Plagiarism Protection by Luminescent Substances - Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group Tailored Optical Materials - FH ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Plagiarism Protection by Luminescent Substances Prof. Dr. Thomas Jüstel & Dr. David Enseling Research Group March 1869 March 2019 Tailored Optical Materials March 25th, 2019
To my Person CV • University Bochum (1987 - 1994) Coordination Chemistry • Max-Planck Institute Mülheim (1995) Electrochemistry • Philips Research Aachen (1995 - 2004) Luminescence, Solid State Chemistry • Münster University of Applied Sciences (since 2004) Inorg. Chemistry, Functional Materials • Dean of Department „Chemical Engineering CIW“ (since 2013) Teaching Inorganic Chemistry Solid state chemistry Coordination chemistry Bioinorganic chemistry Material Science Functional materials Luminescent materials Material characterisation Incoherent Light Sources https://www.fh-muenster.de/juestel 2 27.03.2019
About 20% of the produced electrical energy is used for lighting (source: NASA) in Even almost 30 years after Germany‟s reunification East and West Berlin can be diminished by lighting East Berlin 1961 Construction of the Berlin Wall Na lamps 1989 End of the Berlin Wall “The wind of change” 1990 Germany‟s reunification West Berlin 1993 Blue LED: (In,Ga)N Hg lamps 1996 White LED: Y3Al5O12:Ce 2014 White LED > 300 lm/W & Nobel price 2015 UNESCO Internatiol year of light 2018 LED dominates lighting business ”The light of change”
Outline Luminescent Substances (Pigments) • Definition • Some Fundamentals • Properties • Evolution of Light Sources • Conventional and Emerging Applications Plagiarism Protection by Luminescent Pigments • Status • Novel Ideas • Analytical Techniques for Detection of Markers • Summary & Outlook • Literature 4 27.03.2019
Definition Luminescence • Luminescence is a process that corresponds to emission of electromagnetic radiation beyond thermal equilibrium (in excess to thermal radiation) • It involves the processes called fluorescence, phosphorescence, and afterglow Luminescence at different time scales (nanoseconds to hours) Under daylight Upon excitation by electrons or UV radiation 5 27.03.2019
Definition Difference to Incandescence Incandescence corresponds to emission from solids in thermal equilibrium „Black body radiation“, e.g. incandescent lamps, stars, hot surfaces, ….. 3 4x10 3 3000K 3x10 Planck„s law (1900) 3 3x10 L e [W m nm ] -1 c1 1 2x10 3 L e 5 c 2 /T -2 2500K λ 1 3 2x10 e 3 1x10 2000K 2 5x10 c1 = 3.741832.10-16 Wm2 0 200 400 600 800 1000 1200 1400 1600 1800 2000 c2 = 1.438786.10-2 Km W avelength [nm] = Wavelength [m] Wien‟s law Le = Spectral irradiance T = Temperature [K] λ max T 2880 [μm K] 6 27.03.2019
Organic Luminescent Materials Requirements and properties • usually aromatic compounds (no C-H, N-H, or O-H bonds) • low energy p p* transitions • quantum yield increases with number of rings and degree of condensation • fluorescence especially favored for rigid structures • fluorescence increase for bounding to a metal complex formation Examples of selected fluorescent compounds Perylenes [Al(8-hydroxyquinolinate)3] [Ir(phenylpyridine)3] O O O O N N O O O O 7 27.03.2019
Organic Luminescent Materials Luminescence explained by Jablonski energy diagram Molecules: Numerous vibrational energy levels for each electronic state! S2, S1 = Singlet states T1 = Triplet state v = Vibrational levels Lumogen F Orange ED240 Emission spectrum 1,0 Excitation spectrum 0,8 Relative intensity [a.u.] 0,6 0,4 0,2 0,0 300 400 500 600 700 800 Wavelength [nm] 8 27.03.2019
Inorganic Luminescent Materials Luminescent material = Host material + defects + dopants Host material Fluorides, Oxides, Nitrides, Sulphides, Selenides, ….. • Selection in accordance to requirements defined by the application area: Excitation energy, absorption strength, chemical environment, temperature, pressure and so on Defects Anion or cation defects, Interstitials • Afterglow (persistent luminescence) • Luminescence quenching (conc. and temperature dependent) • Stability reduction Dopants Cr3+, Mn4+, Tl+, Pb2+, Bi3+, Ce3+, Pr3+, Eu2+/3+, ..... • Selection and concentration depends on host lattice and application: Solubility, mobility, oxidation state stability, CT state location • Co-dopants to enhance absorption 9 27.03.2019
Inorganic Luminescent Materials 1 Host material + Dopants (RE-, TM- and s2- ions) 18 1 2 Zn 2 H 13 14 15 16 He 1 17 Zn 3 4 Groups 5 6 7 8 9 10 Li Be B C N O F Ne 2 11 12 13 14 15 16 17 18 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar 3 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 4 Periodes 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 5 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 6 87 88 89 104 105 106 107 108 109 110 111 112 Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn 7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 6 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 7 10 27.03.2019
Inorganic Luminescent Materials Requirements on efficient phosphors • Highly crystalline particles • High purity (99.99% or better) • Homogeneous distribution of “impurities” Excitation Emission Heat Heat Absorption process related to Heat Optical centres (impurities) • activators (A) • sensitizers (S) A D • defects (D) S ET • host material (band edge) ET ET ET A A Energy transfer often occur prior to emission process! Emission Heat Heat 11 27.03.2019
Inorganic Luminescent Materials A luminescent material (phosphor) converts absorbed energy into electromagnetic radiation beyond thermal equilibrium Host • Coordination number and geometry • Symmetry of activator sites • Optical band gap • Phonon spectrum Eu2+ Dopants, impurities, and defects Eu2+ • Concentration Eu2+ • Phase diagram and miscibility gaps Mn2+ VO Particle surface • Zeta-potential • Surface area • Coatings Light in- and outcoupling Particle morphology • Shape • Particle size distribution 12 27.03.2019
Inorganic Luminescent Materials Morphology • Nanoscale particles Molecular imaging, precursors Optical marking • µ-scale particles Lamps, LEDs, CRTs, PDPs, Optical marking • Large single crystals Scintillators, Laser • Ceramics LEDs, scintillators, Laser (cubic materials preferred) 1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm 10 mm 13 27.03.2019
Inorganic Luminescent Materials Optical properties Excitation and emission Decay curves of spectrum of Mg2TiO4:Mn SrSi2N2O2:Eu • Luminescence spectra Decay Measurement Intensity [counts] PRO-2009-AB-012 ex307nm T=100.00 K 1,0 656 nm T=150.00 K • CIE colour point PRO-2009-AB-012 mon656nm 1000 T=200.00 K T=250.00 K 0,8 T=300.00 K Relative intensity [a.u.] T=350.00 K • Luminous efficacy T=400.00 K T=450.00 K 0,6 100 T=500.00 K • Colour point consistency 0,4 10 • Centroid wavelength 0,2 • Quantum yield 0,0 250 300 350 400 450 500 550 600 650 700 750 800 1 0 2000 4000 6000 8000 10000 time [ns] Wavelength [nm] • Decay curve T-dependent PL of selected Linearity of YAG:Ce • Thermal quenching LMs upon 254 nm excitation and LiEuMo2O8 LiEuMo2O8 • Linearity 1,0 Ideal Norm. emission integrals [a.u] YAG:Ce U728 0,8 • Photochemical stability 0,6 • Absorption length 0,4 • ….. 0,2 0,0 0 100 200 300 400 500 Exc. density [W/mm2] 14 27.03.2019
Inorganic Luminescent Materials Luminescence spectra (excitation and emission) Luminescence intensity depends Y2O3:Eu3+ Band 5 7 1,0 D0 - FJ on excitation energy (wavelength) gap Charge- Emission intensity (a.u.) Transfer • 10 - 500 keV 0,8 Cathode or x-ray tubes • 172 nm 0,6 Plasma displays • 254 nm 0,4 Fluorescent lamps • 400 nm 0,2 7 5 Near UV LEDs 7 5 F0 - D3 F0 - D2 7 5 F0 - D1 • 465 nm Blue LEDs 0,0 150 200 250 300 350 400 450 500 550 600 650 700 750 Wavelength [nm] 1,0 Normalised emission intensity 0,8 colour point colour saturation 0,6 luminous efficacy 0,4 efficacy for biological 0,2 & chemical processes 0,0 300 400 500 600 700 800 Wavelength [nm] 15 27.03.2019
Inorganic Luminescent Materials Thermal quenching: Example red emitting LED material CaAlSiN3:Eu2+ 2+ Mitsubishi CaAlSiN3:Eu (0.7%) Mitsubishi CaAlSiN3:Eu (0.7%) 2+ 700000 70000000 350 K SSL-EX-037 CaAlSiN3:Eu 2+ 400 K Boltzmann fit of Data14_B 600000 450 K 60000000 Emission integral [counts] 500 K Emission intensity [counts] 550 K 500000 50000000 600 K Chip temperature range 650 K 400000 700 K 40000000 750 K 300000 30000000 200000 20000000 100000 10000000 0 0 500 600 700 800 300 400 500 600 700 800 Wavelength [nm] Temperature [K] • All luminescent materials show a reduction of the photoluminescent quantum yield and a colour point shift with increasing temperature • Many luminescent materials are already quenched at room temperature • LED phosphors must not quench at chip temperature: T1/2(CaAlSiN3:Eu) ~ 380 °C) • T1/2 depends on chemical composition (band gap, defect density, phonons) 16 27.03.2019
Inorganic Luminescent Materials Decay curves and afterglow Material Decay time 1/e (254 nm) 1 BaMgAl10O17:Eu2+ 1.1 µs (Y,Gd)BO3:Tb Zn2SiO4:Mn Lu3Al5O12:Ce3+ 54 ns (Y,Gd)BO3:Tb3+ 3.5 ms Intensität 0,1 Zn2SiO4:Mn2+ 10 ms 0,01 Y3Al5O12:Ce3+ 65 ns Y2O3:Eu3+ 1.0 ms 0,001 0 10 20 30 40 YVO4:Eu3+ 1.5 ms t (ms) (Y,Gd)BO3:Eu3+ 3.5 ms Some observations • Chemical composition of host and activator type determine decay time • Decay time is a sensitive function of symmetry and chemical bond strengths relaxation of quantum mechanical selection rules • Afterglow is caused by energy transfer and defects 17 27.03.2019
Luminescent Mat.: Simply Everywhere Optical brightening Paint, pulp and paper, washing powder Product anticounter feiting Bills, stamps, credit cards, tickets Advertisement illumination Ne discharge lamps Emergency illumination Emergency exits and signs, runways Medical imaging and treatment x-ray converter films, scintillator crystals Psoriasis and jaundice treatment Dental ceramics Astronomy EUV/VUV-Amplifier Biochemistry Labels for DNA, RNA, proteins Solar Cells Down-Shifter Down-Converter Up-Converter Telecommunication NIR Amplifier High energy physics Scintillator crystals, neutron detectors 18 27.03.2019
Afterglow Materials Afterglow pigments for glow purposes • CaAl2O4:Eu,Nd 440 nm • Sr2MgSi2O7:Eu,Dy 469 nm • Sr4Al14O25:Eu,Dy 490 nm • SrAl2O4:Eu,Dy 520 nm • Sr2SiO4:Eu,Dy 570 nm • Y2O2S:Eu,Ti,Mg 620 nm • Sr3Al2O5Cl2:Eu 630 nm • CaS:Eu,Tm 655 nm • MgSiO3:Eu,Dy,Mn 660 nm N329 in Oss (The Netherlands) 19 27.03.2019
Afterglow Materials Afterglow pigments for storage purposes Process 1. Charging of the material, e.g. by high energy particles, x-rays, or UV radiation 2. Stimulation of energy release to induce luminescence • Thermal stimulated luminescence (TSL: T >> 300 K) • Photo stimulated luminescence (PSL: Laser activation) In a storage phosphor radiation energy is stored inside the material by traps and the light of interest is not produced until the material is activated, either by thermal or optical stimulation. Thus information on the radiation can be obtained at a time later than the actual interaction. 20 27.03.2019
Afterglow Materials Afterglow pigments for storage purposes Established materials • Ba(F,Br):Eu2+ PSL • RbBr:Tl+ PSL • SrS:Eu2+,Sm3+ PSL • Ba3(PO4)2:Eu2+ PSL • Ba2B5O9Br:Eu2+ PSL • Ba7Cl2F12:Eu2+ PSL • Ba12Cl5F19:Eu2+ PSL • Y2SiO5:Ce3+ PSL • Ba5SiO4Br6:Eu2+,Nb3+ PSL and TSL (150 °C) • Sr5(PO4)3Cl:Eu2+ PSL and TSL (157 °C) • Li6Gd0.5Y0.5(BO3)3:Eu3+ PSL and TSL (177 °C) • LiSr4(BO3)3:Ce3+ PSL and TSL (200 °C) • LiCaAlF6:Eu2+ PSL and TSL (240 °C) • LiYSiO4:Ce3+ PSL and TSL (260 °C) 21 27.03.2019
Conventional Application: Lighting Luminescent materials are the basis of fluorescent light sources (LEDs & FLs) Light yield of a light source Emission of lines or narrow bands by • Strongly dependent on emission spectrum Eu2+ Tb3+ Eu3+/Mn4+ • Optimum is at 555 nm • V() = 683 lm/W (v = 100%) Luminous efficacy [ lm/W ] 22 27.03.2019
Evolution of Light Sources Eu2+ , Tb3+, Eu3+ Ce3+, Eu2+ phosphors 1st Revolution 2nd Revolution 3rd Revolution 4th Revolution First there ...put into a ...and made ...then the was open glass more ...then the fire fire was fire... bulb... efficient... vanished and light tamed... only prevailed ! 23 27.03.2019
Evolution of Light Sources Source: Philips 24 27.03.2019
Evolution of Light Sources 19th century – „Solid State Lighting“ V() = Human Eye Sensitivity 1 Emission from solids in thermal equilibrium „Black body radiation“ 0.5 „2700 K Planck Spectrum“ Materials: C, Os, W 0 500 1000 1500 2000 Incandescent + halogen lamps 380 780 Wellenlänge in nm Wavelength [nm] 25 27.03.2019
Evolution of Light Sources 20th century – „Gas Discharge Lighting“ 1,0 Tb3+ Emission from excited atoms/ions Eu3+ Relative intensity [a.u.] 0,8 0,6 Eu2+ Gas fillings: Hg, Na, Ne, Ar, Kr, Xe, + Luminescent materials 0,4 0,2 Fluorescent lamps + plasma displays 0,0 300 400 500 600 700 800 Wavelength [nm] 26 27.03.2019
Evolution of Light Sources 21st century – „Solid State Lighting“ 1,0 Eu2+ (In,Ga)N Normierte Intensität 0,8 LED Eu2+ Emission from solids due to recombination of charge carriers 0,6 0,4 Materials: (Al,In,Ga)P, (Al,In,Ga)N, 0,2 polymers, Ir3+-complexes 0,0 300 400 500 600 700 800 Wellenlänge [nm] Inorganic and Organic LEDs + - Metal cathode Organic luminescent layer Indium-Tin-Oxide Transparent organic anode Hole transport layer Glass 27 27.03.2019
Phosphor Converted White LEDs “Phosphor Converted” (pc) LED Phos- phor Contact Plastic lens (In,Ga)N- semicon- Gold wire ductor In1-xGaxN Semiconductor Heat sink (Cu) 1,0 CIE1931 x y Normalised emission intensity 410 nm 0.173 0.026 419 nm 0.170 0.015 0,8 448 nm 0.156 0.035 455 nm 0.147 0.040 459 nm 0.143 0.047 0,6 462 nm 0.136 0.059 465 nm 0.132 0.071 468 nm 0.128 0.085 0,4 482 nm 0.092 0.216 0,2 0,0 400 450 500 550 600 Wavelength [nm] 28 27.03.2019
Phosphor Converted White LEDs 1st Generation since 1996: Cool white LEDs (In,Ga)N LED (Y,Gd)3Al5O12:Ce 70 1,0 60 Tc = 5270 K CRI = 82 Tc = 4490 K CRI = 79 Emission Intensity 0,8 Emission intensity 50 Tc = 4110 K CRI = 76 0,6 40 Tc = 3860 K CRI = 73 30 Tc = 3540 K CRI = 70 0,4 20 0,2 Blue Yellow 10 LED phosphor 0,0 0 400 450 500 550 600 650 700 750 800 400 500 600 700 800 Wavelength [nm] Wavelength [nm] Status quo cool white phosphor converted LEDs @ 2019 • Yellow phosphors garnets: (Y,Gd,Tb)3Al5O12:Ce3+ ortho-silicates: (Ca,Sr,Ba)2SiO4:Eu2+ • LE ~ 300 lm/W (WPE > 80%) Element Y Gd Ce Al O (Y0,77Gd0,2Ce0,03)3Al5O12 Molar Mass (g/mol) 88,91 157,25 140,12 26,98 16,0 639,243 • CRI ~ 70 - 80 Coefficient 2,31 0,6 0,09 5 12 • CCT > 5000 K Mass fraction 32% 15% 2% 21% 30% 100% 29 27.03.2019
Phosphor Converted White LEDs equal-lumen spectra 2nd Generation since 1996: Warm white LEDs 4.50E-04 4.00E-04 1.2 (In,Ga)N LED Y3Al5O12:CeRed phosphor 3.50E-04 JAZZ 3300K BB 3300K 3.00E-04 1 W/nm 2.50E-04 0.8 2.00E-04 0.6 1.50E-04 1.00E-04 0.4 5.00E-05 0.2 0.00E+00 400 450 500 550 600 650 nm 700 750 0 0.025 1.2 400 450 500 550 600 650 700 750 nm 800 Wavelength [nm] 0.02 1.0 Warm white LEDs for indoor lighting 0.8 black body 3600 K 0.015 rad. flux, a.u. rad. flux, a.u. • Electric power consumption ~ 1 W fluorescent, CCT=3600 K 0.6 • Luminous efficacy ~ 100 lm/W 0.01 0.4 • Wall plug efficiency ~ 30 % 0.005 0.2 • Colour rendering index = 85 – 95 • Colour temperature 2700 – 4000 K 0 400 450 500 550 600 650 700 750 nm 800 0.0 30 27.03.2019
Phosphor Converted White LEDs Micropowders, (glass) ceramics, and crystals Aluminates Ce3+ 1,0 SrS:Eu (Y,Gd,Tb)3Al5O12:Ce (Sr0.75Ca0.25)S:Eu (Sr0.5Ca0.5)S:Eu Emission intensity [a.u.] (Sr0.25Ca0.75)S:Eu Lu3(Ga,Al)5O12:Ce 0,8 CaS:Eu 0,6 Sulphides Eu2+ 0,4 (Ca,Sr)S:Eu 0,2 Oxides Eu2+ or Ce3+ 0,0 500 600 700 800 CaSc2O4:Ce,Mg Wavelength [nm] (Ca,Sr,Ba)2SiO4:Eu Typical spectra of Eu2+ phosphors (Ca,Sr,Ba)3SiO5:Eu 1,0 Normalised emission intensity 0,8 (Oxy)Nitrides Eu2+ or Ce3+ „2-5-8“ 0,6 (Sr,Ca,Ba)2Si5N8:Eu (Sr,Ca,Ba)Si2N2O2:Eu „1-2-2-2“ 0,4 (Ca,Sr)AlSiN3:Eu „1-1-1-3“ 0,2 La3Si6N11:Ce „3-6-11“ ,ß-Si3-xAlxN4-xOx:Eu „SiAlONes“ 0,0 300 400 500 600 700 800 Wavelength [nm] 31 27.03.2019
Europium - The Magic of Colour Eu2+ Phosphor Emission band bei [nm] KMgF3:Eu 359 (Line) SrB4O7:Eu 368 BaSO4:Eu 374 Sr2P2O7:Eu 420 BaMgAl10O17:Eu 453 SrSiAl2O3N:Eu 480 Sr4Al14O25:Eu 490 BaSi2N2O2:Eu 490 Ba2SiO4:Eu 505 SrAl2O4:Eu 520 SrGa2S4:Eu 535 SrSi2N2O2:Eu 541 Sr2SiO4:Eu 575 Ba2Si5N8:Eu 585 SrS:Eu 610 Sr2Si5N8:Eu 615 CaAlSiN3:Eu 650 CaS:Eu 655 SrSiN2:Eu 700 Trend for E: Fluorides < Oxides < Oxynitrides < Nitrides ~ Sulfides 32 27.03.2019
Emerging: Human Centric Lighting Spectra of white light sources Tageslich Day light Incandescent lamp Fluorescent lamp t Halogen lamp with IR filter Cool white LED Warm white LED Day light Halogen Fluorescent LED lamp LED lamp lamp lamp cool white warm white Lux 100.000 500 500 500 500 UV 5% < 1% < 1% 0% 0% VIS 60% 5% 90% 100% 90% NIR 35% 95% 10% 0% 10% 33 27.03.2019
Emerging: Plant Lighting Lamp types in horticulture lighting • Na vapour lamps • Fluorescent lamps comprising blue and red luminescent materials • Blue and red LEDs (+ far red LED) • Blue LEDs + red (~ 660 nm) and far red (~700 nm) phosphors Photoynthesis action curve 1,0 after McCree (DIN 5013-10) Phytochrom red Grass cultivated upon daylight Phytochrom far red 425 nm LED or upon LED illumination 0,8 Mg28Ge7.5O38F10:Mn4+ Daylight (left vessel) and LED illumination Al2O3:Cr3+ (right vessel) Rel. action (%) (Ca,Sr)14Al10(Zn,Mg)6O35:Mn4+ 0,6 0,4 0,2 0,0 Source: Semjon Reimer, FH Münster 400 500 600 700 800 Wavelength (nm) 34 27.03.2019
Conventional: Displays Cathode Ray Tubes EL Displays Plasma Displays LCD Backlighting LED Displays Laser Displays 35 27.03.2019
Conventional: Displays Colour mixing in the Braun„s tube (Cathode ray tube) ZnS:Cu Eu3+ 1st generation YVO4:Eu3+ ZnS:Ag 2nd generation Y2O2S:Eu3+ 36 27.03.2019
Emerging: µ-LED Displays Micro-LED displays require inorganic nanoscale luminescent materials 465 nm µ-LEDs + • Green luminescent material • Red luminescent material 37 27.03.2019
Plagiarism Protection State-of-the-Art • Plenty of different luminescent pigments are used nowadays as security element e.g. onto bank notes, stamps, documents and so on • Only visual inspection instead of spectral measurements are mostly used here • But visual luminescent pigments are only a single out of ~ 30 different security elements in Euro bank notes Excitation @ 254 nm Excitation @ 366 nm 38 27.03.2019
Plagiarism Protection Today • An increasing number of counterfeits of all kind of products congest the markets worldwide • In 2011 the German machinery and plant building industry lost around 7.9 billion € on counterfeits • Unreasonable claims are the biggest problem besides losses by faked products • Manufacturers need a method to mark and authenticate original products from fakes especially for pharmaceutical and security relevant products Source: Tailorlux 39 27.03.2019
Plagiarism Protection Today: New requirements on security pigments Complex products are also affected by fakes (www.plagiarius.com) ) 40 27.03.2019
Plagiarism Protection Today: New requirements on security pigments • External marking in form of holograms, printed labels, or RFID chips are visible and not permanent • Security pigments should be integrated into product • Inseparable combination of product and security pigment is possible • No negative effect on product properties (due to low doping level) • High stability against chemical and physical impacts Source: Tailorlux 41 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker + Very stable against environmental conditions + High differentiability of the spectra (host lattice, activator) + Billions of individual security codes can be generated - More expensive than most organic luminescent materials - Difficult to read out spectra at low concentration level The security level of inorganic phosphors is very high due to the tremendous diversity and stability 42 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker For security applications two kinds of inorganic rare earth doped luminescent pigments are used: • Down-shifting materials excitable by UV radiation • Up-converting materials excitable by red or near IR radiation Down-Conversion Up-Conversion Line emittiers are mostly preferable due to the possibilty to generate an optical fingerprint spectrum 43 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker Up-converter materials + Easy to detect (by red or NIR laser) + Visible in low concentrations - Only a limited number of efficient systems available - Up-converters can be purchased world-wide - More and more counterfeiter working with up converting pigments The security level of up-converting pigments is rather low due to the limited number of well-known up-converters Source: Tailorlux 44 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker Down-converter materials + Billions of individual combinations + Very high stability + High quantum yield + Excitable with a lower power density (no laser required) - Individual production possible - More expensive than simple inorganic phosphors The security level of inorganic down-converting pigments can be very high due to the enormous diversity of these materials 45 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker To generate a wide range of different inorganic luminescent materials the following is needed: Special knowledge in solid state chemistry and pigment production A lot of different raw materials at a high purity level ~ 99.99+% Infrastructure for high temperature chemistry Machinery for precise conditioning of luminescent pigments Spectroscopic equipment to analyze finished luminescent materials 46 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker State-of-the-Art Innovation • Marking by unknown inorganic • Marking by several unknown luminescent material inorganic luminescent material or by luminescent material with • Relatively simple materials with several optical features specific visible spectra • Quasi fingerprint spectra • Simple analytical proof • Complex analytical proof Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample10 Sample 11 Sample 12 Sample 13 Sample 14 Optical marker present? Fingerprint correct? 47 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker Strategies for changing optical properties of luminescent materials: • Specific activator and structure exchange cation types • Specific activator exchange structure type • Specific structure exchange activator • Specific structure and activator add second activator and add third activator and so on 48 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker Specific activator and structure type exchange cation types 3+ 3+ 3+ 3+ 3+ LiLaW2O8:Eu NaLaW2O8:Eu KLaW2O8:Eu RbLaW2O8:Eu CsLaW2O8:Eu Norm. intensity 600 650 600 650 600 650 600 650 600 650 Wavelength [nm] 49 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker Specific activator exchange structure type Y2O3:Eu3+ YVO4:Eu3+ Y2O2S:Eu3+ YBO3:Eu3+ Y3Al5O12:Eu3+ Norm. Intensity 600 650 600 650 600 650 600 650 600 650 Wavelength [nm] 50 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker Specific structure type exchange activator YPO4:Dy3+ YPO4:Pr3+ YPO4:Sm3+ YPO4:Eu3+ YPO4:Ho3+ Norm. Intensity 500 600 700 500 600 700 500 600 700 500 600 700 500 600 700 Wavelength [nm] 51 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker Specific structure type and activator add second activator YPO4 doped with Sm3+ and a second trivalent rare earth activator SmTb SmEu 1,0 Em Ex = 160nm Em Ex = 160nm Ex Ex = 600nm 1,0 Em Ex = 601nm Reflexion 0,8 0,8 Intensity [a.u.] Intensity [a.u.] 0,6 0,6 0,4 0,4 0,2 0,2 0,0 0,0 200 300 400 500 600 700 800 200 300 400 500 600 700 800 Wavelength [nm] Wavelength [nm] 52 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker YPO4 comprising n different activator ions (each 1 atom-%), e.g. seven ….. 1 2 n Sm SmEu, SmTb, SmDy, SmHo, SmEr, SmTm Eu EuTb, EuDy, EuHo, EuEr, EuTm Tb TbDy, TbHo, TbEr, TbTm Dy DyHo, DyEr, DyTm Ho HoEr, HoTm Er ErTm Tm - 7 7 7 1 2 n 7 Variations for n = 1 28 Variations for n = 1 - 2 63 Variations for n = 1 - 3 98 Variations for n = 1 - 4 119 Variations for n = 1 - 5 without concentration profiles! 53 27.03.2019
Plagiarism Protection Inorganic luminescent pigments as optical marker Complex analysis based on several optical centers possible by • Excitation source: Broad vs. narrow (site elective spectroscopy) • Environment: temperature, pressure, electrical fields, gases, …. • Time: Immediate vs. delayed measurements 120000 120000 Ex= 254 nm 160 nm Anregung 1,0 nach 10 µs 100000 Ex= 450 nm 100000 25 °C nach 10 ms Emission intensity [Counts/s] 300 °C 0,8 Intensity [counts] 80000 80000 Intensity [norm.] 0,6 60000 60000 0,4 40000 40000 20000 20000 0,2 0 0 500 550 600 650 700 750 800 850 900 0,0 200 250 300 350 400 450 500 550 600 650 700 750 800 350 400 450 500 550 600 650 700 750 800 Wavelength [nm] Wavelength [nm] Wavelength [nm] Excitation energy Temperature Time delay 54 27.03.2019
Plagiarism Protection Application of inorganic luminescent pigments to • Plastics • Lacquer • Ceramics • Polyurethan foam • Yarn • Special woven fabric • Medical • Printings Limit of application: Luminescence is not observable in metals, but possible in ceramic or polymer type coatings onto metals 55 27.03.2019
Plagiarism Protection Analytical access: Excitation sources a) Steady state spectroscopy • Solar light • Incandescent lamps (350 - 3000 nm) • Deuterium lamps (115 - 370 nm) • 450 W Xe discharge lamp (250 – 1100 nm) b) Time resolved spectroscopy • Flash lamps • LEDs • Laser diodes • Solid state laser 56 27.03.2019
Plagiarism Protection Analytical access: Detection Type Detection by Requirements Required marker Security to user concentration level 1 Human eye low
Summary and Outlook Inorganic luminescent materials • Individual rare earth doped inorganic luminescent pigments generate the highest security level in direct product marking • Small hand held spectrometer with high resolution and sensitivity is needed to read out the security code on-side • Tempering the individual security pigments extremely difficult because of the secret manufacturing process • Based on security pigments the business for counterfeiter will be much more difficult! 58 27.03.2019
Summary and Outlook Inorganic luminescent materials for LEDs Mature luminescent materials developed to encounter • high luminous efficacy cool-white > 200 lm/W • warm-white > 100 lm/W • high CRI 70 - 95 • superior lifetime L70 > 10000 h • retrofit designs for TL, CFL, GLS, … Efficient luminescent materials for LEDs Oxides Oxynitrides Nitrides Fluorides Silicates (Ca,Sr,Ba)2SiO4:Eu (Ca,Sr,Ba)Si2N2O2:Eu (Ca,Sr,Ba)2Si5N8:Eu K2SiF6:Mn Aluminosilicates a,ß-SiAlON (Ca,Sr)AlSiN3:Eu Aluminates (Y,Gd,Lu)3Al5O12 (Sr,Ca)LiAl3N4:Eu Na3AlF6:Mn Gallates ZnGa2O4:Mn (Sr,Ba)Mg2Ga2N4:Eu Germanates Mg8Ge2O11F2:Mn Molybdates Tb2Mo3O12:Eu Tantalates K2TaF7:Mn 59 27.03.2019
Summary and Outlook Increase of energy density drives search for further novel materials Rare Earth Phosphors Garnets Crystals/Ceramics 105 High energy particles x-rays (< 1 nm) Host lattice Excitation energy [eV] EUV (1 – 100 nm) 103 VUV (100 – 200 nm) UV-C (200 – 280 nm) 10 UV-B (280 – 320 nm) Sensitiser UV-A (320 – 400 nm) 5 VIS (400 – 700 nm) NIR (700 – 1400 nm) 1 Activator 0.01 0.1 1 10 102 103 104 105 106 Power density [W/cm2] 60 27.03.2019
Summary and Outlook Development of light sources driven by material science Ceramics Nitrides (In,Ga)N Material (Al,In,Ga)P control Garnets GaAs Halogen cycle Rare Earth MgWO4 & Phosphors Zn2SiO4:Mn C, Os, W 1895 1905 1915 1925 1935 1945 1955 1965 1975 1985 1995 2005 2015 Year 61 27.03.2019
Literature Books A.H. Kitai, Solid State Luminescence, Chapman & Hall, London (1993) G. Blasse, B.C. Grabmeier, Luminescent Materials, Springer Verlag Berlin Heidelberg (1994) J.R. Coaton, A.M. Marsden, Lamps and Lighting, Arnold, London (1997) D.R. Vij, Luminescence of Solids, Plenum Press, New York and London (1998) S. Shinoya, W.M. Yen, Phosphor Handbook, CRC Press (1999) A. Zukauskas, M.S. Shur, R. Caska, Introduction to Solid-State Lighting, John Wiley & Sons, Inc. (2002) E.F. Schubert, Light Emitting Diodes, Cambridge Univ. Press (2003) J. Garcia Sole, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Solids, John Wiley & Sons, Inc. (2005) C.R. Ronda, Luminescence, Wiley-VCH (2008) T. Jüstel, S. Möller, H. Winkler, Luminescent Materials in Ullmann‟s Encyclopedia of Technical Chemistry (2012) Kozai, T.; Fujiwara, K.; Runkle, E.S., LED Lighting for Urban Agriculture, Springer (2016) 62 27.03.2019
Literature Publications T. Jüstel, H. Nikol, C.R. Ronda, New Developments in the Field of Luminescent Materials for Lighting and Displays, Angew. Chem. 110 (1998) 3250 T. Jüstel, H. Nikol, Optimization of Luminescent Materials for Plasma Display Panels, Adv. Materials 12 (2000) 527 M. Born, T. Jüstel, Elektrische Lichtquellen, Chemie in unserer Zeit 40 (2006) 294 H. Hummel, P.K. Bachmann, T. Jüstel, J. Merikhi, C.R. Ronda, V. Weiler, Near-Infrared Luminescent Nano Materials for In-Vivo Optical Imaging, J. Nanophotonics 2 (2008) 021920 M. Kubus, D. Enseling, T. Jüstel, H.-Jürgen Meyer, Synthesis and Luminescent Properties of Red-Emitting Phosphors: ZnSiF6·6H2O and ZnGeF6·6H2O Doped with Mn4+, J. Luminescence 137 (2013) 88 T. Jüstel, Anorganische Leuchtstoffe und LEDs, CHEManager 5 (2017) J. Chen, S. Loeb, J-H. Kim, LED Revolution: Fundamentals and Prospects for UV Disinfection Applications, Envir. Sci.: Water Res. Technol. 3 (2017) 188 Internet-Links Homepage T. Jüstel (PISA & LISA) www.fh-muenster.de/juestel Philips (Signify) http://www.lighting.philips.de/home Tailorlux GmbH http://www.tailorlux.com 63 27.03.2019
Acknowledgement Research Group “Tailored Optical Materials“ for synthesis, photographs, spectroscopy, etc. HMS Boston, MA, USA, Dr. M. Purschke for fruitful discussions University of Tübingen, Germany Prof. H.-J. Meyer for fruitful discussions Vilnius University, Lithuania Prof. A. Kareiva for exchange of students Universiteit Utrecht, The Netherlands Prof. A. Meijerink for fruitful discussions FEE Idar-Oberstein and FGK Höhr-Grenzhausen for ceramics and crystals BMBF, BMWI, Merck KGaA Darmstadt, Philips Lighting Eindhoven, Merz Frankfurt, and DPL Emmerthal for generous financial support 64 27.03.2019
You can also read