SELLAFIELD Rapport fra konferansen om de - Naturvernforbundet Hordaland
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
SELLAFIELD Rapport fra konferansen om de radioaktive utslippene fra Sellafield Bergen 20/21. mars 2002 Naturvernforbundet Hordaland Tlf: 55300660, faks: 55 30 06 50, e-mail: hordaland@naturvern.no 1
Innhold Innledning...................................................................................................................................3 Brev til ministrene på Nordsjøkonferansen................................................................................4 Faktaark om Sellafield...............................................................................................................5 Forord.........................................................................................................................................8 Foredragsholderne....................................................................................................................10 Janine Allis-Smith, Effects of Sellafields operations ..............................................................11 Dr. Chris Busby, Sea of Troubles - the Health risks of Low-Level Radiation………………14 Lars Asplin et.al, Monitoring an modelling the traces of Sellafield………………………....19 Hilde Elise Heldal, Technetium-99 in Norwegian waters…………………………………...20 Rachel Western et al, Sellafield - the Contaminated legacy………………………………....22 Shaun Burnie, Nuclear waste mis-management, legal strategies and future action……….....29 Katrine Kristiansen , Dry Storage of spent nuclear fuel ……………………………………..47 Mycle Schneider, Possible toxic effects from the nuclear reprocessing plants at Sellafield and Cap de la Hague……………………………………………………..52 2
Vellykket konferanse om Sellafield Naturvernforbundet Hordalands konferanse om de radioaktive utslippene fra Sellafield, 20- 21. mars 2002, hadde flere viktige funksjoner. Først og fremst skulle den legge press på ministrene som var samlet til Nordsjøkonferansen på SAS-hotellet, bare noen få hundre meter fra Gimle Forsamlingshall hvor NVH hadde samlet Sellafieldmotstandere til sin konferanse. Videre skulle konferansen skape kontakt mellom forskningsmiljøer og andre som er opptatt av Sellafield. Dette var også vellykket, selv om vi gjerne skulle sett at vi hadde flere deltagere. Et viktig aspekt er at vi gjennom å engasjere internasjonale foredragsholdere nå har et kontaktnett i Europa som kan brukes videre i NVHs arbeid med radioaktivitet. Dette ville vi ikke ha oppnådd uten denne konferansen. Desverre ble ikke noen endelig avgjørelse tatt om Sellafieldanleggenes videre skjebne. Likevel fikk vi vist hvor sterkt det norske engasjementet er i denne saken.Vi samlet ca 300 mennesker i et protesttog som gikk fra torgalmenningen til SAS-hotellet der vi holdt appeller. Vi fikk også overrakt et protestskriv til miljøvernminister Børge Brende og hans engelske kollega, Michael Meacher, samt de andre miljøvernministrene som var tilstede på Nordsjøkonferansen. Meacher måtte svare for seg foran forsamlingen og tok til etterretning det sterke presset fra protestantene. Han kunne likevel ikke love noen snarlig avgjørelse når det gjaldt utslippene fra Sellafield. Børge Brende gav forsamlingen sin støtte og lovet å fortsette å presse på Meacher for å få slutt på utslippene. Referatet fra Nordsjøkonferansen sier dette om radioaktive utslipp: Recognizing the need to address ongoing releases of radioactive substances to the marine environment, of which discharges from reprocessing facilities represents the main part the Ministers agree that the progressive reduction of discharges from nuclear facilities is necessary for the effective implementations of the OSPAR Strategy for progressive and substantial reductions of discharges , emissions and losses of radioactive substances. The Ministers, except France, encourage relevant North Sea States to evaluate the options for spent nuclear fuel management after current reprocessing contracts have come to an end. 1 Ministrene viser med andre ord at de er bekymret for utslippene, men at det likevel er liten vilje til handling. En annen motivasjon for konferansen vår var å avklare en del av den litt tåkete debatten som har foregått om Sellafield i norske media. Vi hadde derfor engasjert internasjonalt anerkjente forskere til å forklare deres synspunkter og forskningsresultater. De syv foredragsholderne tok for seg problemstillinger rundt Sellafield og gjenvinning av brukt atombrensel generelt. Samlet sett gav de et bilde av en industri som vanskelig kan kalles forsvarlig. Det er vårt håp at foredragene, som er samlet i kortversjoner i denne rapporten, blir lest av så mange som mulig slik at debatten videre blir mer faglig fundert. Heine Askeland Prosjektansatt, Sellafieldgruppa i Naturvernforbundet Hordaland 1 Main Outcome from the fifth international conference on the protection of the north sea hentet fra http://odin.dep.no/archive/mdvedlegg/01/09/Berge043.doc 3
To the ministers at the North Sea Conference in Bergen 20-21 March 2002 Environmental organisations from countries around the North Sea urge the ministers gathered for the North Sea Conference in Bergen 20-21 March to use their influence in their respective countries to make our demands heard: - Reprocessing of spent nuclear fuel has to end - The reprocessing plants in Sellafield and La Hague must be closed down. - The production of nuclear fuel containing plutonium (MOX) must cease. - Research and processing of nuclear fuel containing plutonium must stop. - All countries should name committees to re-evaluate the risk models and risk assessment of the International Commission on Radiological Protection (ICRP) - All countries should work together internationally to gather all available research on the health effects of low-level radiation and to fund projects that could give us more knowledge about this kind of radiation. - New large-scale research programs must be initiated to investigate the effects of ionising radiation on human health, the general environment, living creatures, plants and eco-systems. - Radioactive discharges to the sea result in very large doses to marine creatures and plants. Very little research has been done to establish the consequences. The consequences must be assessed in relation to the total environment, including all living organisms. Enclosed you will find summaries of some of the lectures held at the Conference on Radioactive Discharges from Sellafield 20-21 March 2002 in Bergen, arranged by Naturvernforbundet Hordaland (Friends of the Earth, Norway). Signed: Norges Naturvernforbund, FoE Norway Norges Miljøvernforbund Natur og Ungdom Wise Amsterdam Leger mot Atomkrig, IPPNW Nei til Low Level Radiation Campaign Atomvåpen World Wildlife Fund Greenpeace International Cumbrians Opposed to a Radioactive Friends of the Earth Environment, CORE Bellona Foundation Green Audit UK 4
Faktaark om Sellafield I 1939 vart ein kongeleg våpenfabrikk bygd på kysten av Vest Cumbria på ein stad med namnet Sellafield. I 1947 overtok forsynings-departementet fabrikken og gav han namnet Windscale. Her bygde dei eit gjenvinningsanlegg (B 204) som starta i 1951, og to grafitt modererte, luftkjølde atomreaktorar kalla "the Windscale piles". Dette var starten på det engelske atomvåpenprogrammet. Dei to Windscale reaktorane vart starta opp i 1951 og avstengde i 1957 etter ei alvorleg ulukke i reaktor nr 1., som førde til store utslepp av radioaktivitet. (27000 Ci av I-131, 1230 Ci av Cs-137 og 16100 Ci av Te-132, 1Ci = 37000 000 000 Bq). Etter dette vart namnet på anlegget endra tilbake til Sellafield. Utanom dei daglege utsleppa til luft og vatn har det vore to store ulukker i Sellafield som har ført til stenging av anlegg, fleire lekkasjar med utslepp av radioaktivitet og over 250 uhell frå 1950 til 1986. Dei siste 40 åra har tilsaman 1344 TBq med α emittarar og 113427 TBq med β emittarar blitt sende rett ut i Irskesjøen. (T = 1 000 000 000 000) I 1953 godkjende Winston Churchill byggjinga av to reaktorar til, som skulle produsere både plutonium til våpen og litt elektrisitet. Dei vart bygde i Calder Hall i nærleiken av Windscale. Desse reaktorane starta opp i 1956 og det brukte atombrenselet vart gjenvunne i Sellafield året etter. Likevel var dette for lite til å skaffe nok plutonium til Englands atomvåpenprogram. Det vart difor bygt to nye reaktorar ved Calder Hall og fire ved Chapelcross i Scotland. Alle desse var i gang i 1959. Og det brukte atombrenselet frå alle desse vart sendt til Sellafield for gjenvinning. Den militære produksjonen av plutonium steig frå omkring 50 kg per år til omkring 400 kg. I dag ligg det ca 70 tonn plutonium på lager i Sellafield. Reaktorane i Calder Hall og Chapelcross var dei første av Magnox typen. Valet av denne type reaktor som var diktert utifrå ønskje om å produsere både elektrisk kraft og plutonium, har hatt store miljø og helsekonsekvensar. I 1964 vart det bygd eit nytt anlegg B 205 for å gjenvinne brukt Magnox brennstoff, ikkje berre frå dei militære reaktorane, men frå alle dei sivile som i desse åra vart bygde over heile England. Etter opninga av B 205 har ein i Sellafield først og fremst drive med kommersiell gjenvinning. British Nuclear Fuels Limited (BNFL) presenterer det som ein god måte å handsame atomavfall på, og som ein måte å tene utanlandsk valuta på. Det vart bygd 26 Magnox reaktorar i England fram til 1970. 18 av desse er i dag i drift. 5
Den store auken i technetium-99 (Tc-99) som blir målt langs norskekysten stammar frå gjenvinning av Magnox-brensel. Flytande høgaktivt avfall frå B 205 har sidan tidleg på 80- talet blitt lagra i store tankar mens ein venta på at det nye renseanlegget Enhanced Actinide Removal Plant (EARP) skulle bli ferdig. Då EARP starta i 1994 tok ein til å sleppe det flytande avfallet ut i sjøen etter at restar av plutonium, det meste av cecium og litt av strontium var rensa bort. Men det rensar ikkje bort noko av dei store mengdene med Tc-99. Konsentrasjonen av den radioaktive isotopen Tc-99 i blæretang på Vestlandet har auka frå 100 til 600 Bequerel per kg tørrvekt sidan 1996. (Kjelde:Bergens Tidende 24 mars 2001, innhenta frå Institutt for Energiteknikk) Tc-99 løyser seg i vatn og blit teke opp av sjø- og landplanter. Det tek ca 2,5 år før desse utsleppa når norskekysten. Nyare forskning viser at store mengder av radionuklidar kan bli transporterte frå sjøen og innover land ved hjelp av sjøsprøyt og vind. I 1977 arrangerte miljøverndepartementet i England ein 100 dagars høyring for å drøfte BNFL sine planar om å byggje enno eit nytt gjenvinningsanlegg. Thermal Oxide Reprocessing Plant (THORP) skulle gjenvinne brukt atombrensel i oksidform, for det meste frå lettvassreaktorane. Argumenta mot å byggje det var sterke og gjekk på auka risiko frå rutineutslepp, ulukker, transport og spreiing av bombemateriale. Men dei forventa intektene THORP ville bringe, spesielt frå gjenvinning av japansk atombrennstoff vog tyngre. Anlegget vart bygd og kom i drift i 1996. Då det sivile atomenergiprogrammet vart lansert i 1953, vart gjenvinningsanlegg og formeiringsreaktorar sett på som basis for framtidas energiproduksjon. Dei trudde at med kommersiell utnytting av atomenergien, ville uran i naturen snart bli mangelvare, men at ein om nokre tiår ville kunne bruke plutonium som drivstoff i andre generasjons reaktorar, såkalla formeiringsreaktorar. Plutonium finst ikkje i naturen, men blir danna inne i atomreaktoren når uran blir utsett for nøytronstråling. Slik har det ikkje gått. Uran har ikkje blitt mangelvare, og formeiringsreaktoren vart ein stor fiasko både økonomisk og teknisk. Mange land har prøvd seg (USA, Russland, Frankrike, England, Tyskland, Japan) men har måtta gi opp etter årevis med store kostnader. Det betyr at behovet for gjenvinningsanlegg til sivil bruk er borte. I mangel på eit verkeleg behov for gjenvinning måtte atomindustrien finne ein ny måte å bruke dei titusenvis av kilo med plutonium som hopa seg opp. Og svaret var MOX-brensel. Det er ei blanding av utarma uran og plutonium. Dette kan nyttast i vanlege lettvassreaktorar etter ombygging. World Information Service on Energy (WISE) snakkar om MOX-myten. MOX er nemleg først og fremst eit alibi for å kunne halde fram med gjenvinning. Det er om lag tretten gonger så dyrt å produsere MOX-brensel som uranbrensel.(Kjelde: WISE Amsterdam) Atomkraftverk som brukar MOX er usikrare enn dei som brukar uran, har større utslepp i dagleg drift og produserer meir avfall. Men det alvorlegaste er at bruken av MOX fører til auka transport av gjenvunne plutonium og radioaktivt avfall, og auka risiko for spreiing av våpenplutonium. 6
Det er grunn til å frykte at slike transportar kjem til å gå langs norskekysten i framtida. Gjenvinning er ein dyr og dårleg måte å handsame radioaktivt avfall på. Ved denne prosessen aukar avfallet i volum. Uranet som blir gjenvunne kan ein i dag ikkje bruke, men det blir lagra med tanke på at det kan komme til nytte i framtida. I Serbia brukte USA gjenvunne uran (som er ureint og inneheld restar av plutonium) i uranammunisjon. Og plutoniumet kan ein i dag berre bruke til MOX, som altså er ei unødvendig, dyr og høgrisikofylt løysing. Sellafield har to fabrikkar for produksjon av MOX. Sellafield MOX Demonstration Facility (MDF) har vore i drift sidan 1993. Den andre, Sellafield MOX-Plant (SMP) er mykje større, og har sidan 1996 venta på lisens for å sette i gang produksjon. Denne lisensen fekk dei i desember 2001. Naturvernforbundet Hordaland vil hevde at gjenvinningsanlegga og fabrikkane for produksjon av MOX i Sellafield må stengast straks. Arbeidet med å handsame atomavfall for langtids lagring må opprioriterast. Kjelder: WISE News Communique 469/470 Makhijani, Arjun et al: Nuclear Wastelands, The MIT Press, London 1995 Friends of the Earth: Sellafield. The Contaminated Legacy Bellona Arbeidsnotat, Erik Martiniussen: Sellafield, Reprosesseringsanlegg i Storbritannia, 2001 Wise-Paris, M. Schneider: Possible toxic effects from the nuclear reprocessing plants at Sellafield (UK) and Cap de la Hague (France), European Parrliament, 2001 Bergen mars 2002 7
Føreord Naturvernforbundet Hordaland gjennomførde i oktober 2001 eit to dagars seminar om Sellafield, som resulterte i at ei samla norsk miljørørsle stod bak eit brev til den norske og engelske statsministeren med vårt syn på Sellafield og våre krav til politisk handling. På dette seminaret oppstod ideen om å arrangere ein større internasjonal NGO konferanse parallelt med Ministerkonferansen om Nordsjøen i Bergen i mars 2002. Tanken var då å samle dei store miljø- og antiatomorganisasjonane i landa omkring Nordsjøen for å kunne presentere ministerane for vårt syn på den radioaktive forureininga av Nordsjøen, og presse dei til handling. Takka vere lovnad om finansiering frå Miljøverndepartementet, Hordaland Fylkeskommune og Bergen Kommune kunne vi sette i gang planlegging frå midten av januar. På den korte tida vi hadde til førebuing lukkast vi ikkje i å få tak i alle vi ønskte å invitere. To organisasjonar vi gjerne skulle hatt med er Ökoinstitut Freiburg i Tyskland og Folkkampanjen mot Kärnkraft i Sverige. Begge ønska å vere med, men makta ikkje å stille på så kort varsel. Vi ønska å få tak i dei beste folka innan dette fagfeltet, og det er menneske med avtaler over heile verda. Professor Elena Burlakova frå Moskva svara etter mange veker at ho dessverre ikkje ikkje hadde høve til å ta i mot vår invitasjon. Det gjorde at temaet om helseeffekten av lågdosestråling ikkje fekk den plassen vi hadde håpa. Likevel er vi veldig glade og litt stolte over dei vi fekk tak i, og det vi fekk til. Vi hadde sett opp tre tema vi ønskte å belyse: 1) Lagring av brukt atombrensel som alternativ til gjenvinning, 2) Ny forsking innan lågdosestråling og kritikk av det internasjonale strålevernet sine risikomodellar, 3) Rettssaker og aksjonar og radioaktiv forureining. Når ein les denne rapporten nøye vil ein sjå at alle desse tema er med, sjølv om ikkje alle er like grundig handsama. Alt det audiovisuelle som video, lysbilde, lysark og musikk er sjølvsagt ikkje med i ein slik rapport, men gav oss som var med på konferansen opplevingar som gjorde det lettare å ta til seg det tunge fagstoffet. To av foredragshaldarane har på grunn av stort arbeidspress ikkje makta å sende oss sine foredrag i skriftleg versjon. For Chris Busby legg vi ved det foredraget han holt på seminaret i oktober 2001, og for Mycle Schneider legg vi ved nokre sider frå ein stor rapport han skreiv for EU parlamentet i november 2001. ( Possible toxic effects from the nuclear reprocessing plants at Sellafield UK and Cap de la Hague France). Heile dokumentet er utlagt på internett. Dei siste åra har det vakse fram ein aukande protest mot Sellafieldutsleppa i Norge. Protestane har komme frå kystkommunar, fylkesting, fiskarorganisasjonar, politiske parti og til slutt frå regjeringa med miljøvernminister Børge Brende i spissen. La Hague i Normandi har ikkje vore med i dette bilete, og når det gjeld Sellafield så har protestane og debatten for det meste handla om den auka konsentrasjonen av Tc-99 i vatn, tang og hummar langs norskekysten. Forskarar ved Statens Strålevern og Havforskningsinstituttet i Bergen hevdar utifrå sine målinga at dei norske havområda er mellom dei reinaste i verda, men "føre var prinsippet" tilseier at vi bør krevje stans av Sellafieldutsleppa no. Begge desse miljøa driv ikkje med grunnforsking på dette området og har ikkje kompetanse når det gjeld helseeffekten av radioaktiv stråling. Debatten i norsk media har òg vore prega av at universitetsprofessorar og fagfolk frå miljøa omkring forskingsreaktorane våre i Halden og på Kjeller har gått ut med jamne mellomrom og skulda både politikarar og miljorganisasjonar for å lide av "radiofobi". Dei radioaktive utsleppa frå Sellafield er små og utan betydning for både miljø og menneske, samanlikna med 8
det hav av stråling som den naturlege bakgrunnsstrålinga utgjer, hevdar dei. Debatten i Norge har altså vore veldig smal, og prega av manglande kunnskap om kva som verkeleg går føre seg i Sellafield og La Hague, og har foregått der i over 50 år. Den store mengda med ny forsking som har komme dei siste åra om konsekvensane av lågdosestråling frå menneskeskapte radioaktive isotopar på økosystem og menneska si helse, er òg lite kjende i Norge. Difor var det andre store målet vi hadde med denne konferansen, i tillegg til å nå ministerane med våre meiningar og krav, å nå miljø i Norge med informasjon og kunnskap. Vi hadde invitert folk frå politiske-, miljø-, antiatom- og fiskeriorganisasjonar i tillegg til media, skuleelevar, studentar og vanlege borgarar. Vi trur at vi så langt har lukkast med å tilføre den norske debatten nytt stoff, og håpar at rapporten vår blir brukt til å føre denne debatten vidare. Det er ikkje Tc-99 som er problemet, men gjenvinning av brukt atombrensel. Gjenvinning er ein skitten, gamal og forureinande industri som vart til innan militærforsking under andre verdskrigen. Produktet er plutonium og uran, som vi ikkje treng. Dei radioaktive utsleppa til sjøen inneheld forutan Tc-99 meir enn eit dusin radioaktive isotopar som alle når inn til vår kyst før eller seinare. Plutonium er eit av desse stoffa, og det har det vore lite snakk om. Plutonium er eit av dei farlegaste radioaktive stoffa ein kjenner. Ein bitteliten partikkel kan føre til kreft dersom han blir inhalert. I dag har forskarar funne ut at det plutoniumet ein trudde låg i ro i sedimenta i Irskesjøen, er på veg inn i Nordsjøen. Dei historiske utsleppa kan vi ikkje gjere noko med, men dei daglege nye utsleppa kan stoppast ved at det blir slutt på gjenvinning. Norge bør og stille krav om at det store lageret av flytande, høgradioaktivt avfall på store tankar i Sellafield blir omdanna til tørt stoff for sikker langtidslagring så snart som mogeleg, før det skjer ei ulukke som også kan sende radioaktiv forureining mot Skandinavia. Vi bør og krevje at England stengjer Magnox reaktorane, som er mellom dei farlegaste reaktorane i bruk i heile verda i dag. Shaun Burnie frå Greenpeace minna oss på at vi må sjå på vår eigen atompolitikk. Gjennom oljefondet har vi plassert pengar som støttar både produksjon, transport og bruk av MOX- brensel. Ved Haldenreaktoren har dei forska på MOX og andre former for plutoniumbrensel i meir enn tredve år. Og dermed støttar vi indirekte den gjenvinninga og MOX-produksjonen som foregår i Sellafield og La Hague. Dersom norske politikarar meinar alvor med å krevje at Sellafieldutsleppa skal stansast, må dei også gjere heimeleksa, og sette desse krava inn i ein mykje større samanheng. Rykte seier at den franske miljøvernministeren på Nordsjøkonferansen gnei seg i hendene. Ingen stilte krav til han, alt dreia seg om Sellafield. Naturvernforbundet Hordaland vil halde fram å argumentere for at gjenvinning av atomavfall både i Sellafield og La Hague må stansast. Alle dei store miljøorganisasjonane i Europa er samde med oss i det. Likevel blir ikkje dette nokon lett kamp, og vi må rekne med at det kjem til å ta lang tid. Eg vil slutte meg til Shaun Burnie når han hevdar at utfordringa vår er å halde ut, vere optimistiske og tru at denne industrien kan stansast. Konferansen om Sellafieldutsleppa i Bergen i mars 2002 kan hjelpe oss til det. Eva Fidjestøl -leiar av Sellafieldgruppa i NVH- 9
Foredragsholderne Janine Allis-Smith, CORE CORE (Cumbrians Opposed to a Radioactive Environment) ble startet i 1980, da som The Barrow Action Group. Målet var den gangen å hindre en eventuell transport av atomavfall til Sellafield gjennom Barrow-in-Furness. CORE har siden utvidet sitt virke til å motarbeide alle aspekter ved Sellafieldanlegget, inkludert radioaktiv sjø, utslipp til luft, forurensing av lokalmiljøet, helseskader og utslippenes påvirkning på dyrelivet i området. Rachel Western, Friends of the Earth Friends of the Earth er representert i 68 land og er derfor verdens største internasjonale nettverk av miljøvernorganisasjoner. FOE er en av de ledende miljøvernorganisasjonene i Storbritannia og har med sine 250 lokallag et unikt nettverk i England, Wales og Nord Irland. Shaun Burnie, Greenpeace Greenpeace er en internasjonal miljøorganisasjon som er både økonomisk og politisk uavhengig. Gjennom ikke-voldelige aksjoner, informasjonsarbeid, kreative løsninger og lobbyvirksomhet settes søkelyset på miljøproblemer og løsninger på disse. Med kontorer i over 30 land, hundrevis av eksperter og over 2.5 millioner medlemmer har Greenpeace reell innflytelse og politisk makt. Mycle Schneider, WISE Paris WISE er en verdensomspennende organisasjon som formidler informasjon om energi. WISE- Paris har samlet, og bidratt med, en mengde informasjon om Sellafield og andre atomanlegg i Europa. Mycle Schneider er leder for WISE-Paris og har gitt ut flere publikasjoner om atomkraft. Han fikk nylig ”The Right Livelihood Award” for sitt opplysningsarbeid om farene ved plutonium. Lars Asplin, Havforskningsinstituttet Lars Asplin har doktorgrad i geofysikk fra Universitetet i Bergen. Han har jobbet som havforsker ved Havforskningsinstituttet i Bergen siden 1998. Primært jobber han med havsirkulasjon og prosesser i fjord og kystområder. Katrine Kristiansen Katrine Kristiansen er talskvinne for www.stopsellafield.com, drevet av Neptun Network (en ideel stiftelse). Hun er utdannet musikkpedagog ved Østlandets Musikkonservatorium og University of Texas i Austin. I tillegg har hun seks års studier i grunnmedisin og klassisk homeopati fra Encephalon og Skandinavisk Insitutt for Klassisk Homeopati i Oslo (hvor hun idag er timelærer). Hun jobber som fløytist og driver også egen homeopatpraksis rett utenfor Oslo. Dr. Chris Busby Dr. Chris Busby er leder av organisasjonen Green Audit i Wales. Han har doktorgrad i fysikalsk kjemi og gav i 1995 ut boka Wings of Death – Nuclear Pollution and Human Health. Han er også leder av ”The Low Level Radiation Campaign” som gir ut bladet ”Radioactive Times”. 10
Janine Allis Smith CORE CORE CUMBRIANS OPPOSED TO A RADIOACTIVE ENVIRONMENT 98 Church Street, Barrow-in-Furness, Cumbria LA14 2HJ. Tel 01229 833851, Fax 01229 812239, e.mail: info@core.furness.co.uk I have lived in the Lake District National Park for almost 40 years, a beautiful part of North Western England which is seeking world heritage status at present. Tourism is the main industry and employs more than 45,000 people. The Sellafield reprocessing plant is situated on the National Park’s Irish Sea coast. In the early 1970’s, when, according to BNFL, radioactive discharges of plutonium into the Irish Sea were 100 times higher than today, I used to take my baby son to the silty beaches near Sellafield. His favourite game was to cover himself in sand and mud, being hosed down with buckets of seawater and then starting all over again. It seemed harmless fun, but it was not. We were ignorant on these matters, but scientists knew that plutonium and other radioactive materials were returning to and concentrating on our beaches and in the local environment.They have since admitted that we were part of a deliberate experiment to see how these discharges would affect the foodchain. At the age of 12, my son was diagnosed with leukaemia – just one of the many cases which makes the incidence of childhood cancer around Sellafield (10 times the national average) ‘statistically significant’ and which, according to scientists, could not have happened by chance. The nuclear industry, turning speculation into science, favours an as yet unidentified virus and the effects of population mixing as the cause of leukaemias, but to date radiation is still one of the only known causes of the disease and the cancers did not appear until Sellafield started its operations. My son was lucky, he survived, but many children died. Bremen University discovered that contamination in some of the samples collected from the area around the Sellafield plant was worse than in those collected in the exclusion zone around Chernobyl. It did not surprise us that after the long-running Sellafield cover-up, there was not a murmur of concern from the Government, the National Radiological Protection Board, our health authorities, the regulators or the Environment Agency. As a result of nearly 50 years of reprocessing, Sellafield’s radioactive discharges, the Irish Sea has been made the most radioactively contaminated sea in the world. The contamination levels found in the environment around the plant, would not be allowed inside the Sellafield plant and are illlegal in BNFL’s customer countries. Plutonium is found in our bodies, house dust and can be measured in our children teeth. Government monitoring reports show that radioactivity is present in the food we grow, the fish caught from our seas and in the water we drink. 11
Many Cumbrians now feel that the benefits of jobs do not compensate them for the health risk they face. Cancers, heart disease, thyroid conditions occur more often in W. Cumbria than in other parts of the UK. The area has been confirmed as a health action zone. One familiy who unsuccessfully tried to sell their house because the dust collected from their home contained Plutonium levels 1000 times and Americium levels 17,000 times higher than those from weapons testing fall out, took BNFL to court. They lost the case because the judge ruled that the actual fabric of the house had not been damaged. Others were forced to have their gardens dug up and taken away to a low level radiation dump because pigeons which had become contaminated with radioactivity while roosting at Sellafield, visited their properties.[ People in Norway are justified to be concerned and to demand a stop to BNFL using the seas as their own private sewer. They receive no benefit from this industry whatsoever and should therefore not be exposed to even the slightest risk to their health or livelyhood. Scientists have proved that apart from Technetium 99, the rest of Sellafield’s historic discharges, including plutonium, will be reaching Norway eventually. BNFL does not dispute the contamination figures, just says that they are selective. We admit to being selective. We looked for high levels and we probably haven’t even found the highest ones. Wouldn’t anyone agree that it makes sense to find the highest levels of radioactive contamination and then do your sums to make sure that the most vulnerable in our society, the unborn, the very young and the old are safe ? Sadly, It doesn’t seem to work like that and I am accusing BNFL, MAFF as well as the Environment Agency that they themselves are selective with their monitoring figures, not in our favour, but to enable Sellafield to continue operating. The figures in their monitoring reports are designed to show a trend in the most recent discharges, scraping a few centimetres of top soil, rather than digging deeper and measuring the full impact of current and historical radioactive contamination to which we are exposed. It should worry us that these monitoring report figures are used to estimate the health impact on our community. The National Radiological Protection Board tells us that there is no radiation dose, however low, which does not carry a risk. We know that radiation damages our genes, that we can pass this damage on to our children and grandchildren and so on, and that it affects our immune system. We know that radioactivity from Sellafield is found in our food, our bodies, our children’s teeth and in our house dust. Last year, two thousand radioactive pigeons had to be killed, a whole garden, including the tarmac drive, was dug up and had to be disposed off as nuclear waste. We know that lobsters, seaweed and vegetables are more radioactive than ever before and last year the Environment Agency queried an increase of plutonium in Whitehaven’s watersupply. Still Sellafield keeps asking for increases in their annual discharges, continually adding to the contamination already there, hiding behind the fact they are “authorised” and thereby implying that they are safe. We’re not stupid, we know that these “authorised discharges”, coming out of those carefully engineered and calculated tall Sellafield chimneys, are meant to come down somewhere and it won’t be on Sellafield’s doorstep. Where I live, about 14 miles east of the plant with the predominant Westerly’s blowing I am in a prime ‘down winders’ position. When the wind blows from the East, Ireland will get it. 12
We are continually approached by people who believe that some of the many cancers, skin cancers, heart disease, thyroid disorders and auto-immune diseases they see in their communities have something to do with Sellafield. The nuclear industry has never been able to prove that it hasn’t. They admit that its operations cause “theoretical” fatal and non-fatal cancers, fatal and non-fatal genetic diseases but ‘how many’ is the only dispute in the scientific debate. Sellafield only manages to get away with it because, unlike everything in and around us that carries their fingerprint, the cancers and genetic defects themselves, don’t. It is strange therefore that BNFL workers are compensated for nearly all cancers, including skin cancers and eye cataracts on a 20% probability that their illness has been caused by their work at Sellafield. Our local health authorities ignore the health impact of Sellafield or and pretend it doesn’t exist. It is not enough to give our communities the illusion that health is totally in our own hands. That to stop smoking, eating more fruit and vegetables, take more exercise or not to take off your clothes in the sun, is going to make everything better, it is dishonest. We can improve our lifestyle but we can’t do anything about being ‘passive radiation sufferers’ and ‘Sellafield downwinders’. That is up to the authorities and until now they continue to to let us down. Janine Allis-Smith 13
Chris Busby Sea of Troubles: the Health risks of Low-Level Radiation Introduction Ionising radiation is radiation which is energetic enough to cause the breakage of chemical bonds and the resultant destruction or alteration of biologically important molecules in living cells. The molecule which is most critical is DNA, and it is now generally accepted that it is the alteration of DNA on the chromosomes of living cells which results in their alteration or mutation and therefore ultimately the expression of genetic damage in cancer and other illnesses. There are different types of radiation, alpha, beta and gamma, with different penetrating power. Although gamma radiation has greatest penetrating power, it causes the least ionisation density. On the other hand, alpha radiation cannot penetrate the skin, yet if delivered from inside tissue, through the ingestion or inhalation of an alpha-emitting substance, the ionisation density and resulting cellular damage is very great. External and internal The risk models developed in the last fifty years are exclusively based on external gamma and X-radiation and the yield of cancer following a given dose is calculated by reference almost entirely to one study, that of the Japanese survivors of the bombing of Hiroshima. The doses were very large for this single acute external irradiation and many people were burned and killed. So in order to use the cancer yield in these Japanese survivors, the authorities, the ICRP, have assumed that the cancer yield is linearly proportional to the dose. For external radiation, this assumption is justified in part by the fact that, for external radiation we can average the dose: each cell in the body receives the same dose. However, this is not always the case for internal irradiation. This is because internal irradiation begins with a point source from within the body, and this source will irradiate local tissue more strongly than tissue which is further away. The effect is particularly important for alpha and beta radiation from many of the isotopes released to the environment by the nuclear industry and weapons testing fallout. Thus the risk model upon which the nuclear industry depends for its assertion that its releases do no harm is not one which can be applied to the types of exposure involved, since it was based on a different exposure altogether. Cellular responses The basic risk model in use today was developed by physicists in the 1950s, before the discovery of DNA structure and function. In the last twenty years, a great deal has been learned about cell responses to radiation damage. Life evolved in a radioactive environment and has developed shield mechanisms. So when a cell is damaged but not killed it sets itself to repair the damage. The call repairs the DNA damage (this is why there are two complementary strands of DNA) and replicates to produce two daughter cells, usually containing the repaired genes. Following sub lethal damage, this repair-replication period lasts about ten hours, and once initiated cannot be stopped. Whilst a cell is replicating, it is very much more sensitive to radiation damage, about 600 times more sensitive than when it is not in this phase. There are two consequences. The first is that the response to increasing radiation dose should not be linear but biphasic. In the living animal there is always a small percentage of replicating cells replacing damaged tissue. These cells are 600 times more sensitive than the quiescent cells and therefore these are mutated at low dose. As the dose is increased, they are killed. At still greater dose the insensitive quiescent cells begin to be mutated. The result of these two cell sub types is that the yield of effect e.g. cancer increases 14
at low dose, then decreases and then increases again. I have called this type of dose response the ‘Burlakova’ response after Elena Burlakova, the Russian radiobiologist, although she has a different explanation for it. The other result of the existence of cell repair replication is that two doses of radiation, delivered inside ten hours are particularly hazardous, since the first dose can push a quiescent phase cell into repair replication, and the second dose, will thus attack the cell in its most sensitive phase. This two hit sequence is called the ‘Second Event’. It is able to distinguish between most of the radiation doses from natural background and radiation doses from novel exposure routes from human activity. The main hazards are from certain sequential internal radioactive isotopes like Strontium-90 or Tellurium-132 or from internal alpha emitting ‘hot particles’ like Plutonium and Uranium oxides. Evidence from fallout The first evidence that the risk model was not correct came from the increase in infant mortality and leukaemia in the period immediately following the major injection of radioisotopes into the global environment in the period 1958-63. Sternglass, was able to show that there was an increase in infant mortality in this period in all developed countries, and more recent work by Whyte has confirmed this. I was able to show that the deaths were caused by development defects, particularly heart development, and this is supported by the observations of Luning in Sweden and Smirnova in the Soviet Union. They were able to show powerful genetic effects of infant mortality from heart defects in mice and rats following injection of Strontium 90, though not Caesium-137. These findings have never been referred to by the ICRP and other risk agencies, and no risk of infant mortality is addressed by any such agency. Of course, the damage was not only to children, and our work on the cancer incidence trends in Wales, where the UK fallout was highest, shows clearly that there was an increase in all cancers twenty years after the fallout which mirrored it exactly in temporal pattern. The relation between this cancer increase and the cumulative dose from Strontium-90 twenty years earlier reveals a 300-fold error in the present risk model. Sea of Troubles In the 1980s, the childhood leukaemia cluster at Sellafield was discovered, not by the local Public Health department but by a TV company. This was followed by discoveries of leukaemia clusters near all three of the European nuclear reprocessing plants, and also other nuclear sites e.g. Aldermaston, Harwell, Krummel and Barsebaeck. The establishment response was, and still is, that the Hiroshima model does not predict such an effect, which would require an error of about 300-fold to explain it, and therefore radiation is not the cause. My group has been supported by the Irish government in a three-year study of cancer and radiation on the shores of the Irish Sea. We have examined cancer incidence from 1974-90 in Wales and 1994-96 in Ireland. We used small area data which we adjusted for socio- economic disadvantagement sex and age to look at the effect of living near the sea and have made several interesting discoveries. For Wales we found: • Risk of developing most cancers increases sharply near the coast. • The increase is greatest in the 800metre strip • The increase in greatest in children for leukaemia and brain tumours 15
• The increase is greatest near areas of low tidal energy where highest levels of radioactive material from Sellafield have been measured. • The effect increased over the period and followed the peak releases from Sellafield in the mid 1970s by about five years. By the end of the period, risks of childhood brain tumours or leukaemia in some towns in north Wales, near radioactive offshore mud banks were more than 5 times the national average For Ireland, using data only for all cancers, we found: • The effect existed on the east coast but not on the south or west coast • The effect existed in women but was weak or non-existent for men • There was a strong cohort effect in both men and women born around the time of the Windscale fire in 1957. In addition, we examined closely a part of Ireland, Carlingford, on the East Coast. Using data from a local GP we were able to identify leukaemia and brain tumour excess in the period 1960-1986. We also conducted a questionnaire study in the area which revealed that the seacoast effect existed as close as 100metres from the sea. People living within 100metres from the sea had almost four times the probability of developing cancer than those living more than 1000metres. Coastal nuclear sites We were concerned to examine other nuclear sites which discharged to the sea, and were able to do so for the first time in 1999 due to the release of small area cancer mortality data. We discovered the sea coast effect near the Hinkley point nuclear power station in Somerset which discharges to a large offshore mud bank called Steart flats. The town near the flats had twice the breast cancer mortality rate in 1995-1999. This effect also occurred near the East Coast nuclear power station at Bradwell in Essex which discharges to a muddy estuary. There was a high rate of cancer in those living near the mud compared with inland. A similar estuary to the south which had no power station did not show the effect. Sea to land transfer We believe the cause of the effect to be sea to land transfer of radioactive material trapped in intertidal sediment. This process was discovered in the mid 1980s and is well described. The trend with distance from the sea of Plutonium is similar to the trend in sodium chloride penetration, and shows a sharply rising concentration in air in the first km. In the UK, plutonium has been measured in sheep droppings across the whole country and the concentration in grassland, measured in the 1980s, shows a significant trend with distance from Sellafield. Plutonium has been measured also in childrens teeth with the same trend, and has been found in autopsy specimens from all over the UK. Levels are highest in the tracheobronchial lymph nodes (TBN) which drain the lungs. Particles of about 1 micron diameter entering the lungs are transposed to the lymph nodes and lymphatic system where they can, in principle, reach any part of the body. Very recent work shows that particles of about 0.1 micron diameter can pass though the placenta. Such alpha emitting particles cause very high doses to local cells in the 40micron range of their disintegration tracks. In addition, cells will be hit again and again since the particle will continue to emit radiation. Thus the Second Event process is very likely. 16
The effects of particle doses may also be the cause of the recent anomalous responses to Depleted Uranium. DU weapons result in very large quantities of micron sized, long lived radioactive particles in the air. Increases in cancer and birth defects in areas of Iraq, and more recent increases in cancer in peacekeepers in Kosovo and Bosnia may be a consequence of this. Mutually exclusive risk models We are now at a stage where the massive evidence of error in the Hiroshima risk models can no longer be avoided. Molly Scott Cato and I showed that the increase in infant leukaemia which occurred in five countries following Chernobyl shows an unambiguous error in the accepted risk model of 100-fold or more. This finding shows that the leukaemia clusters near Sellafield are caused by radiation: it is the risk models that is at fault. This finding was published in June 2000 and given to the WHO Chernobyl conference in Kiev in June 2001. Since then, Weinberg has shown that the increase in DNA mutations in the children of the Chernobyl clean up workers defines a 1000-fold error in the risk factors. The European Parliament has unanimously passed a resolution asking for the ICRP risk model to be reassessed. The UK Environment Minister Mr Meacher has set up a new government committee, on which I am a member, to re-examine the risk factors for internal radiation. Following our lobbying and several meetings with us and the Radiological Protection Board, Mr Meacher also refused to transpose the Euratom Directive, which permits recycling of radioactive material. Thus the UK is the only Member State where this has not been done. The way ahead This new risk committee follows a format suggested first by Molly Scott Cato. She recognised that scientific advice to government was inevitably biased by the funding of research by industry. This was the problem with BSE. Molly’s suggestion in her book ‘I don’t know much about science’ (Green Audit, 1999) is that committees should be oppositional, like a courtroom or like parliament. Thus two sides give evidence and both conclusions are incorporated into a final report. Norway On the basis of the evidence we have, the greatest contemporary danger to Norway is from fine sediment particles drifting with surface water from Sellafield and from fallout particles already in the environment. Measurements should be made of such particles in coastal locations and the cancer incidence in coastal locations should be compared with that from inland locations. Norway should not permit the release to the environment of any radioactive material in the present state of scientific uncertainty, and should transpose the Euratom Directive at a level at least as safe as that defined by UK law. Chris Busby and the Low Level Radiation Campaign The website of the low level radiation campaign is www.llrc.org and most of the evidence given here is on the website. Dr Chris Busby was trained as a physical chemist but has studied the health effects of low level radiation since 1987. His book, ‘Wings of Death’ was published in 1995. He is national speaker on science and technology of the Green Party of England and Wales. A member of the International Society for Environmental Epidemiology 17
he also sits of the UK Ministry of Defence committee on Depleted Uranium and the UK government Committee on Environmental Risks from Internal Emitters. He has visited Iraq and Kosovo to investigate the health effects of Depleted Uranium and has given evidence to the Royal Society on the issue. He is scientific director of Green Audit, the environmental consultancy, and scentific advisor to the Low Level Radiation Campaign, which he co founded in 1997. 18
Monitoring an modelling the traces of Sellafield Lars Asplin, Hilde Elise Heldal and Lars Føyn, Institute of Marine Research, Bergen. Summary of a presentation held in Bergen at March 20 as part of the Sellafield conference arranged by Naturvernforbundet Hordaland. The Institute of Marine Research (IMR) is a governmental institution financed by the Ministry of Fisheries with a main goal to provide scientific advice to governmental agencies, industry, and other institutions on issues relating to marine science. IMR has more than 500 employees, and is divided into departments for marine resources, marine environment and aquaculture. The department for marine environment has 4 sections: marine biology, marine chemistry, physical oceanography, and an oceanographical data centre. We are working on the physical marine environment and the lower trophical levels in the marine food chain. The Institute of Marine Research performs 70-80% of all observations in Norwegian waters each year. Together with the Norwegian Radiation Protection Authority we are monitoring the levels of radioactivity in Norwegian areas. The transport routes of radionuclides from e.g. Sellafield will basically follow the ocean currents. These are variable (on many time scales, from hours to years) but mainly follow fixed paths. Thus, it is a fact that discharged radioactive material at Sellafield eventually will find its way into Norwegian waters. This was shown by an animation of the results from a numerical ocean model simulation of passively drifting floats. In 1994 there was an extreme increase of the discharge of technetium from Sellafield, and this front was tracked by many researchers. It appears that this 99Tc-front spent 6 months to reach the northern tip of Scotland, 9months to reach the north-western parts of the North Sea. Then, approximately 2.5 years to reach the western coast of Norway and 3 years to reach the coast of northern Norway. After 3-4 years it has reached Bear island and after 4-6 years the Fram Strait. The observed levels of man-made radionuclides in Norwegian waters are small compared to natural levels. E.g. the activity of 99Tc is less than 7 Bq m-3 while the activity of 40K is more than 10000 Bq m-3. The observed uptake of 99Tc in biological is also modest. The highest uptakes are apparently in sea weed and lobster, although the levels are still low. Nevertheless, the increase of 99Tc after 1994 can be observed. Since the half-life of 99Tc is so long, a precautionary approach must be to stop the discharge of this radionuclide to the sea from Sellafield, especially since the knowledge of its behaviour and interactions in the marine environment today is insufficient. 19
Institute of Marine Research, Hilde Elise Heldal, February 2002 (translated by Heine Askeland) Technetium-99 (Tc-99) in Norwegian waters The Sellafield-plant is situated in Cumbria on the North-West coast of England. The plant has discharged radioactivity into the Irish Sea since 1952. In the last few years the discharges of technetium-99 have received a lot of attention. Tc-99 has a half-life of 213,000 years and will be found in our environment for thousands of generations. Tc-99 is found in sea water and can be carried by sea-currents over great distances. The discharges of Tc-99 from Sellafield were considerably lower in the 80s up until 1993 (see figure in the Norwegian version of this document). In 1994 the new Enhanced Actinide Removal Plant (EARP) opened. The plant removes some radionuclides, but not Tc-99. When the EARP-plant opened, stored and processed waste was released at the same time. This led to a marked increase of Tc-99 discharges. Discharge of other radionuclides, on the other hand, decreased. Norwegian Radiation Protection Authority (NRPA), the Norwegian Institute for Energy Technology, and the Norwegian Institute for Marine Research have been monitoring the transportation of Tc-99 in the North Sea and along the Norwegian coastline. “The Tc-99 front” (the first batch of discharges) reached the south-western part of the Norwegian Coast after approximately 2,5 years and the northern part of the Norwegian coast after ca three years. In the summer of 1999, the concentration of Tc-99 in the northern currents along the Norwegian coast was ca. ten times higher than the level of the background radiation. In the summer of 2000, the “Tc-99 front” reached Spitsbergen. The highest concentration of Tc-99 in Norwegian coastal areas (6,5 Bq3) was measured North-West of Bergen in November 1996. However, it is important to bear in mind that seawaters also contain a lot of natural radioactivity. The total concentration of natural radionuclides in seawater is ca 12 000 Bq3. The concentration of Tc-99 is less than 0,1 per cent of this total. Measurements taken by the NRPA show that the concentration of Tc-99 in seaweed and lobster along the Norwegian coast has risen as a result of the increased discharges from Sellafield. The intervention limit set by EU for Tc-99 is 1250 Bq kg-1 wet weight for adults and 400 Bq kg for children. Up to 460 Bq kg-1 dry weight has been measured in powdered seaweed. Because powdered seaweed is sold and consumed in dry form, the results can be compared to the EU intervention limit for wet weight. The highest concentration in lobster (42 Bq kg-1 wet weight) was measured in Sunnhordland in December 1997. Laboratory research has shown that the uptake of Tc-99 in lobster varies from organ to organ. It has, for example, been proved that the uptake of Tc-99 is higher in the bladder, the digestive glands/stomach and liver than in other organs. This could also be the case in other species, and we do not know how their organs are affected. Little research has been done on the uptake of Tc-99 in fish, and we need to know more about its uptake in bottom-feeding fish and fish that feed on shell-fish which is shown to be increasing. We also know little about the way in which Tc-99 affects the human body. 20
In order to put the radiation dose we get from Tc-99 in perspective, we have to compare it to the dose from other sources. In total, an average Norwegian receives about 4 mSv (milli Sievert) per year. This is called background radiation. Some of the main sources are radon, cosmic radiation and medical radiation. A person weighing 70 kg would have to eat 150 tons of lobsters from Sunnhordaland, mentioned earlier, to receive a dose equal to the background radiation. It has to be stressed that we do not know where in the organism Tc-99 is taken up. If the uptake is concentrated in vulnerable organs, the radiation dose to which these organs are exposed can be considerable, even if the average radiation dose to the body as a whole is relatively small. The British government has calculated the pollution from Sellafield in such a way whereby nobody will receive a dose higher than 0,5 mSv per year. Realistic estimates suggest that the radiation dose to people in the “critical group” (people who eat a lot of seafood from the area around Sellafield), is ca. 0,1-0,2 mSv per year. This dose, for example, is much less than a typical radiation dose from radon in Norway. The radiation dose from Tc-99 to the “critical group” along the Norwegian coastline is considerably smaller than the dose to the “critical group” living around the Irish Sea. However, we lack accurate estimates of radiation doses to man and the environment along the Norwegian coast from Tc-99. To get better estimates we need more information about 1) uptake and transportation of Tc-99 in important marine food chains and 2) the Norwegian populations actual consumption of seafood. Because the radiation dose we get from natural sources is several thousands of times higher than the one we get from Tc-99, it is presumed that the health risk involved with today’s discharges is minimal. If this is the case, is there any reason for wanting to stop the discharges? One good reason is the reputation of the Norwegian fishing industry. If Norwegian fish gets known for being radioactively contaminated, the fish may be hard to sell. As long as we don’t have enough information about transportation of Tc-99 in marine food chains, and the effects of this, we should not condone the discharges. The general question that has to be asked is whether or not one has the right to use the ocean as a dustbin. If the answer is no, the discharges should stop. Today, the Norwegian waters are among the cleanest in the world, and that is the way we want them to stay in the future. But to be able to proclaim that Norwegian fish is clean, we have to be vigilant. Partially financed by the environmental department., a national monitoring program for marine activity is jointly carried out by the NRPA and the Institute for Marine Research. IMR is collecting samples and analysing for radioactive caesium (Cs- 137 and Cs-134). NRPA are monitoring Tc-99 and other radionuclides. This way the total capacity for monitoring in Norway is being used. To get more information about transportation of Tc-99 in marine food chains, we at the IMR would like to establish a method for monitoring Tc-99, in order to carry out further research in this field. At present there is not sufficient funding for this project. 21
You can also read