NOVEL FOOD: GLI INSETTI NEL PIATTO - ASPETTI MICROBIOLOGICI DEGLI INSETTI EDIBILI - Otaeragg.it
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
NOVEL FOOD: GLI INSETTI NEL PIATTO ASPETTI MICROBIOLOGICI DEGLI INSETTI EDIBILI Andrea Osimani PhD. Dipartimento di Scienze Agrarie, Alimentari ed Ambientali 06 Aprile, 2019 Aule +, Via de’ Carracci 6 ‐ Bologna (BO)
PERCHE? Insetti vivi o processati e.g. Bacillus cereus, Campylobacter spp., Escherichia coli, Klebsiella aerogenes, Agenti fisici, chimici e Pseudomonas aeruginosa, Salmonella spp., microbiologici Staphylococcus aureus, etc. Salute di uomo e animali ANSES Opinion Request No 2014-SA-0153, 2014. OPINION of the French Agency for Food, Environmental and Occupational Health & Safety on “the Use of Insects as Food and Feed and the Review of Scientific Knowledge on the Health Risks Related to the Consumption of Insect.
SCIENTIFIC OPINION ADOPTED: 5 October 2015 PUBLISHED: 8 October 2015 doi:10.2903/j.efsa.2015.4257 Risk profile related to production and consumption of insects as food and feed EFSA Scientific Committee Abstract EFSA Scientific Committee (2015) The present opinion has the format of a risk profile and presents potential biological and chemical hazards as well as allergenicity and environmental hazards associated with farmed insects used as ✓ Further research for better assessment of microbiological and food and feed taking into account of the entire chain, from farming to the final product. The opinion also addresses the occurrence of these hazards in non-processed insects, grown on different substrate chemical risks from insects as food and feed categories, in comparison to the occurrence of these hazards in other non-processed sources of protein of animal origin. When currently allowed feed materials are used as substrate to feed insects, the possible occurrence of microbiological hazards is expected to be comparable to their occurrence in other non-processed sources of protein of animal origin. The possible occurrence of prions in non- processed insects will depend on whether the substrate includes protein of human or ruminant origin. Data on transfer of chemical contaminants from different substrates to the insects are very limited. Substrates like kitchen waste, human and animal manure are also considered and hazards from
IL MICROBIOTA DEGLI INSETTI Ambiente Condizioni di allevamento manipolazione Microbiota intrinseco (tratto digerente) Conservazione Processamento (ANSES Opinion, 2014)
Microbiota: insetti freschi Country of origin of insects: Belgium Species: Tenebrio molitor (Coleoptera), Locusta migratoria migratorioides (Orthoptera)
Microbiota: insetti freschi Paese di origine: ITALIA Specie: Tenebrio molitor (Coleoptera) -1 Table 1 Microbial counts (log cfu g ) of wheatmeal and peeled carrots used as feed, and fresh mealworm larvae and manure of the three rearing batches. M icrobial counts Wheatmeal Carrots Batch 1 Batch 2 Batch 3 Larvae Litter Larvae Litter Larvae Litter Total mesophilic aerobes 5.5±0.0
Microbiota: insetti ready-to-eat Country of origin of insects: Netherlands Species: Acheta domesticus (Orthoptera), Locusta migratoria migratorioides (Orthoptera), Tenebrio molitor (Coleoptera)
Microbiota: insetti ready-to-eat
Microbiota: insetti ready-to-eat Paese di origine: the Netherlands Specie: Acheta domesticus (Orthoptera), Locusta migratoria migratorioides (Orthoptera), Tenebrio molitor (Coleoptera)
Microbiota: insetti ready-to-eat
Microbiota: insetti trasformati Paese di origine: the Netherlands e Laos Specie: Acheta domesticus (Orthoptera), Tenebrio molitor (Coleoptera) Tipologia di campioni: freschi, bolliti, arrostiti, fritti, fermentati e stoccati a differenti temperature
Cariche microbiche di campioni di insetti edibili freschi o trattati al calore 9 Total Viable Count Enterobacteriaceae 8 Bacterial spores 7 6 5 log CFU/g 4 3 2 1 0 Fresh Boiled Roasted Fresh Boiled Stir-fried Tenebrio molitor Acheta domesticus
Trattamenti applicati agli insetti edibili
MIGLIORARE L’ACCETTABILITA Percepiamo gli insetti come “edibili”? Generano scetticismo e disgusto Aumentare l’accettabilità Educazione del Rendere gli insetti consumatore «invisibili»
New insect-based products PRODUCTION PROCESS Trattamento al vapore Polverizzazione Aggiunta di spezie Frittura in padela Macinatura Conte vitali PYROSEQUENCING
NEW INSECT-BASED PRODUCTS Polvere di grillo in panificazione Scopo Pane con: ✓ Elevate qualità nutrizionali ✓ Aumentata accettabilità da parte del consumatore
Materie prime Farina di frumento – W (Triticum aestivum) Polvere di grillo - CP (Acheta domesticus)
+ + 16 h – 30°C IMPASTO ACIDO
BATTERI LATTICI SELEZIONATI Collezione del Dipartimento di Scienze Agrarie, Alimentari ed Ambientali (D3A) - UNIVPM Lactobacillus plantarum Lactobacillus fermentum Lactobacillus sanfranciscensis PB11 PB162 PB223 PB24 PB276
New insect-based products 10% polvere di grillo 30% 90% farina di frumento polvere di grillo 70% farina di frumento ✓ Conte vitali in piastra ✓ PCR-DGGE
ANALISI SUL PANE Area di Zootecnia Area di Biochimica ANALISI Area di Tecnologie MICROBIOLOGICHE Alimentari ✓ Conte vitali su farine, impasti, madri acide e pani ✓ Analsi Proximate ✓ Composizione ✓ Composizione in Acidi ✓ Analisi molecolari sui paniAminoacidica Grassi
CRICKET POWDER BASED BREAD MAKING ASSAYS ✓ Microbial counts DNA ✓ PCR - DGGE sequencing DNA
ANALISI MOLECOLARI Samples Closest relative % Ident. CP Bacillus subtilis 97% Bacillus subtilis 97% Bacillus sp. 97% Bacillus subtilis 97% CDS30 Bacillus licheniformis 95% Bacillus licheniformis 95% Bacillus subtilis 97% CD30 Bacillus subtilis 97% ✓ Presenza di specie di Bacillus in tutti i Bacillus subtilis 97% campioni; CBS30 Bacillus subtilis 97% Bacillus subtilis 97% Bacillus subtilis 97% Brevibacillus borstelensis 95% Brevibacillus borstelensis 95% ✓ Bacillus subtilis; Brevibacillus borstelensis 95% CB30 Bacillus subtilis 97% Bacillus sp. 97% Bacillus sp. 97% Bacillus subtilis 97% ✓ Bacillus licheniformis and Brevibacillus CDS10 Bacillus subtilis 97% Bacillus subtilis 97% borstelensis Bacillus licheniformis 95% Bacillus subtilis 97% CD10 Bacillus licheniformis 95% Bacillus licheniformis 95% CBS10 Bacillus subtilis 97% Bacillus subtilis 97% CB10 Bacillus sp. 97% Bacillus sp. 97%
✓ I pani hanno mostrato la presenza di specie di Bacillus sp, genere che può contenete specie alterative e patogene per l’uomo. ✓ I pani preparati con polvere di grillo breads non sono stati apprezzati dai consumatori ✓ I pani preparati con polvere di Tenebrio molitor breads sono stati molto apprezzati dai consumatori
In conclusione Necessari ulteriori studi ✓Riduzione delle spore batteriche ✓ Utilizzo di miglioratori ✓ Testare nuove polveri di insetto
INSETTI EDIBILI E ANTIBIOTICO-RESISTENZA Effetti negativi dell’AR sulla salute umana Insetti come serbatoi di geni per AR (ECDC, EFSA and EMA, 2015) (Zurek and Ghosha, 2014) Antibiotico-resistenza negli insetti edibili?
Gli insetti edibili e l’antibiotico-resistenza
Antibiotico-resistenza: differenti Paesi di origine
GRAZIE PER L’ATTENZIONE
References Agabou, A., & Alloui, N. (2010). Importance of Alphitobius diaperinus (Panzer) as a Reservoir for Pathogenic Bacteria in Algerian Broiler Houses. Veterinary World, 3(2). Ali, A., Mohamadou, B. A., Saidou, C., Aoudou, Y., & Tchiegang, C. (2010). Physico-chemical properties and safety of grasshoppers, important contributors to food security in the far North Region of Cameroon. Res J Anim Sci, 4, 108-111. ANSES Opinion Request No 2014-SA-0153, 2015. OPINION of the French Agency for Food, Environmental and Occupational Health & Safety on “the Use of Insects as Food and Feed and the Review of Scientific Knowledge on the Health Risks Related to the Consumption of Insects”. French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex. Banjo AD, Lawal OA, Adeyemi AJ (2006) The microbial fauna 738 associated with the larvae of Oryctes Monocerus. J Appl Sci Res 739 2:837–843 Braide, W., Oranusi, S. U., Udegbunam, L. I., Oguoma, O. I., Akobondu, C., & Nwaoguikpe, R. N. (2011). Microbiological quality of an edible caterpillar of an emperor moth, Bunaea alcinoe. Journal of Ecology and the Natural Environment, 3(5), 176-180. Bußler, S., Rumpold, B. A., Jander, E., Rawel, H. M., & Schlüter, O. K. (2016). Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon, 2(12), e00218. Collavo A, Glew RH, Yunk-Sheng H, LU-Te C, Bosse R, Paoletti MG. 2005. Housekricket smallscale farming. In: Paoletti MG, editor. Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Enfield, N.H.: Science Publisher. p 519–44. Garofalo C, Osimani A, Milanović V, Taccari M, Cardinali F, Aquilanti L, Riolo P, Ruschioni S, Isidoro N, Clementi F (2017) The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol 62:15–22 Grabowski, N. T., & Klein, G. (2017). Microbiology of processed edible insect products–Results of a preliminary survey. International of food microbiology, 243, 103-107. Hernández-Flores, L., Llanderal-Cázares, C., Guzmán-Franco, A. W., & Aranda-Ocampo, S. (2015). Bacteria Present in Comadia redtenbacheri Larvae (Lepidoptera: Cossidae). Journal of medical entomology, 52(5), 1150-1158. Jung, J., Heo, A., Park, Y. W., Kim, Y. J., Koh, H., & Park, W. (2014). Gut microbiota of Tenebrio molitor and their response to environmental change. J. Microbiol. Biotechnol, 24(7), 888-897.
Klunder, H.C., Wolkers-Rooijackers, J., Korpela, J.M., Nout, M.J.R., 2012. Microbiolog- ical aspects of processing and storage of edible insects. Food Control 26 (2), 628–631. McLeod, A. (2011). World livestock 2011-livestock in food security. Food and Agriculture Organization of the United Nations (FAO). Milanović V, Osimani A, Pasquini M, Aquilanti L, Garofalo C, Taccari M, Cardinali F, Riolo P, Clementi F (2016) Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects. Int J Food Microbiol 227:22–28 Mpuchane, S., Gashe, B.A., Allotey, J., Siame, B., Teferra, G., Ditlhogo, M., 2000. Quality deterioration of phane, the edible caterpillar of an emperor moth Imbrasia belina. Food Control 11, 453–458. Oonincx DG, van Itterbeeck J, Heetkamp MJ, van den Brand H, van Loon JJ, van Huis A. 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One 5(12):e14445. Oonincx, D.G.A.B. & de Boer, I.J.M. 2012. Environmental impact of the production of mealworms as a protein source for humans: a life cycle assessment. PLoS ONE, 7(12): e51145. Opara MN, Sanyigha FT, Ogbuewu IP, Okoli IC (2012) Studies on the production trend and quality characteristics of palm grubs in the tropical rainforest zone of Nigeria. Int J Agric Technol 8:851–860. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regu- lation (EC) No 1852/2001. http://eur-lex.europa.eu/legal-content/ EN/TXT/PDF/?uri=CELEX:32015R2283&from=EN Osimani, A., Garofalo, C., Milanović, V., Taccari, M., Cardinali, F., Aquilanti, L., Marina Pasquini, Massimo Mozzon, Nadia Raffaelli, Sara Ruschioni1 & Riolo, P. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. European Food Research and Technology, 1-15. Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular nutrition & food research, 57(5), 802-823. Smil, V. 2002. Worldwide transformation of diets, burdens of meat production and opportunities for novel food proteins. Enzyme and Microbial Technology, 30: 305–311. Simpanya, M. F., Allotey, J., & Mpuchane, S. F. (2000). A mycological investigation of phane, an edible caterpillar of an emperor moth, Imbrasia belina. Journal of food protection, 63(1), 137-140.
Stoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B., & Van Campenhout, L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food microbiology, 53, 122- 127. Stoops, J., Vandeweyer, D., Crauwels, S., Verreth, C., Boeckx, H., Van Der Borght, M., J. Claes, B. Lievens,& Van Campenhout, L. (2017). Minced meat-like products from mealworm larvae (Tenebrio molitor and Alphitobius diaperinus): microbial dynamics during production and storage. Innovative Food Science & Emerging Technologies, 41, 1-9. Veldkamp, T., G. van Duinkerken, A. van Huis, C.M.M. Lakemond, E. and Ottevanger, E., and M.A.J.S van Boekel, 2012. Insects as a sustainable feed ingredient in pig and poultry diets. A feasibility study. Wageningen UR Livestock Research, Report 638.
You can also read