Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...

Page created by Ivan Flynn
 
CONTINUE READING
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
Plagiarism Protection by

Luminescent Substances

Prof. Dr. Thomas Jüstel
& Dr. David Enseling

Research Group               March 1869  March 2019

Tailored Optical Materials

March 25th, 2019
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
To my Person
CV
• University Bochum (1987 - 1994)         Coordination Chemistry
• Max-Planck Institute Mülheim (1995)     Electrochemistry
• Philips Research Aachen (1995 - 2004)   Luminescence, Solid State Chemistry
• Münster University of Applied Sciences
  (since 2004)                            Inorg. Chemistry, Functional Materials
• Dean of Department
  „Chemical Engineering CIW“ (since 2013)

Teaching
Inorganic Chemistry
     Solid state chemistry
     Coordination chemistry
     Bioinorganic chemistry
Material Science
     Functional materials
     Luminescent materials
     Material characterisation
Incoherent Light Sources                  https://www.fh-muenster.de/juestel
 2                                                                     27.03.2019
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
About 20% of the produced electrical energy is used for lighting (source: NASA)

                                      in

Even almost 30 years after Germany‟s reunification
East and West Berlin can be diminished by lighting                 East Berlin
1961   Construction of the Berlin Wall                              Na lamps
1989   End of the Berlin Wall “The wind of change”
1990   Germany‟s reunification                         West Berlin
1993   Blue LED: (In,Ga)N                               Hg lamps
1996   White LED: Y3Al5O12:Ce
2014   White LED > 300 lm/W & Nobel price
2015   UNESCO Internatiol year of light
2018   LED dominates lighting business ”The light of change”
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
Outline
Luminescent Substances (Pigments)
• Definition
• Some Fundamentals
• Properties
• Evolution of Light Sources
• Conventional and Emerging Applications

Plagiarism Protection by Luminescent Pigments
• Status
• Novel Ideas
• Analytical Techniques for Detection of Markers
• Summary & Outlook
• Literature
 4                                                 27.03.2019
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
Definition
Luminescence
• Luminescence is a process that corresponds to emission of electromagnetic
  radiation beyond thermal equilibrium (in excess to thermal radiation)
• It involves the processes called fluorescence, phosphorescence, and
  afterglow  Luminescence at different time scales (nanoseconds to hours)

                              Under daylight

                 Upon excitation by electrons or UV radiation

 5                                                                   27.03.2019
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
Definition
Difference to Incandescence
Incandescence corresponds to emission from solids in thermal equilibrium
 „Black body radiation“, e.g. incandescent lamps, stars, hot surfaces, …..
                                                         3
                                                  4x10

                                                         3
                                                                                                          3000K
                                                  3x10
Planck„s law (1900)                                      3
                                                  3x10

                                  L e [W m nm ]
                                  -1
      c1        1                                 2x10
                                                         3

 L e  5  c 2 /T
                                  -2
                                                                                                        2500K

      λ            1
                                                         3
                                                  2x10
          e
                                                         3
                                                  1x10
                                                                                                    2000K
                                                         2
                                                  5x10

c1 = 3.741832.10-16 Wm2
                                                             0   200   400   600    800   1000   1200    1400   1600   1800   2000
c2 =   1.438786.10-2   Km                                                          W avelength [nm]

 = Wavelength [m]
                                                         Wien‟s law
Le = Spectral irradiance
T = Temperature [K]
                                                             λ max  T  2880 [μm  K]
 6                                                                                                                      27.03.2019
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
Organic Luminescent Materials
Requirements and properties

• usually aromatic compounds (no C-H, N-H, or O-H bonds)
• low energy p p* transitions
• quantum yield increases with number of rings and degree of condensation
• fluorescence especially favored for rigid structures
• fluorescence increase for bounding to a metal  complex formation

Examples of selected fluorescent compounds
Perylenes               [Al(8-hydroxyquinolinate)3]      [Ir(phenylpyridine)3]

           O O
     O            O

     N            N

     O            O
           O O

 7                                                                     27.03.2019
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
Organic Luminescent Materials
Luminescence explained by Jablonski energy diagram

Molecules: Numerous vibrational energy levels for each electronic state!

S2, S1 = Singlet states
T1 = Triplet state
v = Vibrational levels

                                          Lumogen F Orange ED240
                                                                Emission spectrum
                            1,0
                                                                Excitation spectrum

                            0,8
Relative intensity [a.u.]

                            0,6

                            0,4

                            0,2

                            0,0
                              300   400       500        600          700         800

                                              Wavelength [nm]

                            8                                                           27.03.2019
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
Inorganic Luminescent Materials
Luminescent material = Host material + defects + dopants

Host material       Fluorides, Oxides, Nitrides, Sulphides, Selenides, …..
• Selection in accordance to requirements defined by the application area:
  Excitation energy, absorption strength, chemical environment, temperature,
  pressure and so on

Defects              Anion or cation defects, Interstitials
• Afterglow (persistent luminescence)
• Luminescence quenching (conc. and temperature dependent)
• Stability reduction

Dopants              Cr3+, Mn4+, Tl+, Pb2+, Bi3+, Ce3+, Pr3+, Eu2+/3+, .....
• Selection and concentration depends on host lattice and application:
  Solubility, mobility, oxidation state stability, CT state location
• Co-dopants to enhance absorption

9                                                                              27.03.2019
Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
Inorganic Luminescent Materials
1                       Host material + Dopants (RE-, TM- and s2- ions)                                  18
1                                                                                                        2
Zn 2
H                                                                            13   14   15    16       He 1
                                                                                                   17 Zn
3        4                                            Groups                 5    6    7     8     9  10
Li       Be                                                                  B     C   N     O     F Ne 2
11       12                                                                  13   14   15    16    17    18
Na Mg 3            4      5     6     7        8     9     10    11    12 Al       Si P      S     Cl    Ar       3
19       20   21   22     23    24    25       26    27    28    29    30    31   32   33    34    35    36
K        Ca Sc     Ti    V      Cr Mn Fe Co Ni                   Cu Zn Ga Ge As Se Br                    Kr 4

                                                                                                                      Periodes
37       38   39   40     41    42    43       44    45    46    47    48    49   50   51    52    53    54
Rb Sr         Y    Zr Nb Mo Tc                 Ru Rh Pd          Ag Cd In         Sn Sb Te I             Xe 5
55       56   57   72     73    74    75       76    77    78    79    80    81   82   83    84    85    86
Cs       Ba La Hf Ta            W     Re Os Ir             Pt    Au Hg Tl         Pb   Bi     Po At      Rn 6
87       88   89   104    105   106   107      108   109   110   111   112
Fr       Ra Ac Rf         Db Sg Bh Hs Mt Ds Rg Cn                                                                 7

                          58    59    60       61    62    63    64    65    66   67   68    69    70    71
                          Ce Pr       Nd Pm Sm Eu Gd                   Tb Dy Ho Er           Tm Yb Lu 6
                          90    91    92       93    94    95    96    97    98   99   100   101   102   103
                          Th Pa            U    Np Pu Am Cm Bk Cf                  Es Fm Md No Lr                 7

    10                                                                                                       27.03.2019
Inorganic Luminescent Materials
Requirements on efficient phosphors
• Highly crystalline particles
• High purity (99.99% or better)
• Homogeneous distribution of “impurities”

                                Excitation                      Emission
                                                         Heat              Heat
Absorption process related to                Heat
Optical centres (impurities)
• activators    (A)
• sensitizers   (S)                                        A                 D
• defects       (D)                           S
                                                    ET
• host material (band edge)                                ET                ET
                                                                    ET   A
                                                                A
Energy transfer often occur
prior to emission process!
                                Emission                                     Heat
                                                                Heat
11                                                                         27.03.2019
Inorganic Luminescent Materials
A luminescent material (phosphor) converts absorbed energy into
electromagnetic radiation beyond thermal equilibrium
Host
• Coordination number and geometry
• Symmetry of activator sites
• Optical band gap
• Phonon spectrum                        Eu2+

Dopants, impurities, and defects         Eu2+
• Concentration                                  Eu2+
• Phase diagram and miscibility gaps      Mn2+
                                                 VO
Particle surface
• Zeta-potential
• Surface area
• Coatings  Light in- and outcoupling

Particle morphology
• Shape
• Particle size distribution
 12                                                               27.03.2019
Inorganic Luminescent Materials
Morphology
• Nanoscale particles          Molecular imaging, precursors
                               Optical marking
• µ-scale particles            Lamps, LEDs, CRTs, PDPs,
                               Optical marking
• Large single crystals        Scintillators, Laser
• Ceramics                     LEDs, scintillators, Laser
                               (cubic materials preferred)
1 nm      10 nm       100 nm     1 µm     10 µm       100 µm   1 mm   10 mm

 13                                                                   27.03.2019
Inorganic Luminescent Materials
Optical properties
                               Excitation and emission                                                                                                                                                   Decay curves of
                               spectrum of Mg2TiO4:Mn                                                                                                                                                        SrSi2N2O2:Eu
• Luminescence spectra                                                                                                                                                                                Decay Measurement

                                                                                                                                            Intensity [counts]
                                                                                    PRO-2009-AB-012 ex307nm                                                                                                                                           T=100.00 K
                                                            1,0
                                                                                                                         656 nm                                                                                                                       T=150.00 K

• CIE colour point
                                                                                    PRO-2009-AB-012 mon656nm
                                                                                                                                                                 1000                                                                                 T=200.00 K
                                                                                                                                                                                                                                                      T=250.00 K
                                                            0,8                                                                                                                                                                                       T=300.00 K

                                Relative intensity [a.u.]
                                                                                                                                                                                                                                                      T=350.00 K

• Luminous efficacy
                                                                                                                                                                                                                                                      T=400.00 K
                                                                                                                                                                                                                                                      T=450.00 K
                                                            0,6                                                                                                          100                                                                          T=500.00 K

• Colour point consistency                                  0,4

                                                                                                                                                                                      10

• Centroid wavelength                                       0,2

• Quantum yield                                             0,0
                                                                  250   300   350    400   450   500   550   600   650    700   750   800
                                                                                                                                                                                                  1
                                                                                                                                                                                                      0       2000        4000      6000          8000           10000
                                                                                                                                                                                                                                                         time [ns]
                                                                                            Wavelength [nm]

• Decay curve               T-dependent PL of selected                                                                                                                                                Linearity of YAG:Ce
• Thermal quenching         LMs upon 254 nm excitation                                                                                                                                                  and LiEuMo2O8
                                                                                                                                                                                                                     LiEuMo2O8
• Linearity
                                                                                                                                                                                                  1,0
                                                                                                                                                                                                                     Ideal

                                                                                                                                                                 Norm. emission integrals [a.u]
                                                                                                                                                                                                                     YAG:Ce U728
                                                                                                                                                                                                  0,8

• Photochemical stability                                                                                                                                                                         0,6

• Absorption length                                                                                                                                                                               0,4

• …..                                                                                                                                                                                             0,2

                                                                                                                                                                                                  0,0
                                                                                                                                                                                                          0    100        200      300          400        500

                                                                                                                                                                                                                         Exc. density [W/mm2]

 14                                                                                                                                                                                                                                        27.03.2019
Inorganic Luminescent Materials
Luminescence spectra (excitation and emission)
Luminescence intensity depends                                                                                                                              Y2O3:Eu3+
                                                                                                                                  Band                                                            5         7
                                                                                                                            1,0                                                                   D0 - FJ
on excitation energy (wavelength)                                                                                                 gap
                                                                                                                                           Charge-

                                                                                                Emission intensity (a.u.)
                                                                                                                                           Transfer

• 10 - 500 keV
                                                                                                                            0,8
                                                         Cathode or x-ray tubes
• 172 nm
                                                                                                                            0,6
                                                         Plasma displays
• 254 nm
                                                                                                                            0,4
                                                         Fluorescent lamps
• 400 nm
                                                                                                                            0,2                                   7         5

                                                         Near UV LEDs                                                                                 7     5
                                                                                                                                                       F0 - D3
                                                                                                                                                                  F0 - D2
                                                                                                                                                                                7     5
                                                                                                                                                                                F0 - D1

• 465 nm                                                 Blue LEDs                                                          0,0
                                                                                                                              150   200   250   300   350   400       450       500   550   600       650       700   750

                                                                                                                                                          Wavelength [nm]
                                1,0
Normalised emission intensity

                                0,8
                                                                           colour point
                                                                           colour saturation
                                0,6
                                                                           luminous efficacy
                                                                        
                                0,4
                                                                            efficacy for biological
                                0,2
                                                                            & chemical processes
                                0,0
                                  300   400   500        600    700   800
                                              Wavelength [nm]

                                15                                                                                                                                                           27.03.2019
Inorganic Luminescent Materials
Thermal quenching: Example  red emitting LED material CaAlSiN3:Eu2+
                                                                  2+
                                             Mitsubishi CaAlSiN3:Eu (0.7%)                                                                          Mitsubishi CaAlSiN3:Eu (0.7%)
                                                                                                                                                                                      2+
                              700000                                                                                    70000000
                                                                             350 K                                                                                                    SSL-EX-037 CaAlSiN3:Eu
                                                                                                                                                                                                              2+

                                                                             400 K
                                                                                                                                                                                      Boltzmann fit of Data14_B
                              600000                                         450 K                                      60000000

                                                                                           Emission integral [counts]
                                                                             500 K
Emission intensity [counts]

                                                                             550 K
                              500000                                                                                    50000000
                                                                             600 K

                                                                                                                                               Chip temperature range
                                                                             650 K
                              400000                                         700 K
                                                                                                                        40000000
                                                                             750 K

                              300000                                                                                    30000000

                              200000                                                                                    20000000

                              100000                                                                                    10000000

                                  0                                                                                           0
                                       500            600              700           800                                           300   400                            500        600            700              800
                                                     Wavelength [nm]                                                                                                    Temperature [K]

• All luminescent materials show a reduction of the photoluminescent quantum yield
  and a colour point shift with increasing temperature
• Many luminescent materials are already quenched at room temperature
• LED phosphors must not quench at chip temperature: T1/2(CaAlSiN3:Eu) ~ 380 °C)
• T1/2 depends on chemical composition (band gap, defect density, phonons)
        16                                                                                                                                                                                                  27.03.2019
Inorganic Luminescent Materials
   Decay curves and afterglow                             Material           Decay time 1/e (254 nm)

               1
                                                          BaMgAl10O17:Eu2+   1.1 µs
                                      (Y,Gd)BO3:Tb
                                      Zn2SiO4:Mn          Lu3Al5O12:Ce3+     54 ns
                                                          (Y,Gd)BO3:Tb3+     3.5 ms
Intensität

              0,1

                                                          Zn2SiO4:Mn2+       10 ms
             0,01                                         Y3Al5O12:Ce3+      65 ns
                                                          Y2O3:Eu3+          1.0 ms
      0,001
                    0   10     20      30            40   YVO4:Eu3+          1.5 ms
                             t (ms)
                                                          (Y,Gd)BO3:Eu3+     3.5 ms

   Some observations
   • Chemical composition of host and activator type determine decay time
   • Decay time is a sensitive function of symmetry and chemical bond strengths
      relaxation of quantum mechanical selection rules
   • Afterglow is caused by energy transfer and defects
             17                                                                               27.03.2019
Luminescent Mat.: Simply Everywhere
Optical brightening             Paint, pulp and paper, washing powder
Product anticounter feiting     Bills, stamps, credit cards, tickets
Advertisement illumination      Ne discharge lamps
Emergency illumination          Emergency exits and signs, runways
Medical imaging and treatment   x-ray converter films, scintillator crystals
                                Psoriasis and jaundice treatment
                                Dental ceramics

Astronomy                       EUV/VUV-Amplifier
Biochemistry                    Labels for DNA, RNA, proteins
Solar Cells                     Down-Shifter
                                Down-Converter
                                Up-Converter

Telecommunication               NIR Amplifier
High energy physics             Scintillator crystals, neutron detectors
 18                                                                            27.03.2019
Afterglow Materials
Afterglow pigments for glow purposes
•        CaAl2O4:Eu,Nd      440 nm
•        Sr2MgSi2O7:Eu,Dy   469 nm
•        Sr4Al14O25:Eu,Dy   490 nm
•        SrAl2O4:Eu,Dy      520 nm
•        Sr2SiO4:Eu,Dy      570 nm
•        Y2O2S:Eu,Ti,Mg     620 nm
•        Sr3Al2O5Cl2:Eu     630 nm
•        CaS:Eu,Tm          655 nm
•        MgSiO3:Eu,Dy,Mn    660 nm

                     N329 in Oss (The Netherlands)

    19                                               27.03.2019
Afterglow Materials
Afterglow pigments for storage purposes
Process
1. Charging of the material, e.g. by high energy particles,
x-rays, or UV radiation
2. Stimulation of energy release to induce luminescence
      • Thermal stimulated luminescence
        (TSL: T >> 300 K)
      • Photo stimulated luminescence
        (PSL: Laser activation)

In a storage phosphor radiation energy is stored inside the material by traps
and the light of interest is not produced until the material is activated, either by
thermal or optical stimulation. Thus information on the radiation can be
obtained at a time later than the actual interaction.
 20                                                                          27.03.2019
Afterglow Materials
Afterglow pigments for storage purposes

Established materials
• Ba(F,Br):Eu2+             PSL
• RbBr:Tl+                  PSL
• SrS:Eu2+,Sm3+             PSL
• Ba3(PO4)2:Eu2+            PSL
• Ba2B5O9Br:Eu2+            PSL
• Ba7Cl2F12:Eu2+            PSL
• Ba12Cl5F19:Eu2+           PSL
• Y2SiO5:Ce3+               PSL
• Ba5SiO4Br6:Eu2+,Nb3+      PSL and TSL (150 °C)
• Sr5(PO4)3Cl:Eu2+          PSL and TSL (157 °C)
• Li6Gd0.5Y0.5(BO3)3:Eu3+   PSL and TSL (177 °C)
• LiSr4(BO3)3:Ce3+          PSL and TSL (200 °C)
• LiCaAlF6:Eu2+             PSL and TSL (240 °C)
• LiYSiO4:Ce3+              PSL and TSL (260 °C)

 21                                                27.03.2019
Conventional Application: Lighting
Luminescent materials are the basis of fluorescent light sources (LEDs & FLs)

Light yield of a light source                                           Emission of lines or
                                                                          narrow bands by
• Strongly dependent on emission spectrum                            Eu2+      Tb3+ Eu3+/Mn4+
• Optimum is at 555 nm
• V() = 683 lm/W (v = 100%)

                                        Luminous efficacy [ lm/W ]

22                                                                                        27.03.2019
Evolution of Light Sources
                                               Eu2+ , Tb3+, Eu3+ Ce3+, Eu2+ phosphors
1st Revolution        2nd Revolution           3rd Revolution     4th Revolution

 First there                   ...put into a     ...and made
                 ...then the
 was open                      glass             more            ...then the fire
                 fire was
 fire...                       bulb...           efficient...    vanished and light
                 tamed...
                                                                 only prevailed !

 23                                                                           27.03.2019
Evolution of Light Sources

 Source: Philips
24                           27.03.2019
Evolution of Light Sources
19th century – „Solid State Lighting“
                                                    V() = Human Eye Sensitivity
                                          1

Emission from solids in thermal
equilibrium „Black body radiation“
                                        0.5

                                                                 „2700 K Planck Spectrum“
Materials: C, Os, W
                                          0          500           1000            1500                2000

Incandescent + halogen lamps
                                              380          780 Wellenlänge in nm
                                                    Wavelength [nm]

25                                                                                        27.03.2019
Evolution of Light Sources
20th century – „Gas Discharge Lighting“
                                                      1,0

                                                                               Tb3+
Emission from excited atoms/ions                                                                 Eu3+

                                          Relative intensity [a.u.]
                                                      0,8

                                                      0,6               Eu2+
Gas fillings: Hg, Na, Ne, Ar, Kr, Xe,
+ Luminescent materials                               0,4

                                                      0,2

Fluorescent lamps + plasma displays
                                                      0,0
                                                         300          400      500        600       700           800
                                                                               Wavelength [nm]

26                                                                                                        27.03.2019
Evolution of Light Sources
21st century – „Solid State Lighting“                              1,0                              Eu2+
                                                                           (In,Ga)N

                                            Normierte Intensität
                                                                   0,8        LED            Eu2+
Emission from solids due to
recombination of charge carriers                                   0,6

                                                                   0,4

Materials: (Al,In,Ga)P, (Al,In,Ga)N,
                                                                   0,2
polymers, Ir3+-complexes
                                                                   0,0
                                                                     300       400     500          600    700          800
                                                                                      Wellenlänge [nm]
Inorganic and Organic LEDs
                   +   -               Metal cathode
                                       Organic luminescent layer
Indium-Tin-Oxide                       Transparent organic
anode                                  Hole transport layer

     Glass

27                                                                                                               27.03.2019
Phosphor Converted White LEDs
        “Phosphor Converted” (pc) LED
                                                                                                               Phos-
                                                                                                               phor

                                                                   Contact
                                                                                                                   Plastic
                                                                                                                    lens
                                                                                                                     (In,Ga)N-
                                                                                                                     semicon-
                                                             Gold wire                                                 ductor

In1-xGaxN Semiconductor

                                                                                              Heat sink (Cu)
                                        1,0                       CIE1931             x       y
        Normalised emission intensity

                                                                       410 nm         0.173   0.026
                                                                       419 nm         0.170   0.015
                                        0,8                            448 nm         0.156   0.035
                                                                       455 nm         0.147   0.040
                                                                       459 nm         0.143   0.047
                                        0,6
                                                                       462 nm         0.136   0.059
                                                                       465 nm         0.132   0.071
                                                                       468 nm         0.128   0.085
                                        0,4
                                                                       482 nm         0.092   0.216

                                        0,2

                                        0,0
                                              400   450          500            550               600
                                                          Wavelength [nm]

                                        28                                                                                       27.03.2019
Phosphor Converted White LEDs
            1st Generation since 1996: Cool white LEDs
             (In,Ga)N LED (Y,Gd)3Al5O12:Ce                                                   70
                     1,0

                                                                                             60                                  Tc = 5270 K CRI = 82
                                                                                                                                 Tc = 4490 K CRI = 79
Emission Intensity

                     0,8

                                                                            Emission intensity
                                                                                             50
                                                                                                                                 Tc = 4110 K CRI = 76
                     0,6                                                                     40                                  Tc = 3860 K CRI = 73
                                                                                             30
                                                                                                                                 Tc = 3540 K CRI = 70
                     0,4

                                                                                             20
                     0,2
                               Blue          Yellow                                          10

                               LED           phosphor
                     0,0                                                                         0
                        400   450     500   550   600   650   700   750   800                    400   500          600                700                800
                                            Wavelength [nm]                                                  Wavelength [nm]
Status quo cool white phosphor converted LEDs @ 2019
• Yellow phosphors garnets: (Y,Gd,Tb)3Al5O12:Ce3+
                       ortho-silicates: (Ca,Sr,Ba)2SiO4:Eu2+
• LE ~ 300 lm/W (WPE > 80%) Element              Y     Gd     Ce     Al                                                   O      (Y0,77Gd0,2Ce0,03)3Al5O12
                              Molar Mass (g/mol) 88,91 157,25 140,12 26,98                                                16,0   639,243
• CRI ~ 70 - 80               Coefficient        2,31 0,6     0,09   5                                                    12
• CCT > 5000 K                Mass fraction      32% 15%      2%     21%                                                  30% 100%
                     29                                                                                                                      27.03.2019
Phosphor Converted White LEDs                                                                             equal-lumen spectra

2nd     Generation since 1996: Warm white LEDs                            4.50E-04

                                                                          4.00E-04

1.2
    (In,Ga)N LED Y3Al5O12:CeRed phosphor                                  3.50E-04
                                                                                                   JAZZ 3300K
                                                                                                   BB 3300K
                                                                          3.00E-04
 1

                                                            W/nm
                                                                          2.50E-04
0.8
                                                                          2.00E-04

0.6                                                                       1.50E-04

                                                                          1.00E-04
0.4
                                                                          5.00E-05

0.2                                                                    0.00E+00
                                                                                      400    450      500           550         600         650
                                                                                                                                                    nm 700         750
 0
                                                                                  0.025                                                                               1.2
  400    450   500   550   600   650     700   750   nm   800

                       Wavelength [nm]                                             0.02
                                                                                                                                                                      1.0

 Warm white LEDs for indoor lighting                                                                                                                                  0.8
                                                                                                                                      black body 3600 K
                                                                                  0.015

                                                                rad. flux, a.u.

                                                                                                                                                                            rad. flux, a.u.
 • Electric power consumption ~ 1 W                                                                                                   fluorescent, CCT=3600 K         0.6

 • Luminous efficacy ~ 100 lm/W                                                    0.01

                                                                                                                                                                      0.4

 • Wall plug efficiency ~ 30 %                                                    0.005
                                                                                                                                                                      0.2

 • Colour rendering index = 85 – 95
 • Colour temperature 2700 – 4000 K                                                  0
                                                                                      400   450     500       550         600         650     700       750
                                                                                                                                                              nm
                                                                                                                                                                   800
                                                                                                                                                                      0.0

  30                                                                                                                                                   27.03.2019
Phosphor Converted White LEDs
Micropowders, (glass) ceramics, and crystals
Aluminates  Ce3+                                                                  1,0                                     SrS:Eu

(Y,Gd,Tb)3Al5O12:Ce                                                                                                        (Sr0.75Ca0.25)S:Eu
                                                                                                                           (Sr0.5Ca0.5)S:Eu

                                          Emission intensity [a.u.]
                                                                                                                           (Sr0.25Ca0.75)S:Eu
Lu3(Ga,Al)5O12:Ce                                                                  0,8
                                                                                                                           CaS:Eu

                                                                                   0,6

Sulphides  Eu2+
                                                                                   0,4
(Ca,Sr)S:Eu
                                                                                   0,2

Oxides  Eu2+ or Ce3+                                                              0,0
                                                                                     500         600                     700                    800
CaSc2O4:Ce,Mg                                                                                          Wavelength [nm]

(Ca,Sr,Ba)2SiO4:Eu                     Typical spectra of Eu2+ phosphors
(Ca,Sr,Ba)3SiO5:Eu                                                                 1,0

                                                   Normalised emission intensity
                                                                                   0,8

(Oxy)Nitrides   Eu2+ or   Ce3+
                        „2-5-8“
                                                                                   0,6
(Sr,Ca,Ba)2Si5N8:Eu
(Sr,Ca,Ba)Si2N2O2:Eu    „1-2-2-2“                                                  0,4

(Ca,Sr)AlSiN3:Eu        „1-1-1-3“                                                  0,2

La3Si6N11:Ce            „3-6-11“
,ß-Si3-xAlxN4-xOx:Eu   „SiAlONes“
                                                                                   0,0
                                                                                     300   400         500        600           700         800
                                                                                                       Wavelength [nm]

31                                                                                                                             27.03.2019
Europium - The Magic of Colour
                 Eu2+ Phosphor     Emission band bei [nm]
                 KMgF3:Eu                   359 (Line)
                 SrB4O7:Eu                  368
                 BaSO4:Eu                   374
                 Sr2P2O7:Eu                 420
                 BaMgAl10O17:Eu             453
                 SrSiAl2O3N:Eu              480
                 Sr4Al14O25:Eu              490
                 BaSi2N2O2:Eu               490
                 Ba2SiO4:Eu                 505
                 SrAl2O4:Eu                 520
                 SrGa2S4:Eu                 535
                 SrSi2N2O2:Eu               541
                 Sr2SiO4:Eu                 575
                 Ba2Si5N8:Eu                585
                 SrS:Eu                     610
                 Sr2Si5N8:Eu                615
                 CaAlSiN3:Eu                650
                 CaS:Eu                     655
                 SrSiN2:Eu                  700

Trend for E: Fluorides < Oxides < Oxynitrides < Nitrides ~ Sulfides
32                                                                27.03.2019
Emerging: Human Centric Lighting
Spectra of white light sources
                   Tageslich
                    Day light   Incandescent lamp Fluorescent lamp
                   t

       Halogen lamp with IR filter Cool white LED    Warm white LED

       Day light     Halogen       Fluorescent      LED lamp     LED lamp
                     lamp          lamp             cool white   warm white
Lux    100.000       500           500              500          500
UV     5%            < 1%          < 1%             0%           0%
VIS    60%           5%            90%              100%         90%
NIR    35%           95%           10%              0%           10%
 33                                                                   27.03.2019
Emerging: Plant Lighting
Lamp types in horticulture lighting
• Na vapour lamps
• Fluorescent lamps comprising blue and red luminescent materials
• Blue and red LEDs (+ far red LED)
• Blue LEDs + red (~ 660 nm) and far red (~700 nm) phosphors
                                                                      Photoynthesis action curve
                                                                1,0
                                                                      after McCree (DIN 5013-10)
                                                                      Phytochrom red
      Grass cultivated upon daylight                                  Phytochrom far red
                                                                      425 nm LED
        or upon LED illumination                                0,8   Mg28Ge7.5O38F10:Mn4+
Daylight (left vessel) and LED illumination                           Al2O3:Cr3+
                (right vessel)                Rel. action (%)         (Ca,Sr)14Al10(Zn,Mg)6O35:Mn4+
                                                                0,6

                                                                0,4

                                                                0,2

                                                                0,0
      Source: Semjon Reimer, FH Münster
                                                                      400             500             600   700   800
                                                                                         Wavelength (nm)
 34                                                                                                               27.03.2019
Conventional: Displays
     Cathode Ray Tubes   EL Displays    Plasma Displays

     LCD Backlighting    LED Displays    Laser Displays

35                                                    27.03.2019
Conventional: Displays
Colour mixing in the Braun„s tube
(Cathode ray tube)

                                             ZnS:Cu

                                                      Eu3+

1st generation    YVO4:Eu3+
                                    ZnS:Ag
2nd generation    Y2O2S:Eu3+
36                                                     27.03.2019
Emerging: µ-LED Displays
Micro-LED displays require inorganic nanoscale luminescent materials

465 nm µ-LEDs +
• Green luminescent material
• Red luminescent material

 37                                                            27.03.2019
Plagiarism Protection
State-of-the-Art

• Plenty of different luminescent pigments are used nowadays as
  security element e.g. onto bank notes, stamps, documents and so on
• Only visual inspection instead of spectral measurements are mostly
  used here
• But visual luminescent pigments are only a single out of ~ 30 different
  security elements in Euro bank notes

        Excitation @ 254 nm                  Excitation @ 366 nm

 38                                                                27.03.2019
Plagiarism Protection
Today

• An increasing number of counterfeits of all kind of products congest
  the markets worldwide
• In 2011 the German machinery and plant building industry lost around
  7.9 billion € on counterfeits
• Unreasonable claims are the biggest problem besides losses by faked
  products
• Manufacturers need a method to mark and
  authenticate original products from fakes
  especially for pharmaceutical and security
  relevant products

                                         Source: Tailorlux
 39                                                              27.03.2019
Plagiarism Protection
Today: New requirements on security pigments

Complex products are also affected by fakes (www.plagiarius.com)
)

    40                                                         27.03.2019
Plagiarism Protection
Today: New requirements on security pigments

• External marking in form of holograms, printed labels, or RFID chips
  are visible and not permanent
• Security pigments should be integrated into product
• Inseparable combination of product and security pigment is possible
• No negative effect on product properties (due to low doping level)
• High stability against chemical and physical impacts

          Source: Tailorlux
 41                                                               27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

+ Very stable against environmental conditions
+ High differentiability of the spectra (host lattice, activator)
+ Billions of individual security codes can be generated

- More expensive than most organic luminescent materials
- Difficult to read out spectra at low concentration level

The security level of inorganic phosphors is very high due to the
tremendous diversity and stability

 42                                                                 27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

For security applications two kinds of inorganic rare earth doped luminescent
pigments are used:
      • Down-shifting materials excitable by UV radiation
      • Up-converting materials excitable by red or near IR radiation
  Down-Conversion                                  Up-Conversion

Line emittiers are mostly preferable due to the
possibilty to generate an optical fingerprint spectrum

 43                                                                     27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

Up-converter materials
+   Easy to detect (by red or NIR laser)
+   Visible in low concentrations
-   Only a limited number of efficient systems available
-   Up-converters can be purchased world-wide
-   More and more counterfeiter working with up converting pigments

The security level of up-converting pigments is rather
low due to the limited number of well-known up-converters

                                             Source: Tailorlux
 44                                                                   27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

Down-converter materials
+   Billions of individual combinations
+   Very high stability
+   High quantum yield
+   Excitable with a lower power density (no laser required)
-   Individual production possible
-   More expensive than simple inorganic phosphors

The security level of inorganic down-converting
pigments can be very high due to the enormous
diversity of these materials

 45                                                            27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

To generate a wide range of different inorganic luminescent materials the
following is needed:
      Special knowledge in solid state chemistry and pigment production
      A lot of different raw materials at a high purity level ~ 99.99+%
      Infrastructure for high temperature chemistry
      Machinery for precise conditioning of luminescent pigments
      Spectroscopic equipment to analyze finished luminescent materials

 46                                                                       27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

State-of-the-Art                      Innovation
• Marking by unknown inorganic        • Marking by several unknown
  luminescent material                  inorganic luminescent material or
                                        by luminescent material with
• Relatively simple materials with
                                        several optical features
  specific visible spectra
                                      • Quasi fingerprint spectra
• Simple analytical proof
                                      • Complex analytical proof

                                                                          Sample 1
                                                                          Sample 2
                                                                          Sample 3
                                                                          Sample 4
                                                                          Sample 5
                                                                          Sample 6
                                                                          Sample 7
                                                                          Sample 8
                                                                          Sample 9
                                                                          Sample10
                                                                          Sample 11
                                                                          Sample 12
                                                                          Sample 13
                                                                          Sample 14

Optical marker present?              Fingerprint correct?
 47                                                                 27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

Strategies for changing optical properties of luminescent materials:

• Specific activator and structure    exchange cation types

• Specific activator                  exchange structure type

• Specific structure                  exchange activator

• Specific structure and activator    add second activator
                                       and add third activator
                                       and so on

 48                                                               27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

Specific activator and structure type  exchange cation types
                                           3+                 3+                3+                 3+                 3+
                             LiLaW2O8:Eu        NaLaW2O8:Eu        KLaW2O8:Eu        RbLaW2O8:Eu        CsLaW2O8:Eu
           Norm. intensity

                                600    650        600    650         600    650        600    650         600    650
                                                                                                   Wavelength [nm]

49                                                                                                                         27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

Specific activator  exchange structure type
                             Y2O3:Eu3+         YVO4:Eu3+     Y2O2S:Eu3+     YBO3:Eu3+     Y3Al5O12:Eu3+
           Norm. Intensity

                               600       650     600   650     600    650     600   650     600     650
                                                                                        Wavelength [nm]

50                                                                                                        27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

Specific structure type  exchange activator
                              YPO4:Dy3+     YPO4:Pr3+     YPO4:Sm3+     YPO4:Eu3+      YPO4:Ho3+
            Norm. Intensity

                              500 600 700   500 600 700   500 600 700   500 600 700   500 600 700
                                                                                      Wavelength [nm]

51                                                                                                      27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

Specific structure type and activator  add second activator

YPO4 doped with Sm3+ and a second trivalent rare earth activator
                                          SmTb                                                                                   SmEu
                    1,0         Em  Ex = 160nm                                                                Em  Ex = 160nm
                                Ex  Ex = 600nm                                                    1,0         Em  Ex = 601nm
                                                                                                               Reflexion

                    0,8
                                                                                                   0,8
 Intensity [a.u.]

                                                                                Intensity [a.u.]
                    0,6
                                                                                                   0,6

                    0,4
                                                                                                   0,4

                    0,2                                                                            0,2

                    0,0                                                                            0,0
                          200   300           400    500      600   700   800                            200       300            400     500      600   700     800
                                            Wavelength [nm]                                                                      Wavelength [nm]
 52                                                                                                                                                        27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker
YPO4 comprising n different activator ions (each 1 atom-%), e.g. seven …..
1        2                                                                n
Sm           SmEu, SmTb, SmDy, SmHo, SmEr, SmTm
Eu           EuTb, EuDy, EuHo, EuEr, EuTm
Tb           TbDy, TbHo, TbEr, TbTm
Dy           DyHo, DyEr, DyTm
Ho           HoEr, HoTm
Er           ErTm
Tm           -
7          7                                                        7
                                                                 
 1           2                                                       n
7       Variations for n = 1
 28     Variations for n = 1 - 2
 63     Variations for n = 1 - 3
 98     Variations for n = 1 - 4
 119    Variations for n = 1 - 5     without concentration profiles!
    53                                                                          27.03.2019
Plagiarism Protection
Inorganic luminescent pigments as optical marker

Complex analysis based on several optical centers possible by

• Excitation source: Broad vs. narrow (site elective spectroscopy)

• Environment: temperature, pressure, electrical fields, gases, ….

• Time: Immediate vs. delayed measurements
                      120000
                                                                                                                     120000
                                                                 Ex= 254 nm                                                                                              160 nm Anregung                                   1,0                                         nach 10 µs
                      100000                                     Ex= 450 nm                                         100000
                                                                                                                                                                               25 °C                                                                                    nach 10 ms
                                                                                     Emission intensity [Counts/s]

                                                                                                                                                                               300 °C                                       0,8
 Intensity [counts]

                       80000                                                                                         80000

                                                                                                                                                                                                        Intensity [norm.]
                                                                                                                                                                                                                            0,6
                       60000                                                                                         60000

                                                                                                                                                                                                                            0,4
                       40000                                                                                         40000

                       20000                                                                                         20000                                                                                                  0,2

                           0                                                                                             0
                            500   550   600   650   700   750     800   850    900                                                                                                                                          0,0
                                                                                                                         200   250   300   350   400    450   500   550   600   650   700   750   800                         350   400   450   500   550   600   650   700   750   800
                                               Wavelength [nm]
                                                                                                                                                       Wavelength [nm]                                                                            Wavelength [nm]

                               Excitation energy                                                                                           Temperature                                                                                      Time delay
 54                                                                                                                                                                                                                                                                       27.03.2019
Plagiarism Protection
Application of inorganic luminescent pigments to
 • Plastics                            •   Lacquer

 • Ceramics                            •   Polyurethan
                                           foam

 • Yarn                                •   Special woven
                                           fabric

 • Medical                             •   Printings

 Limit of application: Luminescence is not observable in metals, but possible
                in ceramic or polymer type coatings onto metals
55                                                                      27.03.2019
Plagiarism Protection
Analytical access: Excitation sources

a) Steady state spectroscopy
• Solar light
• Incandescent lamps (350 - 3000 nm)
• Deuterium lamps (115 - 370 nm)
• 450 W Xe discharge lamp (250 – 1100 nm)

b) Time resolved spectroscopy
• Flash lamps
• LEDs
• Laser diodes
• Solid state laser
 56                                         27.03.2019
Plagiarism Protection
Analytical access: Detection

     Type    Detection by      Requirements     Required marker   Security
                                  to user        concentration     level

1             Human eye            low
Summary and Outlook
Inorganic luminescent materials

• Individual rare earth doped inorganic luminescent pigments generate
  the highest security level in direct product marking
• Small hand held spectrometer with high resolution and sensitivity is
  needed to read out the security code on-side
• Tempering the individual security pigments extremely difficult
  because of the secret manufacturing process
• Based on security pigments the business for counterfeiter will be
  much more difficult!

58                                                              27.03.2019
Summary and Outlook
Inorganic luminescent materials for LEDs

Mature luminescent materials developed to encounter
•    high luminous efficacy       cool-white      > 200 lm/W
•                                 warm-white      > 100 lm/W
•    high CRI                     70 - 95
•    superior lifetime L70        > 10000 h
•    retrofit designs             for TL, CFL, GLS, …

Efficient luminescent materials for LEDs
                        Oxides                Oxynitrides         Nitrides             Fluorides
Silicates               (Ca,Sr,Ba)2SiO4:Eu (Ca,Sr,Ba)Si2N2O2:Eu   (Ca,Sr,Ba)2Si5N8:Eu K2SiF6:Mn
Aluminosilicates                              a,ß-SiAlON          (Ca,Sr)AlSiN3:Eu
Aluminates              (Y,Gd,Lu)3Al5O12                          (Sr,Ca)LiAl3N4:Eu    Na3AlF6:Mn
Gallates                ZnGa2O4:Mn                                (Sr,Ba)Mg2Ga2N4:Eu
Germanates              Mg8Ge2O11F2:Mn
Molybdates              Tb2Mo3O12:Eu
Tantalates                                                                             K2TaF7:Mn
    59                                                                                       27.03.2019
Summary and Outlook
        Increase of energy density drives search for further novel materials

                                                              Rare Earth Phosphors     Garnets     Crystals/Ceramics
                                                        105
                         High energy particles
                         x-rays (< 1 nm)

                                                                                                                     Host lattice
Excitation energy [eV]

                         EUV (1 – 100 nm)               103

                         VUV (100 – 200 nm)
                         UV-C (200 – 280 nm)            10

                         UV-B (280 – 320 nm)

                                                                                                                     Sensitiser
                         UV-A (320 – 400 nm)            5

                         VIS (400 – 700 nm)
                         NIR (700 – 1400 nm)            1

                                                                                                                     Activator
                                                 0.01          0.1   1     10    102    103      104   105   106
                                                                         Power density [W/cm2]
                     60                                                                                       27.03.2019
Summary and Outlook
 Development of light sources driven by material science            Ceramics
                                                                 Nitrides
                                                           (In,Ga)N
 Material                                    (Al,In,Ga)P
 control                                    Garnets
                                   GaAs
                                   Halogen cycle
                            Rare Earth
             MgWO4 &        Phosphors
             Zn2SiO4:Mn
  C, Os, W

1895 1905 1915 1925 1935   1945 1955 1965    1975 1985 1995 2005 2015
                                 Year
  61                                                                   27.03.2019
Literature
Books
A.H. Kitai, Solid State Luminescence, Chapman & Hall, London (1993)
G. Blasse, B.C. Grabmeier, Luminescent Materials, Springer Verlag Berlin Heidelberg
(1994)
J.R. Coaton, A.M. Marsden, Lamps and Lighting, Arnold, London (1997)
D.R. Vij, Luminescence of Solids, Plenum Press, New York and London (1998)
S. Shinoya, W.M. Yen, Phosphor Handbook, CRC Press (1999)
A. Zukauskas, M.S. Shur, R. Caska, Introduction to Solid-State Lighting, John Wiley &
Sons, Inc. (2002)
E.F. Schubert, Light Emitting Diodes, Cambridge Univ. Press (2003)
J. Garcia Sole, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of
Solids, John Wiley & Sons, Inc. (2005)
C.R. Ronda, Luminescence, Wiley-VCH (2008)
T. Jüstel, S. Möller, H. Winkler, Luminescent Materials in Ullmann‟s Encyclopedia of
Technical Chemistry (2012)
Kozai, T.; Fujiwara, K.; Runkle, E.S., LED Lighting for Urban Agriculture, Springer (2016)
62                                                                                  27.03.2019
Literature
Publications
  T. Jüstel, H. Nikol, C.R. Ronda, New Developments in the Field of Luminescent Materials
  for Lighting and Displays, Angew. Chem. 110 (1998) 3250
  T. Jüstel, H. Nikol, Optimization of Luminescent Materials for Plasma Display Panels,
  Adv. Materials 12 (2000) 527
  M. Born, T. Jüstel, Elektrische Lichtquellen, Chemie in unserer Zeit 40 (2006) 294
  H. Hummel, P.K. Bachmann, T. Jüstel, J. Merikhi, C.R. Ronda, V. Weiler, Near-Infrared
  Luminescent Nano Materials for In-Vivo Optical Imaging, J. Nanophotonics 2 (2008)
  021920
  M. Kubus, D. Enseling, T. Jüstel, H.-Jürgen Meyer, Synthesis and Luminescent Properties
  of Red-Emitting Phosphors: ZnSiF6·6H2O and ZnGeF6·6H2O Doped with Mn4+, J.
  Luminescence 137 (2013) 88
  T. Jüstel, Anorganische Leuchtstoffe und LEDs, CHEManager 5 (2017)
  J. Chen, S. Loeb, J-H. Kim, LED Revolution: Fundamentals and Prospects for UV
  Disinfection Applications, Envir. Sci.: Water Res. Technol. 3 (2017) 188
Internet-Links
  Homepage T. Jüstel (PISA & LISA)          www.fh-muenster.de/juestel
  Philips (Signify)                         http://www.lighting.philips.de/home
  Tailorlux GmbH                            http://www.tailorlux.com
 63                                                                               27.03.2019
Acknowledgement
 Research Group “Tailored Optical Materials“
 for synthesis, photographs, spectroscopy, etc.

 HMS Boston, MA, USA, Dr. M. Purschke for fruitful
 discussions

 University of Tübingen, Germany
 Prof. H.-J. Meyer for fruitful discussions

 Vilnius University, Lithuania
 Prof. A. Kareiva for exchange of students

 Universiteit Utrecht, The Netherlands
 Prof. A. Meijerink for fruitful discussions

 FEE Idar-Oberstein and FGK Höhr-Grenzhausen for
 ceramics and crystals

 BMBF, BMWI, Merck KGaA Darmstadt, Philips Lighting
 Eindhoven, Merz Frankfurt, and DPL Emmerthal for
 generous financial support

64                                                    27.03.2019
You can also read