Linear Frequency Domain Method for Aerodynamic Applications - ECCOMAS 11 - January 2021, Paris - DLR
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
1 ECCOMAS 11. - 15. January 2021, Paris Linear Frequency Domain Method for Aerodynamic Applications M. Widhalm, P. Bekemeyer, R. B. Seidler, S. Marten Institute of Aerodynamics and Flow Technology Braunschweig, Germany
2 Flight Derivatives of Unsteady air loads Dynamic Motivation Analysis Air load derivatives in form of Integral values Surface distributions Aeroelasti many city more, … Used as input for many applications Rigid/Flexible a/c Extend flight envelope Stability & Actuation Excitation signals Control Damped harmonic oscillation Gust response (1-cos) Pulse Remain compressibility and viscosity Input Signal DLM(VLM) - URANS - Frequency periodic/a-periodic Domain Method s
3 Linear Frequency Domain Solver (LFD) Numerical approach Small perturbation approach, periodic motion, harmonic response W … conservative flow state vector AAAES3icjVPdbtMwFE7XDUYZbINLbiwqUCdBlZRVTAKkSfSCy4HWdVJTKsd2OmvOj+zTLZXlR+A1eBsegOfgDnGBnUaMtBPCUqLj8/3kS3wS5YIr8P3vjY3m5tadu9v3Wvd3Hjzc3dt/dKayuSRsSDKRyfMIKyZ4yobAQbDzXDKcRIKNosv3Dh9dMal4lp7CImeTBM9SHnOCwbame19HHThAL1GYWZYz0SOD3qHwmlMGXFC3d4znIc5zmRUoBFaA/sSwMJ2SdYHBadhnza1LwmYYgTlohWGrqKwjLHVRui4di384Ordi3W261/a7frnQehFURdur1sl0f+NLSDMyT1gKRGClxoGfw0RjCZwIZlrhXLEck0s8Y2NbpjhhaqLLD2rQM9uhKM6kvVJAZfdvhcaJUosksswEw4VaxVzzVsx1IMuEqgegVzxXVYRimaEmU3yecihWUkN8NNE8zefAUrIMHc8Fggy5k0aUS0ZALGyBieT2vRG5wBITsPPQClN2TbIkwSnVIeWx0aELJxNNjamjgxtsYLE6CLSghRn3JjqMrXfphdqBqYreqhnQGwH9L8Xp6hMGS/bgFu4qNXfnjcVS8GezLlvLpADVxbVGaUBZbP+X8rS0YngmGUuNlrPIaL8bHL2w89nvu/urQ+MGOFgd1/XirNcN+l3/42H7uFeN8rb3xHvqdbzAe+0dex+8E2/okcZOo9d403jb/Nb80fzZ/LWkbjQqzWOvtja3fgONsG7j W (t) f (t) ⇡ Real(W W =W c ei!t ) x(t) x̄ = x̃(t) ⇡ Real(x̂ei!t ) x … grid-node vector Semi-discrete URANS (Spalart-Allmaras one equation turbulence model) M … mass (cell volume) matrix d(M(x)W ) AAAG7HiclVRdaxNBFJ1WG2v8avXRl8FQSGgMu0FR0UrBPPgiVLFJIRvKZHY2GTr74cxsumXZHyH4Jr4K/gJf9Wf4b7z7kba7WUUXAnfuPefMnDuTOw0EV9owfq2tX7m60bi2eb154+at23e2tu8OlR9Kyg6pL3x5NCWKCe6xQ821YEeBZMSdCjaanrxK66MFk4r73nt9FrCJS2YedzglGlLHW7uWtiM7ittv2lFn1ElineBd/A63R10cdbFl+zqOkg7ew0bzeKtl9Izsw6uBWQQtVHwHx9sb30CAhi7zNBVEqbFpBHoSE6k5FSxpWqFiAaEnZMbGEHrEZWoSZ64SvAMZGzu+hJ+ncZa9zIiJq9SZOwWkS/RcVWtpsq42DrXzdBJzLwg182i+kRMKrH2ctgjbXDKqxRkEhEoOZ8V0TiShGhpZ2iXV1r4vVNLE1Xyg3aicHitKBLP3es+MSTxnYsF0hUfhWjmTkMWWx06p77rEs2PL5k4SW6mqdGM7WakPLtcHUC9VHc6EnYzNSQ6ZTuOWmYBtLNmHELwqDN1Ke6zKvABIfSA5YB1W6a0RAdSLuF/dSpcocGyc4bNgBaxK4MESPFiCy+gF3ElmonDhZC6qqOw1/8cZqvDCGb5ss46WsswqywrmxNO+m52spLVC/zs/WqE3d9rp6yESB9K3Q6q7+MXLh56vs/9xpa8ATFG5L8EcbQnizQQDqW6rjy3JZ3NtySxXvZOCu8jJy2XW/sJWFkFH4AVxj4rQhgeUXg78UYmU/qmqVxzWKOoLSZ1rNndyqXOfq4+gbK0NprClOUwOfO6tk9TTClfL5R9c4X+xtdQY1kjW2ZpJYnOYg10ss0tjXRgvMJlnkOOsrD1Iwfn70CzSyomzhNVtmdbzirUBqJSg6boeCRuXkOl6iUyHu1kd5avBsN8zH/eMt49a+/1izG+i++gBaiMTPUH76DU6QIeIoo/oO/qBfja8xqfG58aXHLq+VnDuodLX+Pob8mByeA== + R(W, x, ẋ) = 0 dt R … spatially discretised residual Consistent linearisation - complex-valued linear system of equations ✓ ◆ ∂R b ∂R ∂R ∂M AAAHqXiclVTbbhMxEN0AJSXcCjzyYhFVKmqoshEIEBQVkQdeigqiF5ENleP1JhbeS+3ZNtVq+R8+iT/gMxh7N013ExCsFMken3PGxzOZUSKFhm73Z+PK1Wsr15urN1o3b92+c3ft3v0DHaeK8X0Wy1gdjajmUkR8HwRIfpQoTsOR5Iejb+/M+eEpV1rE0Wc4T/gwpONIBIJRwNDx2i9P8gAGRHhxyMf0a+ZpoConXowsI5rt5mSTeP7Un2af8uwQj5QYT2BIvDPh8wkFE9smT0ih1Jpjp4a5IGxQG3OQ58eAyJyYLBdJTRqL2LUyRcrH89QmrYmfpNQvo1Sp+KyMZG/z2vVGx2vt7lbXfmRx4ZaLtlN+e8f3Vn7g3Vga8giYpFoP3G4Cw4wqEEzyvOWlmieUfaNjPsBlREOuh5ktSU7WMeKTIFb4i4DY6GVGRkOtz8MRIkMKE10/M8FlZ4MUghfDTERJCjxiRaIglQRiYupLfKE4A3mOC8qUwLsSNqGKMsAuqGQx2hDHUudYs1o8gXBaDQ80o5L721svu8NswuUphxqPYU8KrjBKvIifsTgMaeRjgUWAZTaqKsz8fOG8f/m8j+eV00Bw6ecDd1hARqOs7WK3rBPFT1L0qgm+lnljXeUlSOohKUDruDNVoxKp83WvngoqFLw2sXi7WADrCrg/A/dn4Cr6FGtiTZQuAuuijgLT8v9xhzq8dEYu21xGMyy3zvKSCY0gDu3NKloL9L/zpwv01vqG6R6qSKJiP2XQIa/fPIlisEOo9q4INKjClxkWnqTRWHKU6rR75Z/dUzZWr0nJPS3Is619/tKWXeGLYAeJiMnUxwYyxcE/qh0gerniwRJFmEtCodlaL6QufC42QdXaBpoiHgicHOTC2+N8Oa10Ndv+wRX5F1szjYMlkstsjRX1Bc7BDlG2aLyD4wVn9Rhjgle1+wZc9AfwKeggswGv03a9VzVrfVSpQM1+ORITV5BmP0O2cLi79VG+uDjobbnPtrofn7Z3euWYX3UeOo+cDcd1njs7zntnz9l3WONDAxp543tzs/mxedT8UkCvNErOA6fyNdlvoPe6fg== iw ? M + W= + iw ? +W x̂ ! b =b AW ∂W ∂x ∂ ẋ ∂x Solution scheme: Direct solver, ILU-preconditioner, Krylov-GMRes
4 Input for Aeroelasticity Analysis Complex-valued Surface Distributions LANN CT9 - transonic/partly separated flow M = 0.82, Re = 7.3x106, α = 2.6°, red. f = ω* = 0.2 Harmonic pitch oscillations, α(t) = α0 sin(ω t) LFD/URANS - Experiments, y/b = 0.2 LFD LFD -25 URANS, amp=0.01 -25 URANS, amp=0.01 URANS, amp=0.25 URANS, amp=0.25 -20 EXP, upper side -20 EXP, upper side EXP, lower side EXP, lower side -15 -15 -10 -10 Re Cp -5 Im Cp -5 0 0 5 5 10 10 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x/c x/c
5 Stability & Control Steady-state static and dynamic Derivatives DLR-F12 wind tunnel experiment U = 70 m/s, Re = 1.28x106, α = 0° 0 Clβ 2.5 Cnβ 0 CYβ Sinusoidal, f = 3 Hz, ω* = 0.068 Exp., DNW-NWB LFD, yaw -0.5 2 -0.2 FD RANS, yaw Pitch - Roll/Yaw -1 1.5 -0.4 -1.5 1 -0.6 -2 0.5 -0.8 -2.5 0 -1 -1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7 α [deg] α [deg] α [deg] Clr - Clβ. Cnr - Cnβ. CYr - CYβ. 8 2 5 7 0 4 6 Exp., DNW-NWB -2 LFD, yaw 3 5 URANS, yaw 4 -4 2 3 -6 1 2 -8 0 1 -10 -1 0 -1 -12 -2 -1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7 α [deg] α [deg] α [deg]
6 Stability & Control Flight dynamic stability DLR-F12 wind tunnel experiment U = 70 m/s, Re = 1.28x106, α = 0° Longitudinal and lateral/directional aircraft modes Comparison between Vortex-Lattice (VLM) and LFD method obtained aircraft modes VLM Inviscid + incompressible LFD Viscous + compressible
7 Stability & Control Control surface derivatives Fowler and a plain flap M = 0.18, Re = 20x106, α = 0° Deflection of the flap is implemented as a deformation in the mesh for the LFD-Solver Frequencies from 0 to 40 Hz Lead Magnitude describes the Control derivative of the flap Lag Phase shift describes the Time Lead Increased and Lag of the flap efficiency LFD gives full frequency response and Reduced allows the computation for arbitrary efficiency flap deflections in the time domain Frequency response of the aileron
8 Stability & Control Control surface derivatives Arbitrary flap deflections M = 0.2, Re = 25x106, α = 2° A-periodic predefined flap motion - black Different time scales t = 5 s, t = 0.5 s, t = 0.1 s Steady/Unsteady effects Linear combination of n times LFD(f) solutions Good agreement in terms of accuracy even for strong unsteady aerodynamic effects in the flow
9 A-periodic signals - Gust XRF1 Gust Response simulations Results over reduced frequency range Transonic flow conditions featuring a shock Lift and pitching moment coefficient
10 A-periodic signals - Gust XRF1 Gust Response simulations Complex surface pressure distributions for reduced frequency of 0.53 Slice for Cp
11 A-periodic signal - Actuation Constant and Sinusoidal blowing Blowing NACA4412 - single slot Static/Dynamic derivatives α [deg] U [m/s] T [K] p [Pa] Re c 0/6/12 92.6 288 101325 6.3 x 106 1 Static Dynamic
12 Application - Actuation Pulsed blowing - Pulse Train Blowing NACA4412 - single slot Time signal recovery with 15 LFD simulations for pulse train Linear combination of each single harmonic LFD simulation based on Discrete Fourier Transform (DFT) - weights LFD relies on small perturbations approach Shape is well resolved Magnitude of lift decrease is over- predicted
13 > LFD > Markus Widhalm > 2020 Conclusion Linear Frequency Domain method (LFD) - Small perturbation approach LFD provides a speed-up of about 2 orders of magnitude with the accuracy of URANS for small perturbations of motions RANS (viscosity) properties remain Good agreement of LFD results in comparison with URANS for harmonic oscillations Consistent linearisation of the Jacobians Linearization of turbulence model is a key feature Robust method, almost inherent of excitation frequency Preconditioner and Krylov-GMRes dramatically increase the robustness compared with multigridding Direct solver: Trade off between robustness and memory usage Viscosity/Turbulence Important to be included - Separation
14 > LFD > Markus Widhalm > 2020 Outlook Damped harmonic oscillator - LFD Problem reduction of complex aerodynamic system important for many unsteady applications Further applications of small disturbance RANS-based LFD method Control circuits - Frequency response functions/modulation Control surfaces - ailerons, rudder, elevator, …. Air load alleviation - Active flow control - Energy efficiency Optimisation including Stability & Control MDO - air loads (LFD - ROM) - Uncertainty quantification
You can also read