Materials and processes for treatment of biogas - Dr. Burkhardt Faßauer, Marc Lincke 19.03.2019, Paris
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Materials and processes for treatment of biogas Dr. Burkhardt Faßauer, Marc Lincke 19.03.2019, Paris Facilitator
Agenda • Bio-Methane – Situation in Germany and Europe - Overview • Desulphurization • state of the art technologies in brief • Chemical-adsorptive removal of hydrogen sulfide with iron oxide and recovery of sulfur • Separation of CO2 • state of the art technologies in brief • using ceramic membranes Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 2
Biomethane – Situation in Germany Number of installations Capacity in Nm³/h • 2017: 208 installations with 128.000 m³ biomethane/h • 11 TWh electricity and heat for appr. 780.000 households (3 persons) • 500.000 gas powered cars with 20.000 km per year • appr. 100.000 cars in Germany with gas • Biomethane => Gas grid • => heat market 75 % • => car market 25 % Number of Capacity in Nm³/h installations Source: Deutsche Energie-Agentur GmbH (dena) Erneuerbare Energien und energieeffiziente Mobilität; biogaspartner – gemeinsam einspeisen. Biogaseinspeisung in Deutschland und Europa – Markt, Technik und Akteure. 11/2015 Facilitator Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen (Hg.) (2017): Bericht - Monitoringbericht 2017. Bonn. Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 3
Biogas-Upgrading in Europe Source: European Biogas Association • The Netherlands, Sweden and Switzerland with long lasting experience; Germany with most installations Source: Deutsche Energie-Agentur GmbH (dena) Erneuerbare Energien und • Many countries use municipal organic waste as energieeffiziente Mobilität; biogaspartner – gemeinsam einspeisen. Biogaseinspeisung in Deutschland und Europa – Markt, Technik und Akteure. 11/2015 substrate, Germany mainly uses agricultural waste Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 4
Treatment of biogas - overview desulphu- rization CHP Advanced CO2 desulphu- Drying Odorisation Compression separation rization • Pre-Treatment of biogas (before CHP or feeding into Natural Gas Grid) • Desulphurization • Removal of siloxane • Separation/removal of CO2 • After-Treatment of biogas (exhaust gas CHP) • Selective Catalytical Reaction (SCR): NO, NO2 => N2,H2O • Biogas Oxidation Catalysts (BOC): formaldehyde CH2O => CO2 + H2O; CO => CO2 Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 5
Desulphurization of Biogas Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 6
Need for desulphurization • Biogas is a mixture of methane (40-70 %), carbon dioxide (20-60 %), water vapor (100 %), hydrogen https://pm-lubri-tec.com/wp-content/uploads/2014/09/bts-biogas-bhkw.jpg sulphide (0-3 %) and other trace gases • CHP on site • with BOC: < 5 ppm H2S https://pm-lubri-tec.com/wp-content/uploads/2014/09/bts-biogas-bhkw.jpg • ignition jet units without BOC: < 40 ppm H2S http://etw-energie.de/fileadmin/_migrated/pics/BMA-Seelow- 02_670x240.jpg • Gas Otto engine without BOC: < 15 ppm H2S • Feeding to the natural gas grid • advanced desulfurization (3-7 ppm H2S), • CO2 separation and drying http://etw-energie.de/fileadmin/_migrated/pics/BMA-Seelow-02_670x240.jpg Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 7
Methods of desulphurization Processes for the desulphurization of biogas very common, internal only for rough external treatment physical chemical/ common for chemical biological physical / chemical / biological biological advanced treatment Adsorption Adsorption Absorption Sulphide H2S oxidizing H2S oxidizing Scrubbing with Adsorption with chemical with catalytical With biological precipitation microorganisms microorganisms chem. reaction reaction oxidation oxidation Air injection Pressure Modif. activ. Modif. activ. into the gas Percolating Activated Iron salt water carbon carbon Iron bioprocess space filter carbon scrubbing (MnO4, NaOH) (Kl, K2CO3) Gas scrubbing Iron hydroxide Bio filter with Zinc oxide amines Alkaline Bio scrubber Scrubbing Iron hydroxide (NaOH) iron chelate Iron oxide aerobic Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 8
Methods of desulphurization - examples Biological Desulphurization Adsorption with active Adsorption with iron- Scrubbing by injection of air into gas carbon oxide or -hydroxid space https://www.ugn- umwelttechnik.de/gasentschwefelung/filtermate encrypted-tbn0.gstatic.com/ www.biobg.de/bilder/2015/10/aktivkohle.jpg https://sulphtec.com/biogasentschwefelung/sh-sulphpur/ rial.html#c422 Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 9
Sulfur removal with iron oxid on metal foam a new approach • energy- and resource - efficient desulphurization system with metal foam as carrier (nickel) • suitable for advanced desulphurization with no waste materials • compliance with the H2S limit of < 4 ppm according to DVGW regulation • continuous regeneration with air and occasionally thermal reactivation under recovery of elemental sulfur, completely recyclable material • partner: Source: Fraunhofer IKTS, Fraunhofer IFAM-DD, Emission Partner Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 10
Sulfur removal with iron oxid on metal foam Basic principle of loading and continuous regeneration gas with low concentration • Continuous regeneration of hydrogen sulphide (< 5 ppm) inert gas N2 • Injection of oxygen or air • Conversion of iron sulphide to iron-oxide, - hydroxide and elemental sulphur in-situ reactivation with air-oxygen • Aimed capacity 0,4 – 0,6 kg S/kg adsorber desulphurisation of gas reactivation medium material „air“ or „oxygen“ inert ga (loading cycle) > 300 °C • Sulphur deposits on the surface reaktor 1 reaktor 2 • Sorbent is ready for further loading • 10 x regeneration without significant loss of performance => thermal reactivation Loading: Fe2O3 + 3 H2S → 2 FeS + 1/8 S8 + 3 H2O Regeneration: 2 Fe(OH)3 + 3 H2S → 2 FeS + S + 6 H2O 2 FeS + 3/2 O2 → Fe2O3 + S2 Facilitator 4 FeS + 3 O2 + 6 H2O → 4 Fe(OH)3 + 4S inert gas N2 Source: Fraunhofer IKTS gas with hydrogen sulphide < 300 °C Veranstaltung | Datum | Seite 11
Sulfur removal with iron oxid on metal foam Principle of occasional thermal reactivation gas with low concentration of hydrogen sulphide (< 5 ppm) inert gas N2 • Reactivation • elemental sulphur reduces the active surface → thermal regeneration to remove the sulphur is required inert gas in-situ reactivation with air-oxygen • Sulphur is converted into the gas phase desulphurisation of gas reactivation medium inert gas heater • Carrier gas transports sulphur (loading cycle) „air“ or „oxygen“ from adsorber foam > 300 °C reaktor 1 reaktor 2 • sulphur recovery reaktor 3 sulfur loaded • Condensation of gaseous sulphur N2 + S • Sulphur is available as a raw material > 300 °C ex-situ thermal regeneration condensation • 4 x thermal reactivation without significant loss of performance inert gas N2 gas with hydrogen sulphide < 300 °C sulfur (liquid or solid) Facilitator > 150 °C Source: Fraunhofer IKTS Veranstaltung | Datum | Seite 12
Sulfur removal with iron oxid on metal foam Performance adsorbe foam after regeneration 550 input concentration H2S: 511 ppm concentration H2S [ppm] 500 • Hydrogen sulfide breakthrough 450 curves for thermally 400 regenerated foam for different 350 space velocities 300 250 200 150 1st regeneration 7th regeneration 100 new 50 2nd regeneration 0 0:00 0:50 1:40 2:30 3:24 4:14 5:04 5:54 6:44 7:34 8:24 9:14 10:04 10:54 11:44 time [hh:mm] V19.4_2 L/min V19.5_2 L/min V19.6_2 L/min V19.1_1 l/min V19.2_1 L/min V19.3_1 L/min V19.7_1 L/min Source: Fraunhofer IKTS Facilitator Veranstaltung | Datum | Seite 13
Sulfur removal with iron oxid on metal foam - Pilot plant • Construction and commission of pilot plant completed in the technical center of partner GICON • Adsorber foam produced for filling and installed in two modules • Long-term operational tests with real biogas Source: GICON, Emission Partner Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 14
Sulfur removal with iron oxid on metal foam Economical example for biogas plant 500 kWel. • Analysis of costs for adsorber material, investment, biogas production (raw gas) 300 m³/h operation, regeneration, recycling, disposal methane content 53 % • Depending on number of reactivations the metal – methan production 159 m³/h foam based advanced desulphurization system biogas production 2.580.000 Nm³/a achieves 10 – 40 % lower total costs compared to 250 ppm active carbon H2S 385 mgH2S/m³ 0,116 kgH2S/h S 0,109 kgS/h Source: Fraunhofer IKTS Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 15
Separation/Removal of CO2 Facilitator Veranstaltung | Datum | Seite 16
Need for CO2-separation • High-Gas („H-Gas“ 11 kWh/m3) in South-, East- and North-Germany, Low-Gas („L-Gas“ 8,9 kWh/m3) in Northwest-Germany (30 %) • until 2030 complete switch to „H-Gas“ is planed Water scrubbing Chemical scrubbing Membrane Technology Chem./phys. scrubbing Kryotechnology Source: Facilitator Deutsche Energie-Agentur GmbH (dena) Erneuerbare Energien und energieeffiziente Mobilität; biogaspartner – gemeinsam einspeisen. Biogaseinspeisung in Deutschland und Europa – Markt, Technik und Akteure. 11/2015 Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 17
Need for CO2-separation North Natural Gas-H GUS Natural Gas - H Natural Gas - L Methane CH4 Vol. % 90 97,3 81,8 Ethane C2H6 Vol. % 5 1,3 2,8 Propane C3H8 Vol. % 0,7 0,5 0,4 Buthan C4H10 Vol. % 0,2 0,1 0,2 CO2 Vol. % 1 0 0,8 Nitrogen N2 Vol. % 3,1 0,8 14 calorific value kWh/m3 11,21 11,18 10,3 Density compared to air 0,61 0,57 0,64 Source: www.unternehmensberatung-babel.de/industriegase-lexikon/industriegase-lexikon-a-bis-m/erdgas/index.html http://etw-enere.de/fileadmin/_migrated/pics/BMA-Seelow-02_670x240.jpg Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 18
Methods of CO2-Separation Criteria Water Amin Hybrid processes PSA Polyglykol Membrane scrubbing scrubbing Membrane/ Kryo Advanced desulphurization required Yes No Yes Yes Yes Yes Loss of methane
Introduction – membrane gas separation • Membranes are appropriate for biogas upgrading because of • low energy consumption, • good selectivity and low product lost, • flexible operation and short start-up time, • easily engineered modules • and lower costs. • High CH4 recovery efficiency can be reached (>96%) • organic and non-organic membranes Source: EVONIK Source: IKTS Source: https://www.airliquideadvancedseparations.com/our- membranes/biogas Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 20
Gas separation with inorganic membranes • inorganic Membranes • metallic membranes (tungsten, palladium or stainless steel) onto a porous substrate • Ceramic membranes consist of metal loxide (aluminum or titanium) and non-metal (oxides, nitride, or carbide) • Zeolite membranes are used in highly-selective gas separation due to highly uniform pore size. • advantage of the non-organic membranes are • high thermal, chemical and mechanical stability • inertness to microbiological degradation • ease of cleaning after fouling compared to organic counterparts Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 21
Gas separation with inorganic membranes Carbon-Based Membranes 0,34nm 1 µm Molecular Sieve Carbon Adsorptions Selective Carbon Membrane Membrane (MSCM) (ASCM) Distance between lamella: 0,4 - SourceIKTS 0,5 nm Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 22
Gas separation with inorganic membranes Carbon based membrane preparation Ceramic Support Al2O2 mono channel tubes i = 7 mm, a = 10 mm, l = 100 mm Polymeric inside asymmetric structured Coating Precursor cross section Polymerisation asymmetric ceramic membrane (SEM) 10µm Pyrolysis Post Treatment Source: Fraunhofer IKTS Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 23
Gas separation with inorganic membranes Carbon based membrane - Biogas separation tests • robust membrane performance in real biogas • Permselectivity CO2/CH4 up to 100 • flow rates of CO2 up to 9 m³/(m²h*bar) feed 4.5bar 96% CH4 50% CH4 50% CO2 69% CO2 Source: Fraunhofer IKTS, DBI Facilitator Bioenergie mit Fokus auf Gewinnung von Biomethan | 19.03.2019 | Seite 24
Thank you for your attention! Dr.-Ing. Burkhardt Faßauer 19.03.2019, Paris Facilitator
You can also read