Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi

Page created by Leonard Sanchez
 
CONTINUE READING
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
Equipe Intermedia
                         équipe TIPIC labo CNRS SAMOVAR

                                     Bernadette Dorizzi
                             http://www.telecom-sudparis.eu/eph
                             Bernadette.Dorizzi@it-sudparis.eu

                          Institut MinesTélécom;Télécom SudParis

Institut Mines-Télécom
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
Intermedia
       une équipe bi-localisée EVRY-Nano-INNOV, Palaiseau

     ■ Projet Bio-Identité:
         ●   Bernadette Dorizzi
         ●   Mounim El Yacoubi
         ●   Sonia Garcia
         ●   Dijana Petrovska
         ● Doctorants: Mouna Selmi, Mohamed Ibn Kheder, Nadia Othman, Janio Canuto,
           Raida Hentati
     ■ Projet Geste:
         ● Patrick Horain
         ● Doctorants: Maher Mkinini,
     ■ Projet télévigilance
         ● Jerome Boudy
         ● Jean louis Baldinger
         ● Doctorants: Pierrick Mihorat, Toufik Guettari, Mohamed Sehili
         ● Post doc Paulo Cavalcante

pa
ge           Institut Mines-Télécom
2
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
Research Context
     ■ Propose and adapt models from signal and image
       processing, statistical pattern recognition for various
       applications related to interactions between Man and
       Machine
     ■ Scientific background
        ●   Statistical Pattern recognition
        ●   Machine Learning
        ●   Image processing, signal processing
        ●   Sensors and micro-electronics
        ●   Multi-sensor data fusion
     ■ Models:
        ● HMM, particular filtering, PSO, entropy, DTW, Gabor
          wavelets, ACP, LDA, Appearance and registration models.

pa
ge            Institut Mines-Télécom
3
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
Intermedia : Interactions for Multimedia
7 permanent staff, PhD students, post-doc

              ■ Application domains:
                  ● Biometrics (including iris, 2D-3D face, speech,
                    signature)
                  ● Crypto-biometrics (revocable biometrics and crypto-
                    biometric key generation from biometric data)
                  ● Audio Indexation using the speech recognition
                    framework (publicity detection, music,…)
                  ● Avatars personalisation
                  ● Action and Activity recognition
                  ● Home healthcare activity
                  ● Gesture-based communication in networked virtual
                    environments
                  ● Person re-identification in videos
                  ● Video indexing and retrieval through face and silhouette

                    Institut Mines-Télécom
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
Intermedia                            1/…

                                 Biometrics

                     Bernadette Dorizzi
     Mounim El Yacoubi, Sonia Garcia Dijana Petrovska,
               Intermedia/TELECOM SudParis

Authentication of persons from their personal characteristics
                 (physiological, behavioural)

        Institut Mines-Télécom
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
3D morphable model
                                                                                            From side view to frontal view
                              Dynamic Signatures
                              • Design of models relying on continuous HMMs
                                       • Tests on different databases (Philips,
                                       BIOMET, MYCT, SVC2004)
                                       •Participation to the international evaluation
                                       campaigns SVC 2004, BioSecure 2007,
                                       BSEC09

    Combining Biometrics and
    Cryptography                                                                                                                Iris verification from
    for Secure Authentication                                                                                                   degradated acquisition
                                                                                                                                conditions

  Differential sensors IR for face and                                   Télécom
  hand vein verification
                                                                         SudParis
                                                                         Interests                                             •2D and 3D face recognition

Multimodal fusion
• Scores Fusion with means models, SVM, décision trees
         • Evaluation Protocols on multi-modal databases

                                                                                        Usage Tests and field studies in the
                                                                                        context of biometric systems
                                                                                        deploiement.

  pa
  ge
  6
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
Research problems
■ Development of new algorithms
      ● On-line signature (patent)
      ● Iris verification in degraded mode (patent)
      ● Face Verification in 2D and 3D
      ● Quality assessment
■    Multimodality : Development and test of score fusion algorithms,
     independance tests, feature selection and fusion (1 PhD)
■    Biometrics and Security
      ● Development of new crypto-biometric strategies
■    Coupling sensors/algorithms (collaboration Société NIT, Yang Ni)
      ● Differential image sensor able to decrease illumination effects
■    Assessment protocols for biometric algorithms and multibiometric
     algorithms (projet BioSecure)
■    Biometric implementation on embedded systems (PDA, mobile devices)
     (projets VINSI, SecurePhone, SIC)
      ● Taking into account degradations linked to mobility, Interest of multibiometry
   Signature verification on iphone, ipad, android platforms
   Usage tests and field studies in the framework of deploiement of biometric
    systems.

                    Institut Mines-Télécom
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
Principaux résultats de recherche
    ■ Reconnaissance de visage en 2D avec conditions d’illumination
        variables par codage de Gabor et projection par LDA
    ■   Vérification par le visage en mode proche infra-rouge: méthode
        d’appariement locale basée sur les points de contour
    ■   Qualité locale mesurée par GMM pour reconnaissance de l’iris en
        mode dégradé
    ■   Mesure d’entropie pour qualifier des qualités de signatures
        manuscrites en-ligne et la texture d’iris
    ■   Modèles de “Morphing” 2D-3D pour la reconnaissance de visage avec
        variations de pose, pour l’animation d’avatars 3D
    ■   Fusion multimodale de scores, d’images et de caractéristiques
    ■   Sélection de variables par méthodes “Optimisation par Essai de
        Particules”
    ■   Sécurité des systèmes biométriques (biométrie révocable et crypto-
        biométrie) Crypto-biométrie : obtention d’une clefs crypto-
        biométrique de 147 bits à partir d’images d’iris et de visage,
        proposition de nouveau protocoles
    ■   Indexation audio en utilisant la principe de reconnaissance de la
        parole (détection de publicité, musique,…) excellents résultats sur
        données YACAST (diffusions radios) et QUAERO
    ■   Ré-identification dans des videos par approches SURF et
        représentation parcimonieuse
8         Institut Mines-Télécom               SSD 2013
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
On- line signature : Personal Entropy Measure
                                      Nesma	
  Houmani,	
  Sonia	
  Garcia-­‐Salice3	
  

■    We proposed a Personal Entropy Measure computed locally on a set
     of genuine signatures [1,2,3]
■    We generated with such measure 3 writer categories, coherent in terms
     of signatures’ visual aspect, complexity and variability.
■    We tested 3 classifiers on each category of users and compare results
      There are users by far more difficult (a factor 2) to recognize than
       others: High Personal Entropy category [2,3]
■    We studied in [4] the Robustness of Coordinates, Pen Pressure and Pen inclination angles to Time
     Variability with Personal Entropy (x,y) is the most robust combination to long-term time variability
     (as observed by other criteria and performance assessment) .

[1] S. Garcia-Salicetti, N. Houmani, B. Dorizzi, "A Client-entropy Measure for On-line Signatures", Proc. of IEEE Biometrics Symposium
(BSYM 2008), Tampa, USA, September 2008.
[2] N. Houmani, S. Garcia-Salicetti, B. Dorizzi, "A Novel Personal Entropy Measure confronted with Online Signature Verification Systems’
Performance", Proc. Of IEEE Second International Conference on Biometrics: Theory, Applications and Systems (BTAS 2008), Washington,
September 2008.
[3] S. Garcia-Salicetti, N. Houmani, B. Dorizzi, "A Novel Criterion for Writer Enrolment based on a Time-Normalized Signature Sample
Entropy Measure", EURASIP Journal on Advances in Signal Processing , vol. 2009, Article ID 964746, 12 pages, 2009. doi:
10.1155/2009/964746.
[4] N. Houmani, S. Garcia-Salicetti, B. Dorizzi, "On assessing the Robustness of Pen Coordinates, Pen Pressure and Pen inclination to Short-
term and Long-term Time Variability with Personal Entropy", Proc. Of IEEE Second International Conference on Biometrics: Theory,
Applications and Systems (BTAS 2009), Washington, September 2009.	
  
                                Institut Mines-Télécom
Equipe Intermedia équipe TIPIC labo CNRS SAMOVAR - Bernadette Dorizzi
Combining Biometrics and Cryptography
                         for Secure Authentication
                                            Sanjay Kanade, Dijana Petrovska

     Problem: Biometric data is not revocable; cannot replace and reissue the template in case of compromise

     Solution: Use biometrics in combination with password; both must be provided at the same time for the
     system to work; there is no sequential processing

                                                         Revocable /                          Verification                      Yes/No
                          Enrollment                     cancelable
Password                                                                                  Key regeneration                      Key
                                                         template                                                               (101010011101010100011
                                                                                                                                010101010101110101101.
                                                                                                                                .. …)
                                                                                                      Password
Our work:
■ A shuffling scheme is used which makes the biometric enrollment data (template) revocable
■ Different templates can be issued for different applications; So user privacy is preserved
■ Stored data does not reveal information about the biometric enrollment data
■ Reduce variability in biometric data using error correcting codes [2]; improves biometric performance
■ Cryptographic keys having 83-bit entropy in single eye mode and 147-bit entropy in two-eye mode can also be
    obtained; this is the highest reported entropy in literature
1.     Kanade, S.; Camara, D.; Krichen, E.; Petrovska-Delacrétaz, D. & Dorizzi, B. “Three Factor Scheme for Biometric-Based Cryptographic Key
       Regeneration Using Iris”, The 6th Biometrics Symposium 2008 (BSYM2008), 2008
2.     Kanade, S.; Petrovska-Delacrétaz, D. & Dorizzi, B., “Cancelable Iris Biometrics and Using Error Correcting Codes to Reduce Variability in Biometric
       Data”, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2009
3.     Kanade, S.; Petrovska-Delacrétaz, D. & Dorizzi, B., “Multi-biometrics based cryptographic key regeneration scheme”, IEEE Conference on Biometrics:
       Theory, applications and systems (BTAS), 2009

                                     Institut Mines-Télécom                                                                                          10	
  
Gait Recognition
                       Mounim El Yacoubi, Ayet Shaiek, Mohamed Ibn-Kheder,

■ Silhouette Normalization
     ●   Normalizing the varying distance from each gait
         frame to camera
■ Gait Period Detection
     ●   Analysis of the Density of Foreground Pixels
         associated with the legs
■ Feature Extraction
     ●   Vector of the Widths (Structural-Dynamic
         Information)
     ●   Motion Vector between 2 Consecutive Frames
         (explicit dynamic information)
■ Recognition
     ●   Hidden Markov Models (HMMs)
              − Explicitly divide the gait sequences into its periods
              − Robustness toward Gait sequence local variations
     ●   Dynamic selection of the feature type based on:
              − Kmeans distance
              − PCA output
              − Output of a generic HMM
Cf. Ayet SHAIEK, “Reconnaissance des personnes à
     partir de la démarche, “ Master Report, June
     2009

    Page 11                    Institut Mines-Télécom
Person Re-identification System based on
             SURF Matching (M El Yacoubi, M Ibn Kheder, B Dorizzi)

                                            Detection of the
     Test Video                             Interest Region

         Motion and
     Silhouette Detection

                                                               Interest Points (SURF)
                                                                     Extraction
     Majority Vote                              Interest
         Rule                                    Points          Reference
                                                Matching        Database of
                                                                  SURFs
                                                                                        12

17                 Institut Mines-Télécom                       SSD 2013
Experimental Results
               " Re-identification Performance = Correct Classification Rate (CCR)
                                               Re-Identification = f(Angle Difference)
 Re-Identification = f(Angle Pairs)

                                                        CASIA Dataset-A : 20 persons
                                                        6 Different View Angles
                                                        2 Sequences for each View Angle
                                                            1 sequence as Reference
                                                            1 Sequence for Test
13                  Institut Mines-Télécom                  SSD 2013
SURF with SPARSE representation/
     Results on PRID-2011
                                    PRID-2011:
                                      749 persons as Reference.
                                       200 persons for Test.
                                      In average,100 images per person.

                                        Approach         Re-identification
                                                               rate
                                      Combination of         19.18%
                                     two methods [18]
                                       Probabilistic            22%
                                      SURF Matching
                                            [25]
                                     Our approach with          28%
                                          sparsity

     CMC curve
14        Institut Mines-Télécom           SSD 2013
Human Activity Recognition in videos
                 Mouna Selmi, Mounim El Yacoubi, Bernadette Dorizzi

                                              Modelization:
Project Juliette (Feder FP7)                  • Video = Activities sequences
Partners : Telecom SudParis, Aldebaran        • Activity = Sequences of elementary actions
   Robotics, Brain Vision Systems (BVS),      Features: spatio-temporal interest points
   Institut de la vision                                 Optic flow
■ Compagnon Robot at home for restricted Hierachical Classification
   mobility persons                           Probabilistic Model: Conditional Random Fields
     ● Old, visually disabled, …              (CRFs)
     ● Acquisition of video sequences of humanLight integration of features of different natures
        activities
■ Challenge
     ● Simultaneous segmentation and
        Recognition

    Page 15            Institut Mines-Télécom
Biometric Multimodal Fusion
                                     Lorène Allano, R. Raghavendra, Bernadette Dorizzi

          ■ Score Fusion Scheme, dependency measures,
                building of efficient virtual databases

          ■ Feature and Image Fusion schemes, Particle
                Swarm Optimization feature selection

•Lorene Allano, Bernadette Dorizzi , Sonia Garcia-Salicetti, « Tuning Cost and Performance in Multi-Biometric Systems: A Novel and
Consistent View of Fusion Strategies based on the Sequential Probability Ratio Test (SPRT)” PRL (2010)
•Raghavendra.R, Bernadette Dorizzi, et al.“Designing Efficient Fusion Schemes for Multimodal Biometric System using Face and
Palmprint” submitted PR (2009)

                                Institut Mines-Télécom
3D static model for pose transformation
  (Dijana Petrovska, D. Zhou)

Original                            with landmarks   Result

           Institut Mines-Télécom
                                                              17
Avatar personalisation with a 3D model
       from a 2D image 2
       (Dijana Petrovska, D. Zhou)

   3D Scans Database for
Building the Morphable Model         3DMM Face Space

                                      High Resolution
                                       (75k vertices)

                               Face Analyzer

                                                 3D Photo-Realistic
       2D Input Image
                                                  Representation

                                                                      18
Iris verification in degraded mode

     Good quality iris image
     Constrained acquisition conditions

                                      Bad quality iris images
                                      Less Constrained acquisition conditions
                                      « iris on the move »

19           Institut Mines-Télécom                   SSD 2013
Global system for iris recognition

                                        Segmentation

                                        Normalization

     0100001100010011                     Encoding                 1110111111000101

                                          Match ?

20             Institut Mines-Télécom                   SSD 2013
Recent Results in the bio-identity project
     ■ PhD Emine Krichen/patent 2007:
        ● Definition of local quality measure relying on a GMM for
          estimating “good quality” iris texture
     ■ Thales collaboration (2008-2013) : 2 CIFRE PhD
        ● S. Cremer, B. Dorizzi, S. Garcia, and N. Lemperiere. How a local
          quality measure can help improving iris recognition. BIOSIG,
          2012.
        ● T. Lefevre, B. Dorizzi, S. Garcia, and N. Lemperiere and S.
          Belardi, Effective Elliptic Fitting For Iris Normalization, Computer
          Vision and Image Understanding / parametric active contour

        ● T. Lefevre, B. Dorizzi, S. Garcia, and N. Lemperiere and S.
          Belardi,New Segmentation Quality Metrics for Iris Recognition,
          submitted to ICIAR 2013

21         Institut Mines-Télécom                  SSD 2013
Iris Segmentation via Triplet Markov Tree
               Collaboration with Wojciech Pieczynski: TSP/CITI
     ■ Unsupervised eye image segmentation via Triplet
        Markov Trees as a first processing for subsequent
        iris segmentation

Triplet Markov Tree (Column 3)
Improves segmentation quality versus
Hidden Markov Tree (Column 2)

                                           Two different localizations of the normalization circles for
                                           the same eye image: wrong (grey-level pixel based) on the
                                           left; good (TMF-based) on the right.

Dalila Benboudjema, Nadia Othman,Bernadette Dorizzi, Wojciech Pieczynski, “Challenging eye
segmentation using triplet markov spacial Models”, accepted at ICASSP 2013
22                    Institut Mines-Télécom                           SSD 2013
Improving Video-Based Iris Recognition Via
               Local Quality Weighted Super Resolution
          Nadia Othman, Nesma Houmani, Bernadette Dorizzi, ICPRAM 2013

     ■ Iris recognition at a distance and on the move: Video

Uncontrolled acquisition: Less constraints
                 .
         Loss in quality
                                                    Eye localization   Iris extraction
     Lack of resolution, blur.
                                                      Our proposal:
Strong occlusions: eyelids, eyelashes,                Fuse the frames in the video
spots…                                                to get more information from
                                                      the person
23                    Institut Mines-Télécom                              SSD 2013
Spoofing detection via OCT approaches
                Projet PARADE; Collaboration Yanneck Gottesman TSP/EPH
                            2 pending patents, August 2012

      Context: fingerprint recognition
          Actual fingerprint systems: due to the 2D surface
           acquisition modes, detection of spoofing is very difficult
           (death finger, false finger, overlay)
          The quality of the recorded image presents a significant
           variability due to external parameters (temperature,
           humidity, pressure)
     Our proposal:

     ■   Development of a new type of sensor (3D OCT imaging
         sub-cutaneous) to test the living character of the
         biological tissue presented to the sensor
     ■   Signal processing / 3D volumes to allow biometric
         recognition and detect attempted identity theft

24               Institut Mines-Télécom             SSD 2013
Finger with an overlay
                ■ Overlay depth < dimensions groove (sillon)

                Without overlay                          With overlay

     Difficult because the overlay depth is inferior to the OCT resolution
     Detection is possible as we use the phase image
25                   Institut Mines-Télécom               SSD 2013
Recent Projects
■ BioSecure : Biometric Secure Authentication
   ● Coordination of the NoE, 2004-2007, 30 partners, 3 M€
   ● Framework for test of biometric algorithms
■ Biotyful : BIOmetrics and crypTographY for Fair aUthentication
  Licensing (2007-2010)
   ● ANR telecom, ATMEL, FRANCE TELECOM, GET/INT, GREYC
   ● Cryptobiométrie
VIDEO-SURVEILLANCE
■ Vidéo-ID : Identification via face and Iris in video-surveillance
     ●   ANR CSOSG (2008-2011)
■ Kivaou : Face identification in video-surveillance
     ●   ANR CSOSG (2008-2009)
■ Xvision: Special vision sensors for outdoor applications
     ● System@tic (2008-2010)
■   METHODEO:
     ● ANR CSOSG (2011-2013)
■   Juliette: FEDER 2010

           Institut Mines-Télécom
Recent Projects
■ Nouveau projet ITEA2 PRIBIOSEC
   ● crypto-biométrie, coordinateur français CASSIDIAN
     et PME Secure-IC
■ Collaboration avec PME E-Closing
   ● Sur la signature électronique avec biométrie
■ Projet SurfOnHertz avec YACAST:
   ● indexation audio
■ Projet avec PW Consultants:

       Institut Mines-Télécom
Intermedia                  2/..

   Institut Mines-Télécom
■ « Télévigilance » or remote Healthcare for Patients at Home :
   ● for elderly persons (vigilance problems) or persons with cardio-vascular
     pathologies or chronic diseases needing remote healtcare and
     surveillance
   ● makes the Patient more secure for his/her health and keeps social link
     through connected communication services
   ● also releases Home Hospitalisation load

■ System connected to a remote centralised Healthcare services
  platform :
   ● mobile terminal fixed to the patient in a full ambulatory way
   ● connected to remote Healthcare servers
   ● alarm automatisation at the patient ’s level and management of
     Patient’s data at the server level
   ● merged in the framework of the Smart home with domotic sensors with
     potential link to assistance robots (Companion type).

               Institut Mines-Télécom
■ Multi-sensors mobile terminal recording actimetric and vital
  patient ’s data :
   ● Simplicity of use and robustness to patient deambulation and
     movements
   ● Sensors design towards acceptance (miniaturisation), autonomy
     (battery) and noise-robustness (low-complex/embedded efficient
     signal processing)

■ Alarm automatisation based of multimodal fusion
   ● heterogeneous fusion schemes applied on actimetric and
     physiological data to control specificity of the distress situations
     detection of the whole system [Medjahed-2010]
   ● forward alarms to remote healthcare center with sufficient information
     for remote emergency diagnosis
   ● Multimodal localisation with internal domotic sensors for patient’s
     localisation or ADL [Guettari-2010]

              Institut Mines-Télécom
pa
ge   Hamid MEDJAHED   31	
  
31
Televigilance Lab at Telecom SudParis

     for technical validation

Pa
ge     Institut Mines-Télécom
32
Televigilance terminal (projet QuoVADIS)

 Ambulatory terminal of televigilance designed at Telecom SudParis
  and integrated in partnership with ASICA. (Patent J.L. Baldinger)

 Fall detection, posture, mouvement, robust on-line pulse, with
  emergency push

 On-going validation in an hospital context.
               Institut Mines-Télécom
■ Projet ACI-Ville: MEDIVILLE (2001-03)

■ 3 Projets RNTS et ANR-TecSan:
   ● TelePat (2004-06): Televigilance médicale
   ● Tandem (2005-09): Thérapie cognitive et sécurité à domicile
   ● QuoVadis (2008-10): Sécurité multimodale (capteurs sur la
     personne, domotiques et robot)

■ 2 Projets de coopération internationale (échanges):
   ● SAFETI-IE4IL (2007-10) : France Afrique du Sud
   ● Brancusi (2009-11) : France et Roumanie

■ Projet IST-FP7 CompanionAble: Combination of the Smart
  home and the Robot-Compagnon (2008-11)

             Institut Mines-Télécom
Perspectives à moyen-/long-terme s’inscrivant dans
         les TIC Santé et la stratégie de Telecom SudParis

■ Télévigilance Médicale appelée à faire partie d’applications
    plus générales comme la domotique et l’assistance robotique
    déjà appelées à se combiner
     => RobotCompanion dialoguant avec son maitre (le patient) mais
       aussi veillant à son confort et sa sécurité grâce à une
       communication généralisée entre capteurs et modalités de tout
       type
■   Combinaison/ Fusion/ Adaptation des données/ paramètres
    domotique/ patient par des approches de type Fusion/ Fouille
    de données et Context Awareness adaptation
     => Intelligence Ambiante et Nomade
■   Axes de recherche importants pour TSP et IT sur l’application
    des TIC, des capteurs et de l’informatique réseau à la Santé
     => engendre des projets transversaux intra- et inter-écoles faisant
       appel à des compétences variées et très techniques

              Institut Mines-Télécom
Intermedia                              3/..

  Perceiving and rendering users
         in a 3D interaction

                            P. Horain

   Institut Mines-Télécom
3D body motion capture
by real-time computer vision

■ Motion capture by computer vision
■ Real-time remote virtual rendering

                                                  MPEG 4 /BAP
                             3D/2D registration

    Institut Mines-Télécom
Gesture statistical modeling

Conversational gesture generated with
the Greta software with varying expressivity

                    Institut Mines-Télécom
Statistical gesture models
for 3D motion capture and rendering

Rendering motion parameters
  that cannot be captured

                              WITHOUT gesture model

          Hands !

                                WITH gesture model

   Institut Mines-Télécom
GPUCV: GPU acceleration for
Computational Vision

→ http://picoforge.int-evry.fr/projects/gpucv

    Institut Mines-Télécom
Paris                        MobileMii

Evry                                Platform for the
                                Development of Nomadic
          Saclay                       Services

       Institut Mines-Télécom
Multi scale and nomadic Services
        Joint platfom partnership
          • CEA LIST
          • Institut Telecom / Telecom SudParis
        Supporting partners
          • Academics, end users, industry, clusters (pôle de compétitivité)
        MobileMii
          • A technology research and development Project
          • An infrastructure including an apartment located on the Saclay Campus
        Objective and concept :
          • Provide prevention, comfort and awareness services to people
          • Provide seamless services in the apartment, on the campus and beyond
          • Develop hardware and software modules for different applications in relation to the
             apartment, the building, the campus

        Applications
          • Security
          • Education
          • Energy
          • Transportation
          • Health

42                     Institut Mines-Télécom                                                     12
MobileMii:
                 MobileMiiInfrastructure
                            : Infrastructure

             MobileMii – Saclay:
     •A 250m2 modular architecture
     •A showroom
     •Several technical labs for development and
     assessments                                       Saclay Campus
     •Situated inside Nano-INNOV building          sensors distributed over the
                                                            campus

43                      Institut Mines-Télécom                                    12
Functionalities being studied
                       to build services

                                 Sensors /Embedded signal                 People localization
            Vision
                                 processing                               Gesture recognition
                                                                          Emotion understanding                  Equipe
            Biometrics for people                                         Gait Analysis                          INTERMEDIA
            identification                           Data Fusion

     Equipe                                                        Context awareness
     Navigation       Geolocalization                              • Automatic learning
                                                                   •Ontology                                Équipe Simbad
                                                                   •Fusion of heterogeneous sensor
                                                                   information

                  Sensorial Man Machine
                  Interface: MMI                                                                                         Equipe
                                                                                                     Middleware          Marge
                                                                                                                   Equipe	
  S3	
  
        Communication                                                 Environmental
           •Sensor network and communication between sensors          equipments
             •Management of communication between people              • Acquisition and Monitoring
                 •Coverage of mobility communications                 (Heat, Air conditioning, intrusion,
                                                                      fire)

44                          Institut Mines-Télécom                                                                          12
Scenarios, Applicative domains
     ■   Televigilance: surveillance of dependent people at home
           ● Sensor and data
                  − Actimetry (accelerometer, gyroscope ...)
                  − Monitoring vital signals (heart ...)
           ● Objectives
                  − Preventing crisis situations (falls, respiratory, cardiac problems)
                  − Detection of crisis situations (falls, respiratory, cardiac problems)
                  − Detection of abnormal behaviors (eg Alzheimer's, stress, lack of food, deshydration)
     ■   Monitoring the activities of daily living
           ● Televigilance without embedded sensors (camera, sound ...)
           ● At home or at work
           ● Detection of risk situations
     ■   Security and Global Monitoring of public places
           ● Detection of abnormal behavior
           ● Detection of risk situations
           ● Identification of persons (Biometrics)
     ■   Intelligent Energy
           ● In a house
                  − Managing the various sources of energy (production and storage)
                  − Conserving energy (heating) based on the presence of people
                  − Managing peak periods: subscription and especially under-exploitation of global network
           ● In a public / place to live / working place/ building
                  − User-based energy saving: lights, computers, appliances
     ■   Home Automation
                  − Home or workplace, monitoring of blinds, lights, temperature …
     ■   Media Room
           ● New GUI (via tactile sensors)

45                           Institut Mines-Télécom                                                           12
You can also read