Measurement of reactive oxygen species - Institut für Pharmakologie - PD Dr. med. Huige Li huigeli@uni mainz.de
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Institut für Pharmakologie Measurement of reactive oxygen species PD Dr. med. Huige Li huigeli@uni‐mainz.de
Reactive oxygen species SOD C t l Catalase H2O2 H2O NADPH GPx oxidase Fe2+ Xanthine oxidase Mito Mito- O2- OH chondria Uncoupled NO H+ eNOS GPx ONOO- NO2- Institut für Pharmakologie Huige Li
Measurement of reactive oxygen species Colorimetric assays y Chemiluminescence‐based assays y Fluorescence‐based Electron spin resonance Institut für Pharmakologie Huige Li
Nitro Blue Tetrazolium One of the oldest and most established methods to detect i t intracellular ll l superoxide id Institut für Pharmakologie Huige Li
Examples of tetrazolium salts MTT assay used to determine cytotoxicity 3‐(4,5‐Dimethylthiazol‐2‐ Mitochondrial Purple yl)‐2,5‐diphenyl‐ reductases formazan tetrazolium bromide TTC assay to indicate cellular respiration 1,3,5‐ 2,3,5‐Triphenyl 2 3 5 Triphenyl Dehydrogenases triphenyl‐ tetrazolium chloride formazan Institut für Pharmakologie Huige Li
Nitro Blue Tetrazolium Reduction of NBT to formazan, a dark blue precipitate. As NBT needs to be reduced, only superoxide (which may act as electron donor or acceptor), but not hydrogen peroxide (which is exclusively an oxidizing agent) is capable of reacting with NBT. NOX4-negative NOX4-expressing Spectrophotometer (absorbance at 560 nm) imaging Serrander L et al. Biochem J 2007; 406: 105-114 Institut für Pharmakologie Huige Li
Nitro Blue Tetrazolium NBT detects intracellular superoxide; O2‐ >> H2O2 NBT is susceptible to reduction by several tissue reductases. NBT has been shown to artificially generate superoxide by auto‐oxidation. The specificity for superoxide should be confirmed by inhibition of NBT staining by polyethylene‐glycolated (PEG)‐SOD. Detection of superoxide in biological samples should not rely exclusively on NBT reduction. Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
Cytochrome c reduction – the theory · · Fe3+ :O:O: e- ·· ·· Xanthine oxidase id e- ·· · :O:O: Fe2+ ·· ·· Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
Cytochrome c reduction – the assay Acetylated ferricytochrome c Acetylated ferricytochrome c + Tissue + Tissue + catalase + catalase + SOD 37°C 30 min in 96‐well plate Remove tissue Absorbances at 540, 540 550, 550 and 560 nm Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
Cytochrome c reduction – the assay Acetylated ferricytochrome c Acetylated ferricytochrome c + Tissue + Tissue + catalase + catalase + SOD 37°C 30 min in 96‐well plate Remove tissue without SOD Absorbances at 540, 540 550, 550 and 560 nm with SOD Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
Cytochrome c reduction assay Strengths • th the “gold “ ld standard” t d d” (by (b some researchers) h ) for f superoxide id d detection t ti with ith phagocytes, isolated enzymes like xanthine oxidase. • It allows q quantification of superoxide p without addition of a standard,, because the extinction coefficient of reduced cytochrome c is known. W k Weaknesses • Low sensitivity: for vascular tissues one is working at the lower limit of the range g of superoxide p detection. • Identifcal tissues in samples ± SOD. • Cytochrome c reduction only detects extracellular superoxide. superoxide Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
Cytochrome c reduction – the verdict Cytochrome c reduction is a time‐honored approach for measuringg superoxide. p It is difficult, but not impossible, to apply to vascular and myocardial tissues because one is working at the lower limit of the assay’s sensitivity. The results are more variable than other methods methods, making it necessary to use a large “n.” Given these Gi th caveats, t it is i almost l t always l accepted t d by b reviewers i without question. Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
Chemiluminescence‐based assays On exposure to superoxide, chemiluminescent probes release a photon, which in turn can be detected by a scintillation counter or a luminometer. Because most of these compounds are cell permeable, the superoxide measured reflects extracellular as well as intracellular superoxide production Lucigenin: bis-N-methylacridinium nitrate Cypridina luciferin analogues, such as • Coelenterazine: C l i 2-(4-hydroxybenzyl)-6-(4-hydroxyphenyl) 8-benzyl-3,7- dihydroimidazol[1,2-α]pyrazin-3-one • CLA: 22-methyl-6-phenyl-3,7-dihydroimidazo methyl 6 phenyl 3,7 dihydroimidazo (1,2 (1,2-α)-pyrazin-3-one α) pyrazin 3 one • MCLA : 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo(1,2-α)pyrazin-3-one Luminol: 5-amino-2,3-dihydroxy-1,4-phthalayineidone y y p y L-012: 8-amino-5-chloro-7-phenylpyrido[3,4-d]pyridazine-1,4-(2H,3H) dione Institut für Pharmakologie Huige Li
Lucigenin chemiluminescence O2·- + LC2+ LC·+ + O2· (lucigenin) (cation radical) O2·- + LC·+ LCO2 (dioxetane) LCO2 2N-methylacridone + h Institut für Pharmakologie Huige Li
Lucigenin chemiluminescence Strengths • Specific for superoxide ‐ no need to prepare a second sample with SOD to prove that the signal is derived from superoxide. • Intracellular and extracellular superoxide, because lucigenin g penetrates cells p Weaknesses • Redox cycling • Low sensitivity: Lucigenin signal is usually only slightly above background, normal chemiluminescence plate readers or luminometers typically used for luciferase assay are not sensitive enough to detect the low counts yielded by superoxide reaction with 5 µM lucigenin. (Münzel: Scintillation counters switched to the out‐of‐ coincidence mode are optimal for this purpose). Institut für Pharmakologie Huige Li
Lucigenin chemiluminescence O2·- + LC2+ LC·+ + O2· (lucigenin) (cation radical) O2·- + LC·+ LCO2 (dioxetane) LCO2 2N-methylacridone + h flavin Redox cycling containing enzymes LC·+ O2·- + LC2+ O2 Institut für Pharmakologie Huige Li
Lucigenin chemiluminescence Institut für Pharmakologie Munzel, T. et al. Arterioscler Thromb Vasc Biol 2002;22:1761‐1768 Huige Li
Cypridina luciferin analogs Coelenterazine: 2‐(4‐hydroxybenzyl)‐6‐(4‐hydroxyphenyl) 8‐benzyl‐3,7‐dihydroimidazol[1,2‐α]pyrazin‐3‐one Coelenterazine is the molecule responsible for the fluorescence of various bioluminescent marine organisms in the genus cypridina and is the light‐emitting component of the fluorescent protein aeqourin. Coelenterazine does not undergo redox cycling and was found to be useful as a probe for the detection of superoxide. Institut für Pharmakologie Huige Li
Cypridina luciferin analogs Coelenterazine: 2‐(4‐hydroxybenzyl)‐6‐(4‐hydroxyphenyl) 8‐benzyl‐3,7‐dihydroimidazol[1,2‐α]pyrazin‐3‐one Cypridina luciferin analog (CLA): 2‐methyl‐6‐phenyl‐3,7‐dihydroimidazo (1,2‐α)‐pyrazin‐3‐one Methylated‐modified CLA (MCLA): 2‐methyl‐6‐(p‐methoxyphenyl)‐3,7‐dihydroimidazo(1,2‐α)pyrazin‐3‐one Of these, MCLA seems to have the highest signal:background ratio and emits 100 100‐fold fold more light for the same stimulus as coelenterazine. coelenterazine Institut für Pharmakologie Huige Li
Luminol & L‐012 Luminol (5‐amino‐2,3‐dihydro‐1,4‐phthalazinedione) is one of the oldest chemiluminescent probes used to detect ROS. ROS Luminol is oxidized by a variety of ROS, including O2‐, H2O2, HO, and ONOO‐. LL‐012: 012: 8 8‐amino‐5‐chloro‐7‐phenylpyrido[3,4‐d]pyridazine‐1,4‐(2H,3H) amino 5 chloro 7 phenylpyrido[3,4 d]pyridazine 1,4 (2H,3H) dione • a modified form of luminol • detects O2‐, ONOO‐, and probably other ROS Luminol and L‐012 don’t undergo redox cycling Institut für Pharmakologie Huige Li
L‐012 8000 cells/ml + PDBu 8000 cells/ml, non-stimulated ti l t d Daiber A, et al. and Munzel T. Free Radic Biol Med. 2004; 36:101-111. Institut für Pharmakologie Huige Li
L‐012 Coelenterazine 100 µM 100 µM 100 µM 1 µM Daiber A, et al. and Munzel T. Free Radic Biol Med. 2004; 36:101-111. Institut für Pharmakologie Huige Li
L‐012 EoL‐1: human eosinophilic leukemia cell line; fMLP: N‐Formylmethionyl‐leucyl‐phenylalanine Nishinaka Y et al. (BBRC. 1993; 193: 554-559) Institut für Pharmakologie Huige Li
Fluorescence‐Based Assays Fluorescent probes: • Dihydroethidium Dih d thidi (DHE) • H2DCF‐DA • Amplex Red Detection: • Fluorescence plate reader • Fluorescence microscope • Fluorescence‐activated cell sorter (FACS) Institut für Pharmakologie Huige Li
Dihydroethidium ‐ HPLC Institut für Pharmakologie Huige Li
Resveratrol decreases superoxide production p ‐/‐ mice in the heart of apoE (Detection of dihydroethidium products with HPLC) 750 Ethidium Control O2- se (mV) Res 30 2-HE ((nM/g) Res 100 500 * Respons 2-HE ** 250 R 0 Control Res 30 Res 100 Time ((min)) 2-HE = 2-hydroxyethidium = superoxide-specific product from dihydroethidium (DHE) Ethidium = non-specific oxidation product from DHE Institut für Pharmakologie Huige Li
Dihydroethidium ‐ HPLC Strengths • Sensitive enough g for vascular tissues. • It can be used to detect intracellular superoxide. • Moreover, samples can be stored after incubation and the HPLC assays performed at later time (stable at -20°C stable for several months). This allows frozen samples to be sent to another laboratory for analysis. Weaknesses • DHE is a light-sensitive dye. dye For this reason, reason all of the procedures should be performed in dim light. • DHE can react with oxygen in solution. DHE should be prepared as a stock solution in argon-purged buffers using dark tubes. Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
Dihydroethidium ‐ HPLC Verdicht • The detection of 2‐hydroxyethidium formation from DHE is a simple and accurate method for estimating intracellular superoxide. id • Given that 2‐hydroxyethidium y y is not formed byy other common oxidants, this assay is as close to being a “gold standard” for detecting superoxide in intact tissues or cells as anything currently available. available Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
Dihydroethidium – fluorescence microscope Vessels are harvested from experimental animals and 30‐µm frozen sections are animals, obtained. The sections are then allowed to thaw and are incubated with DHE. DHE is cell permeable and reacts with ROS to SHR form 2‐hydroxyethidium and ethidium, which in turn intercalate with DNA, providing nuclear fluorescence (excitation 520 nm / emission 610 nm). • Semiquantitative • Not specific for superoxide • Topographical location of ROS SHR + LL‐NAME NAME Li H et al. J Am Coll Cardiol 2006; 47:2536-2544 Institut für Pharmakologie Huige Li
DCF‐DA and its derivates H2DCF-DA: 2',7'-dichlorodihydrofluorescein diacetate, cell-permeable, also known as dichlorofluorescin diacetate, Chloromethyl-H2DCFDA Carboxy-H2DCFDA Esterases H2DCF‐DA H2DCF‐DA H2DCF cell‐permeable cell‐permeable cell‐impermeable nonfluorescent nonfluorescent nonfluorescent H2O2, ONOO-, O2- DCF cell‐impermeable fluorescent Dikalov S, Griendling KK, Harrison DG. Hypertension 2007; 49: 717 - 727. Institut für Pharmakologie Huige Li
DCF‐DA and its derivates Strengths • Intracellular ROS. • It can be detected by imaging; plate reader or FACS. • Localization within tissue • Sensitive: possible to detect ROS within a single cell. Weaknesses • Not N t specific. ifi “a“ generall iindicator di t off ROS” ROS”. • High potential of artifacts. • Photoreduction of DCF results in artificial production of a semiquinone radical that in turn can reduce O2 to O2- • Redox reaction with H2DCF and DCF generates O2- • Oxidation of H2DCF to DCF can be self-catalyzed by peroxidases • Oxidation of H2DCF by H2O2 is a indirect reaction and requires peroxidase activity transitionmetals, activity, transitionmetals and heme enzymes Institut für Pharmakologie Huige Li
Amplex Red when excited at colorless and 530 nm nm, strongly nonfluorescent emits light at 590 nm Institut für Pharmakologie Huige Li
Amplex Red Strengths • Highly sensitive and specific, • detection limit: 5 pmol H2O2. • Signal abolished by exogenous catalase. • Resorufin is a veryy stable product p that allows detection of H2O2 both in oxidative and reductive conditions. • Simple; no special equipments required Weaknesses • Auto‐oxidation: At high concentrations (50 µM) the Amplex Red dye can be auto oxidized and produce O2‐ and H2O2. Low concentrations auto‐oxidized of Amplex Red (10 µM) minimize this problem. • Amplex Red detects extracellular H2O2. • H2O2 is i diffusible, diff ibl so that th t values l measured d in i the th buffer b ff should h ld provide id an index of what was originally produced by the tissue. Institut für Pharmakologie Huige Li
Electron Spin Resonance ESR signal is proportional to the number of the unpaired electrons present in the sample. Institut für Pharmakologie Huige Li
ESR – the use of “spin traps” NO colloid Fe(DETC)2 (diethyldithiocarbamate) Lipid radicals • N‐t‐butyl‐α‐phenyl‐nitrone • α‐[4‐pyridyl py y 1‐oxide]‐N‐tert‐butyl‐nitrone y O2‐, OH • DMPO: 5,5‐dimethyl‐pyrroline‐N‐oxide • DEPMPO: 5‐(diethoxyphosphoryl)‐5‐methyl‐1‐pyrroline‐N‐oxide Institut für Pharmakologie Huige Li
ESR – the use of “spin traps” OH Institut für Pharmakologie Huige Li
ESR – the use of “spin traps” 74 mol/L/s O2- Fe3+‐cyt c Fe2+‐cyt c 3 x 106 mol/L/s Institut für Pharmakologie Huige Li
ESR – cyclic hydroxylamine probes CPH: 1‐hydroxy‐3‐carboxy‐2,2,5,‐tetramethyl‐pyrrolidine hydrochloride • Reacts rapidly with O2‐ (3.2 x 103 mol/L/s) and ONOO‐ • The Th resultant lt t 3 3‐carboxy‐proxyl b l radical di l is i very stable, t bl undergoing d i minimal i i l bioreduction CMH: 1‐hydroxy‐3‐methoxycarbonyl‐2,2,5,5‐tetramethylpyrrolidine • Cell‐permeable • Detection of intracellular O2‐ Institut für Pharmakologie Huige Li
Electron Spin Resonance Strengths • ESR is an excellent approach pp for the detection of radical. • When studying isolated enzymes or chemical reactions, the nitrone spin traps are very useful. • For studying intact tissues, cells, or homogenates, cyclic hydroxylamines are better. • Sensitivityy of ESR can reach 1 nmol/L, / , wenn cyclic y hydroxylamines y y are used. Weaknesses • Expensive. • Extensive trainingg is needed to operate p the spectometer p correctly. y Institut für Pharmakologie Huige Li
Summary Intra‐/extra‐ ROS Sensitivity Practice cellular Colorimetric assays Nitro Blut Tetrazolium intracellular O2‐ low easy Cytochrome c extracellular O2‐ low easy Chemiluminescence Lucigenin intra & extra O2‐ low difficult MCLA intra & extra O2‐ low easyy L‐012 extracelluar O2‐, ONOO‐ high easy Fluorescent Dihydroethidium (DHE) intracelluar O2‐ high moderate H2DCF‐DA intracellular ROS high easy Amplex Red extracellular H2O2 high easy Electron Spin Resonance intra / extra O2‐, OH moderate difficult Institut für Pharmakologie Huige Li
References Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies. Hypertension 2007; 49: 717 ‐ 727. Münzel T, Afanas’ev IB, Kleschyov AL, Harrison DG. Detection of superoxide in vascular tissue. Arterioscler Thromb Vasc Biol, 2002; 22: 1761 ‐ 1768. Daiber A, A et al. al & Münzel T. T Measurement of NAD(P)H oxidase‐derived oxidase derived superoxide with the luminol analogue L‐012. Free Radic Biol Med. 2004; 36:101‐111. Daiber A, et al. & Münzel T. Detection of superoxide and peroxynitrite in model systems and mitochondria it h d i by b th the luminol l i l analogue l L‐012. L 012 Free F R di Res. Radic R 2004; 2004 38:38 259 259‐269. 269 Sohn HY, et al. & Pohl U. Sensitive superoxide detection in vascular cells by the new chemiluminescence dye L‐012. J Vasc Res. 1999; 36: 456‐464. http://www.invitrogen.com/site/us/en/home/References/Molecular‐Probes‐The‐ Handbook.html Institut für Pharmakologie Huige Li
You can also read