News from FS-EC - DESY Confluence
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
News from FS-EC Petra Days 2018 Windows/Linux Upgrades Data collection and processing • Fast Scans: PiLC • 2D Detector Integration • Visualization: LaVue • Data Processing: ADAPT • Central Data Mgt. and Computing • Scientific Computing Support Sardana: New Tool
Windows/Linux Upgrades S. Rowoldt, H. Blume Windows 10 upgrade • Windows-7 support ends on 14.1.2020 • Status: 50/900 under W-10 • So far, only new PC have been installed with Windows-10 • General migration process will start soon • Hardware replacements will be necessary (150-200 PCs) Linux: Debian-9 • 240 PCs • Rebuild Tango servers • VME tests have been successful • Sardana still needs some attention Thorsten Kracht | Experiment Control | July 19, 2017 | Seite 2
PiLC: Continuous Scans T. Spitzbart, T. Nunez PiLC Tango Counts Trigger Encoder Trigger modes New feature: array-defined trigger pattern • On time, on position • P21: U. Lienert, Th. Baecker • Start on time then trigger on position • Every trigger position is individually defined • Start on position then trigger on time • Controls Perkin Elmer and shutter • Trigger on position inside a sensitive region • Take care of detector ‘after-glow’ • Encoder and counters can be stored • Interface: list with trigger-channel, position and trigger-level. Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 3
PiLC: Applications T. Spitzbart Nummer Beamline Projekt Titel Ort 1 P64 4x VFC und 1xPT100 Messung PETRA III EX 2 P65 4X VFC PETRA III EX 3 P06 Continuous Scan - SlaveFreq PETRA III 4 P09 XCMD PETRA III 5 P06 10x ADC Messung PETRA III 6 P21 Status: Unbekannt da die Firmware selbst erstellt wurde PETRA III 7 P07 Status: Unbekannt da die Firmware selbst erstellt wurde PETRA III 8 P03 Trigger generator für 3 Steuerdüsen PETRA III 9 P06 Continuous Scan PETRA III 10 P11 Continuous Scan PETRA III 11 P02 Continuous Scan PETRA III 12 P06 Continuous Scan PETRA III 13 P10 Shuttersteuerung PETRA III 14 FLASH Laser Triggergenerator FLASH 15 P06 4xPT1000 Messung PETRA III 16 FS-CXS LED und Kamera Triggergenerator Geb. 25B Keller 17 P23 Continuous Scan PETRA III EX 18 P03 Trigger generator für 3 Steuerdüsen Schweden 19 FS-NL Pumpprobe Geb 3 20 P07 Status: Unbekannt da die Firmware selbst erstellt wurde PETRA III 21 P03 Continuous Scan - SlaveADC PETRA III 22 P21 array-defined trigger pattern PETRA III EX 23 P06 Continuous Scan - SlaveFreq PETRA III 24 P06 Continuous Scan - SlaveADC PETRA III 25 P01 Continuous Scan PETRA III 26 FLASH 2 Shuttersteuerung FLASH 2 27 P06 Continuous Scan - SlaveADC PETRA III 28 P06 1x DADC Messung (Kraftsensor) PETRA III 29 P01 Continuous Scan - SlaveADC PETRA III 30 P11 Continuous Scan - SlaveADC PETRA III PiLC covers 31 P11 Continuous Scan + LED Triggergenerator PETRA III • Continuous scans 31 FS-NL 2x Thermosensoren auslesen Geb 3 32 P06 Continuous Scan PETRA III • Specific solutions 33 P07 1x DADC Messung (Kraftsensor) PETRA III 20 new modules are in preparation Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 4
Fast 2D Detectors High data rates in sustained operation: • Detector speed • Compression: CPU time vs. transfer speed and data volumes • Detector PC: no. of cores, RAM size, memory bandwidth • Data transfer: NFS, SMB, HiDRA • File writing: HDF5/NeXus, TIF, CBF Thorsten Kracht | Experiment Control | July 19, 2017 | Seite 5
Fast 2D Detectors: HW Compression Y. Yu Tests done with AHA374, PCI Express, 40 Gb/s, ZLIB (HDF5 compliant) and Lambda • 15000 images • PC: 12 cores, 256 GB RAM • Data reception: 4 cores • Image processing: 7 cores • Process chain: • raw data -> raw buffer (~180GB) -> image processing (encoding, distortion corrections, compression) -> encoded buffer (1GB) -> file write • HW vs. SW image processing speed: 625 Hz / 205 Hz: Factor 3 • HW vs. SW compression speed: ~ 5 • HW vs. SW compression efficiency: • 15 GB (10000 noisy images) -> 4.9/5.2 GB (HW/SW): Factor: 3 Thorsten Kracht | Experiment Control | July 19, 2017 | Seite 6
Tango Integration of Fast 2D Detectors Y. Yu, A. Rothkirch Data Rate [GB/s] 10 GE fps fSize [MB] OS Transfer Viewer LaVue Lambda (12b) HDF5 2.6 1 2000 1.3 L NFS,HiDRA ATK,Taurus, Onda TS Lambda2M HDF5 7.8 2 2000 1.3 L NFS ATK, Taurus, Onda TS AGIPD HDF5 0.6 1 3520 0.131 L HiDRA ATK, Taurus, Onda TS AGIPD1M HDF5 10 16 3520 2.1 L n.a. ATK, Taurus TS Jungfrau, HDF5, BIN 0.5 1 500 1 L HiDRA P11-Onda PCO Fr.Grabber, 0.8 1 100 8 L NFS, HiDRA ATK TS, TIF(PCO), HDF5 HiDRA PCO USB (P11), TIF 0.8 1 100 8 W SMB, (HiDRA) Vendor SW (HiDRA) Eiger4M, HDF5 (LZ4, 1 1 750 9/18 L HDF/http Albula (low speed) external filter) Pilatus2 6M, CBF/TIF 0.15/0.6 25 6 L* HiDRA HiDRA Pilatus3 2M, CBF/TIF 0.6/ 2 1 250 2.5 /11 L* HiDRA HiDRA Pilatus2 1M, CBF/TIF 0.05/0.2 1 50 1 L* HiDRA HiDRA Pilatus2 300k, CBF/TIF 0.05/0.2 1 200 0.3 L* HiDRA HiDRA Perkin Elmer XS 1621 0.25 1 15 16 W SMB, (HiDRA) QXRD (HiDRA) Thorsten Kracht | Experiment Control | July 19, 2017 | Seite 7
Fast 2D Detectors Future • Use HiDRA for all 2D detectors • Complete LaVue integration • Optimize PC configuration • HW compression Thorsten Kracht | Experiment Control | July 19, 2017 | Seite 8
2D Visualisation: LaVue Ch. Rosemann, J. Kotanski Tool for monitoring any 2D detector data • Interfaces: • HiDRA • ZMQ stream (P06) • Eiger4M: http • Tango server: • LastImageTaken (Lambda) • File/Directory name • Lima • Open-file: NeXus, TIF, CBF • ROI integration, MacroServer, ROI counters Future developments: • Support all 2D detectors used in Petra III • Integrate motor interface • Implement other user requests: projections, etc. Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 9
ADAPT Ch. Rosemann Python-based data processing toolkit GUI User Edits • General purpose application • Graphical user interface • Batch processing Config File • Configuration file: Python dictionary syntax • Modular approach, sequential processing • Data reader Plugins • Slicing Executor • Data Mgt • Filtering PSIO .cbf, .tiff, • Control • Azimuthal/radial integration .nx, .spec Slicing • Fitting • Data model: Blackboard Filtering • NeXus compliant • Use this framework to create specific applications Fitting • First use case: adaptation of iint, an application that fits several peaks, including background and de-spiking for PSIO Results single and multiple scans. Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 10
GPFS Utilization A. Rothkich, IT MvL 2015-05-08 to 2018-02-22 „gap corrected“; linear regression made for periods (runs) given by DOOR and excluding machine weeks only. Hence machine days are included, also in numbers given on the right (range_days and numbersThorsten deduced). Kracht | Petra Days | Feb. 9, 2017 | Seite 11
Central Data Management A. Rothkich, IT Core cluster utilization, Petra III data • 2015: 200 TB (1.1 TiB/day) • 2016: 480 TB ( 1.9 TiB/day), new detectors • 2017: 580 TB ( 2.7 TiB/day), new detector, higher utilization • Upgraded to 2.1 PB in Dec. 2017 Optimize: GPFS capacity vs. residence time vs. cheap storage bandwidth Future: • Move beamtime data automatically to dCache after X days (2 copies) • ‘X’ depends on the fill-state of GPFS • Re-stage data on request • Extend GPFS to ‘Special Instruments’ and research groups • Store large data volumes, archive, fast access from compute nodes (IB), portal access, transfer speed, ACLs, coherent directory structure Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 12
GPFS: Special Instruments and Research Groups J.-P.Kurz, A. Rothkirch, IT Special Instruments: • Container for: Pipe, Pump-probe P08, afm@p08, mobile x-ray tube, Nanotom, large volume press, etc. • For external and internal users • Option: declaration of substances • Beamtime allocation: user applies for beamtime, manager schedules • GPFS path • /asap3/SpecialInstruments/gpfs/pipe//data/ Research groups: • FS-LA, FS-SCS, FS-DS, etc. • Users are DESY-group members • Simplified beamtime allocation procedure • GPFS path • /asap3/fs-la/gpfs/laser1//data/ Requires adaptations in DOOR and ASAP3 Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 13
Central Compute nodes A. Rothkirch, IT Current state: • 8 Nodes, Dual CPU with 16 cores each, 512 GB RAM • 3 Nodes, Dual CPU with 16 cores each, 512 GB RAM, 1 NV-K40X • Shared among FS staff and external • HASY: 8 CPU + 3 GPU • PSX: 4 CPU + 1 GPU Soon: • 6 Nodes, Dual CPU with 10 cores each, 512 GB RAM • 7 Nodes, Dual CPU with 10 cores each, 512 GB RAM, 1 x P100, PCIe • 1 Node, Dual CPU with 10 cores each, 512 GB RAM, 4 x P100, NvLink • Into Slurm, with option to allocate nodes for beamtimes • Relevant Slurm partitions: PS, PSX, P99 • Maxwell users meeting, 28.3.2018, 14:00 h, room 4a/b 2018: • Extend compute resources • Find the best configuration: RAM, cores, GPUs Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 14
Scientific Software Support Under discussion • Strengthen the DESY LKII activities • Immediate action: hire additional personnel • Assuming 500 kEUR in 2018 and 1 MioEUR in 2019 Year FH FS M ZN Central (IT) Total 2018 2 3 1 - 2 8 2019 2 2 1 1 1 7 Sum till 4 5 2 1 3 15 2020 • The new hires will be allocated to the divisions • Virtual Scientific Computing Group (VSCG) • Communication platform: seminars, workshops, discussion, etc. • The communication platform is open to other colleagues working in the field • Coordinate with DMA, CDCS FS • The new hires will work on specific projects at the beamlines. • Move to the new tasks when finished, maintaining support. • Two job offers are open Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 15
SardanaMotorMenu Purpose: • Support alignment: move widget with signal • Present selected attributes • Support homing: encoder attributes $ SardanaMotorMenu.py uses online.xml $ SardanaMotorMenu.py –tags expert select motors by tags With signal definition: $ SardanaMotorMenu.py –t exp_t01 –c exp_c01 Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 16
SardanaMotorMenu: 4 Motors Work on selected motors only: $ SardanaMotorMenu.py d1_mot01 d1_mot02 d1_mot03 d1_mot04 Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 17
SardanaMotorMenu $ SardanaMotorMenu.py MB1 – Move MB2 – Attributes MB3 - EncoderAttributes Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 18
SardanaMotorMenu: Move Widget Accessible from MainWidget or (to speed-up) from the command line directly: $ SardanaMotorMenu.py d1_mot65 Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 19
SardanaMotorMenu: Move Widget Motor Selector $ SardanaMotorMenu.py d1_mot65 Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 20
SardanaMotorMenu: Move Widget Motor can also be moved with Key_Left and Key_Right Key_Up, Key_Down to change slew Change incr., slew or range • Postscript • Write .fio Timer/counter selector also Invoke Attr. and EncAttr widgets Move right by step, incr. or to limit possible from command line. Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 21
SardanaMotorMonitor: Cursor Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 22
SardanaMotorMenu: Attributes Selected motor attributes Encoder attributes Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 23
Summary • Extend the central compute resources • Extend GPFS to all data intense FS activities • Implement HiDRA for all 2D detectors • LaVue to become the standard visualization tool • Extend ADAPT to more use cases • First steps towards a general scientific software support Thorsten Kracht | Petra Days | Feb. 9, 2017 | Seite 24
You can also read