LISA Science - Neil J. Cornish Montana State University - IN2P3
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Outline • LISA science then and now • The science landscape in 2034 • What’s new in LISA science • Triple systems • Multi-band observations • New candidates for EM counterparts • The LISA analysis challenge
You win some, you lose some 1e-17 1e-18 Sn1/2 [Hz-1/2] 1e-19 LISA 2017 1e-20 0.0001 0.001 0.01 0.1 1 f [Hz]
Classic LISA Science Case • Massive (10 - 10 5 7 M ) Black Hole mergers to high z as tracers of BH-galaxy co-evolution • Extreme Mass Ratio Inspirals (EMRIs) for tests of GR and as probes of galactic cusps • Galactic binaries for stellar evolution and galactic structure • Stochastic backgrounds from early Universe
LISA Laser Interferometer Space Antenna for the detection and observation of gravitational waves An international project in the field of Fundamental Physics in Space Pre-Phase A Report Second Edition July 1998 MPQ 233 July 1998
LIGO/Virgo BHs LISA BHs • Tens of solar masses • Millions of solar masses • Equal mass • Highly un-equal mass • Low spin • High + Low spins • Zero eccentricity • Significant eccentricity • Low redshift • High redshift
Astrophysics in the 2034 Post JWST Post WFIRST Post Athena Post aLIGO+ Post IPTA • Assembly and growth of first galaxies observed by JWST • Expansion history & distance scale to better than 1% from WFIRST • High SNR (100+) gravitational wave signals detected by LIGO/Virgo • 100’s of EM counterparts to LIGO/Virgo sources detected • Athena will have detected many IMBHs • Supermassive Black Holes observed to high redshift (z~8) by Athena • Gravitational waves from supermassive black hole binaries discovered by IPTA
Astrophysics in the 2034 Post EELT Post GAIA Post LSST Post GRAVITY Post SKA • EELT will observe first stars in Universe and early black holes • Census of IMBH masses from stellar velocities in clusters from EELT • GAIA catalog will include several hundred short period eclipsing WD binaries • SKA will have discovered pulsars at the galactic center giving insight into EMRI rates • LSST will detect 100’s of SMBH stellar tidal disruption events per year and give insight into EMRI populations • GRAVITY and its successors will have found stars with < year orbits around Sgr A* yielding insight into EMRI rates
Growing LISA Science Case • Classic LISA science case + • Triple systems everywhere • Prompt and pre-cursor EM counterparts • 2 4 Intermediate mass black holes (10 -10 M ) • Multi-band observations (LISA + Ground) • IMRIs (mass ratios 100-1000) • EMRI resonances • WD resonances, detonations • Unmodeled Bursts
Guaranteed Sources: Galactic Binaries 20 min orbital period
LISA galaxy catalog over time
LISA galaxy catalog over time
LISA galaxy catalog over time
LISA galaxy catalog over time
LISA galaxy catalog over time
LISA galaxy catalog over time
LISA galaxy catalog over time
LISA galaxy catalog over time 10000 1 Year # White Dwarfs 1000 1 Month 1 Week 100 1e+06 1e+07 1e+08 t (s)
EM Counterparts: Galactic Verification Binaries 11 currently known Gaia: 15-25 more LSST: 50-75 more [Korol et al, MNRAS, 470 (2017)] [Littenberg et al, arXiv:1903.05583] [Kupfer et al, MNRAS, 480 (2018)]
New, loud verification binaries SDSS J0651+2844 [Brown et al. 2011] WD0931+444 [Kilic et al. 2014] SDSS J104336.275+055149.90 [Brown et al. 2017] 12 minute eclipsing WD-WD binary 20 minute detached WD-WD binary 46 minute detached WD-WD binary m1 = 0.26 M , m2 = 0.50 M AAACF3icbVDLSgMxFM3UV62vqks3wSK4KMNMfYIUim7cCBXsAzrDkMmkbWgyGZKMUEr/wo2/4saFIm5159+YPha19cCFwzn3cu89YcKo0o7zY2WWlldW17LruY3Nre2d/O5eXYlUYlLDggnZDJEijMakpqlmpJlIgnjISCPs3Yz8xiORior4QfcT4nPUiWmbYqSNFORtHriwDB27dA69K3gXeCISugi9IuRBCZYd+8yZMYJ8wbGdMeAicaekAKaoBvlvLxI45STWmCGlWq6TaH+ApKaYkWHOSxVJEO6hDmkZGiNOlD8Y/zWER0aJYFtIU7GGY3V2YoC4Un0emk6OdFfNeyPxP6+V6valP6BxkmoS48midsqgFnAUEoyoJFizviEIS2puhbiLJMLaRJkzIbjzLy+Sesl2T+zS/Wmhcj2NIwsOwCE4Bi64ABVwC6qgBjB4Ai/gDbxbz9ar9WF9Tloz1nRmH/yB9fULKISa9w== m1 = 0.32M , m2 0.14M m1 = 0.183 M , m2 > 0.07 M AAACGXicbVDLSgMxFM34rPU16tJNsAguSplphRZEKbpxI1SwD+gMQyZN29BkMiQZoQz9DTf+ihsXirjUlX9j+ljU1gMXDufcy733hDGjSjvOj7Wyura+sZnZym7v7O7t2weHDSUSiUkdCyZkK0SKMBqRuqaakVYsCeIhI81wcDP2m49EKiqiBz2Mic9RL6JdipE2UmA7PHDhJXQKbqUEvQt4F3iiI3QeennIgyK8MpZTnnMCO2eUCeAycWckB2aoBfaX1xE44STSmCGl2q4Taz9FUlPMyCjrJYrECA9Qj7QNjRAnyk8nn43gqVE6sCukqUjDiTo/kSKu1JCHppMj3VeL3lj8z2snulvxUxrFiSYRni7qJgxqAccxwQ6VBGs2NARhSc2tEPeRRFibMLMmBHfx5WXSKBbcUqF4f56rXs/iyIBjcALOgAvKoApuQQ3UAQZP4AW8gXfr2Xq1PqzPaeuKNZs5An9gff8CCxSbYg== DL = 660 kpc AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXJWZKlUQoagLFy4q2Ad0hiGTpm1okhmSjFDGLvwVNy4UcetvuPNvTNtZaOuBC4dz7uXee8KYUaUd59vKLSwuLa/kVwtr6xubW/b2TkNFicSkjiMWyVaIFGFUkLqmmpFWLAniISPNcHA19psPRCoaiXs9jInPUU/QLsVIGymw966DW3gBKxUHeucw9SSHgxiPArvolJwJ4DxxM1IEGWqB/eV1IpxwIjRmSKm268TaT5HUFDMyKniJIjHCA9QjbUMF4kT56eT+ETw0Sgd2I2lKaDhRf0+kiCs15KHp5Ej31aw3Fv/z2onunvkpFXGiicDTRd2EQR3BcRiwQyXBmg0NQVhScyvEfSQR1iayggnBnX15njTKJfe4VL47KVYvszjyYB8cgCPgglNQBTegBuoAg0fwDF7Bm/VkvVjv1se0NWdlM7vgD6zPH6+ek/s= DL = 580 kpc AAAB/3icbVDLSgMxFM3UV62vUcGNm2ARXJWZqlgQoagLFy4q2Ad0hiGTpm1okhmSjFDGLvwVNy4UcetvuPNvTNtZaOuBC4dz7uXee8KYUaUd59vKLSwuLa/kVwtr6xubW/b2TkNFicSkjiMWyVaIFGFUkLqmmpFWLAniISPNcHA19psPRCoaiXs9jInPUU/QLsVIGymw966DW3gBTysO9M5h6kkOBzEeBXbRKTkTwHniZqQIMtQC+8vrRDjhRGjMkFJt14m1nyKpKWZkVPASRWKEB6hH2oYKxIny08n9I3holA7sRtKU0HCi/p5IEVdqyEPTyZHuq1lvLP7ntRPdrfgpFXGiicDTRd2EQR3BcRiwQyXBmg0NQVhScyvEfSQR1iayggnBnX15njTKJfe4VL47KVYvszjyYB8cgCPggjNQBTegBuoAg0fwDF7Bm/VkvVjv1se0NWdlM7vgD6zPH7Evk/w= fGW = 2.61 mHz AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUiqqCBC0YVdVrAPaEKYTCft0JkkzEyEGgJu/BU3LhRx60+482+cPhbaeuDC4Zx7ufeeIGFUKtv+NgoLi0vLK8XV0tr6xuaWub3TlHEqMGngmMWiHSBJGI1IQ1HFSDsRBPGAkVYwuB75rXsiJI2jOzVMiMdRL6IhxUhpyTf3Qj+7aeXwElasUwe6FzBzBYe89pD7Ztm27DHgPHGmpAymqPvml9uNccpJpDBDUnYcO1FehoSimJG85KaSJAgPUI90NI0QJ9LLxj/k8FArXRjGQlek4Fj9PZEhLuWQB7qTI9WXs95I/M/rpCo89zIaJakiEZ4sClMGVQxHgcAuFQQrNtQEYUH1rRD3kUBY6dhKOgRn9uV50qxYzrFVuT0pV6+mcRTBPjgAR8ABZ6AKaqAOGgCDR/AMXsGb8WS8GO/Gx6S1YExndsEfGJ8/u/KVqw== fGW = 1.68 mHz fGW = 0.73 mHz AAACA3icbVBNS8NAEN3Ur1q/ot70slgETyFphQoiFD3YYwXbCk0Im+2mXbqbhN2NUEPBi3/FiwdFvPonvPlv3LY5aOuDgcd7M8zMCxJGpbLtb6OwtLyyulZcL21sbm3vmLt7bRmnApMWjlks7gIkCaMRaSmqGLlLBEE8YKQTDK8mfueeCEnj6FaNEuJx1I9oSDFSWvLNg9DPrjtjeAFtq1aF7jnMXMEhbzyMfbNsW/YUcJE4OSmDHE3f/HJ7MU45iRRmSMquYyfKy5BQFDMyLrmpJAnCQ9QnXU0jxIn0sukPY3islR4MY6ErUnCq/p7IEJdyxAPdyZEayHlvIv7ndVMVnnkZjZJUkQjPFoUpgyqGk0BgjwqCFRtpgrCg+laIB0ggrHRsJR2CM//yImlXLKdqVW5Oy/XLPI4iOARH4AQ4oAbqoAGaoAUweATP4BW8GU/Gi/FufMxaC0Y+sw/+wPj8Ab1+law=
Orion’s Belt Triple Mintaka Galactic Triples Quintuple Triple
Galactic Triples 96% of low mass binaries with periods shorter than 3 days are in triple or quadruple systems 3-body effects (Lidov-Kozai) can accelerate the hardening of the inner binary producing LISA sources With LISA, systems with outer orbital period out to 100 years are detectable [Robson, Cornish, Tamanini, Toonen, Phys.Rev. D98 (2018)]
A new solution to the Last Parsec Problem [Bonetti, Sesana, Barausse & Haardt MNRAS, 477 (2018)]
Black Hole Triples Massive BH + Stellar mass binary [Meiron, Kocsis & Loeb, ApJ, 834 (2017)] Massive BH triples [Inayoshi, Tamanini, Caprini & Haiman, PRD, 96 (2017)] Stellar mass BH triples Typically have large orbital eccentricities [Inayoshi, Tamanini, Caprini & Haiman, PRD, 96 (2017)] [Randall & Xianyu, arXiv:1805.05335] [Hoffman & Loeb, MNRAS, 377 (2007)] [Bonetti, Haardt, Sesana & Barausse, MNRAS, 461 (2016)]
Electromagnetic Counterparts to SMBHBs Significant pre and post merger EM counterparts to SMBHBs [Farris et al. 2015]
Electromagnetic Counterparts to SMBHBs Transient Astrophysics Probe (TAP) [Dal Canton et al, arXiv:arXiv:1902.01538] Few to dozens of pre-merger LISA counterparts
Multi-Band Observations [Amaro-Seoane & Santamaria 2010] [Sesana 2016] Can study stellar mass binary formation channels (eccentricity, spin precession) Powerful tests of general relativity Ground based detections can be used to find more LISA signals [Review: Cutler et al, arXiv:1903.04069 ]
EMRI orbital resonances • Each EMRI in LISA band passes through several resonances • Jump in the frequency and phasing a challenge for detection algorithms • Potential to improve parameter estimation and provide ultra-stringent GR tests [Brink, Geyer, Hinderer 13] [Ruangsri, Hughes 13]
The LISA analysis challenge Millions of overlapping signals Many complex signals with many harmonics Noise non-stationary on timescale of signals Frequent data gaps and disturbances No second detector to veto noise transients
https://lisa-ldc.lal.in2p3.fr
Exotic Sources Imagined Topological defects Pre-heating/Re-heating Warped extra dimensions Phase transitions- bubble nucleation, Braneworlds cavitation, collisions Un-Imagined Burst sources?
Detecting Un-modeled Signals Z X Y } 3 A S+ = X 2 Sensitive to GWs and glitches 1 E S = (X + 2Y ) 2 1 T S = (X + Y + Z) 3 } Insensitive to GWs, Sensitive to Glitches
LISA Sensitivity - T channel as noise monitor Two decades of attenuation Key to detecting a stochastic background [Prince et al, Phys. Rev. D66 (2002)] [Tinto, Armstrong & Estabrook, Phys.Rev.D63 (2001)] [Hogan & Bender, Phys. Rev. D64 (2001)] [Adams & Cornish, Phys. Rev. D86 (2010)]
Detecting Un-modelled signals
Detecting Un-modelled signals
Separating Burst Signals from Noise Noise delays L t=n c Signal delays L k̂ · L t=n + c c
Separating Burst Signals from Noise A E T 108 21 22 22 ⇥10 ⇥10 ⇥10 1.00 op 6 2 0.75 Case 1 12 0.50 4 Burst ac 7 BB,P M 12 AET 0.25 2 1 21 10 0.00 0 0 BB,AC21 AET 106 BB,P M 12 X 0.25 2 0.50 4 1 0.75 1.00 6 2 105 BB,AC21 X 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 t [hrs] t [hrs] t [hrs] 104 21 21 21 ⇥10 ⇥10 ⇥10 1.5 1.5 1.5 B 1.0 Case 2 1.0 1.0 0.5 0.5 0.5 103 0.0 0.0 0.0 Very Strong: > 150 0.5 0.5 0.5 102 Strong: 20 150 1.0 1.0 1.0 1.5 1.5 1.5 101 Positive: 3 20 2.265 2.270 2.275 2.280 2.285 2.290 2.295 2.265 2.270 2.275 2.280 2.285 2.290 2.295 2.265 2.270 2.275 2.280 2.285 2.290 2.295 t [hrs] t [hrs] t [hrs] 6 ⇥10 22 6 ⇥10 22 6 ⇥10 22 100 Case 3 4 4 4 2 2 2 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0 0 0 ⇢ 2 2 2 4 4 4 With all three channels we can detect very low SNR burst signals 6 6 6 2.265 2.270 2.275 2.280 2.285 2.290 2.265 2.270 2.275 2.280 2.285 2.290 2.265 2.270 2.275 2.280 2.285 2.290 t [hrs] t [hrs] t [hrs] [Robson & Cornish, PRD 99 (2019)]
Growing LISA Science Case • Classic LISA science case + • Triple systems everywhere • Prompt and pre-cursor EM counterparts • 2 4 Intermediate mass black holes (10 -10 M ) • Multi-band observations (LISA + Ground) • IMRIs (mass ratios 100-1000) • EMRI resonances • WD resonances, detonations • Unmodeled Bursts
You can also read