: 554-571 DOI 10.2136/vzj2006.0093 van Roosmalen L, Christensen JH, Butts MB, Jensen KH, Refsgaard JC (2010). Journal of Hydrology 380: 406-419 DOI 10.1016/j.jhydrol.2009.11.014 van Roosmalen L, Sonnenborg TO, Jensen KH (2009). Water Resources Research 45 DOI 10.1029/2007wr006760 Windolf J, Thodsen H, Troldborg L, Larsen SE, Bogestrand J, Ovesen NB, Kronvang B (2011). Journal of Environmental Monitoring 13: 2645-2658 DOI 10.1039/c1em10139k
You can also read