Futuri Acceleratori per la Fisica delle Particelle - Andrea Ghigo XCVIII Congresso Nazionale della Società Italiana di Fisica 18/09/12 Napoli ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Futuri Acceleratori per la Fisica delle Particelle Andrea Ghigo XCVIII Congresso Nazionale della Società Italiana di Fisica 18/09/12 Napoli Andrea Ghigo
ABSTRACT I futuri acceleratori per la fisica delle alte energie saranno realizzati da collaborazioni mondiali. In questa relazione verranno riportati i progetti di collisori più importanti in corso e sarà discusso lo stato dell'arte dell'alta energia e luminosità per gli acceleratori di adroni e leptoni. Gran parte del materiale presentato è estratto dalla recente presentazione di Caterina Biscari all’ Open symposium “European Strategy Preparatory Group”. Cracovia 10-12 Settembre 2012 ” Input also from: Frank Zimmerman, Tatsushi Nakamoto, Steinar Staples, Lenny Rivkin, Katsuya Yonehara, Wolfram Fischer, Mats Lindroos 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
In operation Colliders - 2006 In construction VEPP 4M RHIC LHC VEPP 2000 CESR-C PEP-II KEK-B TEVATRON DAFNE Tau-Charm 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
In operation Colliders - 2012 In construction VEPP 4M RHIC LHC VEPP 2000 SUPER KEK-B DAFNE Tau-Charm 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
6 10 5 10 HE-LHC 10 4 LHC HL-LHC LHeC CLIC II Energy (GeV) 3 TEVATRON 10 ILC CLIC DLEP SPPS HERA LEP II LEP3 SuperTRISTAN 2 eRHIC SuperTRISTAN 10 LEP RHIC ISR TRISTAN CESR PETRA KEK B SuperKEKB 1 SPEAR DORIS VEPPPEP IV PEP II SuperB 10 VEPP IV CEA-BP VEPP III BEPC PSSR ADONE SPEAR II BEPC II BINP C-T SLC CESR-C VEPP 2000 0 VEPP-2 DCI 10 VEPP-2M DAFNE ACO AdA VEP-1 -1 10 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 Year 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
37 10 10 36 SuperB SuperKEKB 35 10 BINP C-T HL-LHC SuperTRISTAN Luminosity (cm-2 sec -1) 34 KEK B ILC LEP3 CLIC II HE-LHC 10 PEP II CLIC DLEP LHC SuperTRISTAN eRHIC 33 10 CESR LHeC DAFNE BEPC II TEVATRON CESR-C 32 RHIC 10 HERA LEP II PEP DORIS LEP 31 PETRA TRISTAN VEPP 2000 10 BEPC VEPP IV ISR SLC 30 SPEAR II SPPS 10 SPEAR 29 10 DCI 28 10 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 Year 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
37 10 36 SuperB 10 SuperKEKB 35 10 BINP C-T SuperTRISTAN HL-LHC DLEP CLIC Luminosity (cm-2 sec -1) KEK B CLIC II HE-LHC 10 34 LEP3 ILC PEP II LHC SuperTRISTAN eRHIC 33 10 CESR LHeC DAFNE BEPC II CESR-C RHIC TEVATRON 32 10 LEP II PEP HERA DORIS LEP 31 VEPP 2000 PETRA 10 BEPC TRISTAN VEPP IV SLC ISR 30 SPEAR II SPPS 10 SPEAR 29 10 DCI 28 10 0 1 2 3 4 5 6 10 10 10 10 10 10 10 Energy (GeV) 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
CERN Large Hadron Collider Builded in the old LEP 26 km long tunnel Collide pp at 14 TeV (mini-SSC) Higgs, EW symmetry breaking, new physics up to 1 TeV 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
LHC Maximum Energy : 7 TeV Injection Energy : 450 GeV 1’700 circuits, 10’000 magnets 16 rf cavities – 500 MHz Design Luminosity 1034 cm-2·s-1 No. of bunches per proton beam 2808 No. of protons per bunch (at start) 1,15·1011 Circulating current / beam 0,54 A Stored beam energy 360 MJ Stored energy in magnets 11 GJ Radiated Power per beam (syncrotron radiation) ~ 6 KW 18/09/2012 Napoli SIF 21/07/09 Krakow - HEP- Futuri A.Ghigo 2009 acceleratori per la fisica delle particelle C.Biscari - "Accelerators R&D" 11
LHC dipoles Helium @ 1.9 K Horizontal force at 8,33 T (inner and outer layer)1,7 MN/m Composition of the superconducting alloy Ni_Ti (47Wt% Ti) Maximum current with NO resistence (1,9 K e 8,33 T) 17000 A Number de strands per cable 36 Number de Ni-Ti filaments in each strand 6500 Bending radius 2803.95 m Force on the cable: F = B * I0 * L with B = 8.33 T I0 = 12000 Ampere L = 15 m 21/07/09 Krakow - HEP 2009 12 F = 165 tons C.Biscari - "Accelerators R&D"
Evolution of Integrated Luminosity (August 16) Lpeak = 8 1033 cm-2 sec-1 Peak Luminosity 7e33 cm-2 sec-1 4th July 12/09/12 Krakow – ESG C.Biscari - "High Energy Accelerators"
LHC after 4th JULY LS2 LS3 : HL-LHC LS1 secure L ~ 1034 and INCREASE New IR reliability levelled L ~ 5 1034 ENERGY TO Aiming at L ~ 2 1034 13-14 TeV Experiment upgrades Start LIU 100-200 ftb-1/year Lower emitt 250-600 ftb-1/year + higher intensity 700 ftb-1/year 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
HL-LHC High luminosity Main objective: 3000 fb-1 in ~ 10 years Peak luminosity of 5×1034 cm-2s-1 with levelling R&D for next 10 years of LHC • high beam-beam tune shift values: value of ΔQb-b > 0.03 has been routinely reached • 25 ns instead of 50 – pile up versus lum • Emittance preservation • Electron cloud • Crab cavities option (KEK-B experience) • Magnet: debris, wear out 5.5 m • Cryogenics • R2E • Current limits • LIU • and new collimation system High gradient quads + 5.5 m short dipole 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
HE-LHC (High Energy LHC) Increasing proton energy beyond 7 TeV: (2010: study group and workshop) • reuse of the CERN infrastructure • “ease” in producing luminosity with proton circular collider • practical and technical experience gained with LHC Beam energy set by SC magnets dipole field: 16-20 T == 26 to 33 TeV in the centre of mass. 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
HE-LHC needs substantial advance in many other domains: • accelerator physics • collimation (with increased beam energy and energy density) • beam injection – strong Injector upgrade (…SPS 1 TeV) • beam dumping • handling a synchrotron radiation = 20 LHC > challenge for vacuum and cryogenics. Synchrotron radiation will also constitute a real advantage for HE-LHC design: for the first time a hadron collider will benefit of a short damping time 1-2 hours instead of 13-25 h (longitudinal and transverse respectively) of the present LHC. 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
RHIC hadron (p and ion) collider @Brookhaven creation of a liquid-like quark-gluon plasma Au-Au Collisions at low energies 2.5/4.5 GeV/u: 4 trillion kelvin: breakdown of "normal matter" Polarized p Collisions at 250 GeV 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle 19
RHIC – a High Luminosity (Polarized) Hadron Collider Heavy ions – up to 100 GeV/n Polarized protons – up to 255 GeV Recent upgrades: 3D stochastic cooling, Recent upgrades: 9 MHz RF, AGS tune Electron Beam Ion Source jumps, polarimeters Lpeak(avg) = 50(30)x1026cm-2s-1 for Au-Au Lpeak(avg) = 165(105)x1030cm-2s-1, Pavg= 52% To date: U-U, Au-Au, Cu-Au, Cu-Cu, d-Au (at 6 energies, spin physics and comparison data for (at 14 energies, full E-scan for Au-Au) A-A) Further upgrades: Further upgrades: 56 MHz SRF, low-energy cooling, p-Au Pol. source, electron lenses, p-3He
Lepton colliders
Future : e+ e- Linear colliders High gradient cavities
e+/e- Linear Colliders CLIC and ILC http://project-clic-cdr.web.cern.ch/project-CLIC- CDR/CDR_Volume1.pdf http://www.linearcollider.org/cms/
The ILC Global Design Effort* Americas Europe Asia Labs labs labs Budker ANL BARC CEA/Saclay BNL CERN IHEP FNAL CIEMAT IUAC JLAB CNRS KEK LANL STFC Daresubry Lab. RRCAT LBNL DESY Tsinghua Univ. ESRF LLNL VECC GSI SLAC INFN TRIUMF JINR Universities/Institutes LAL-Orsay Hiroshima Univ. Universities/Institutes PSI KNU Colorado Univ. Nagoya Univ. Universities/Institutes Cornell Abertay Univ. Lancaster Univ. PAL FSU Berlin HU LAPP-Annecy TIFR Iowa Univ. Birmingham Univ. Legnaro Tohoku Univ. MSU Cambridge Univ. Liverpool Univ. Tokyo Univ. Notre Dame Univ. Dundee Univ. Manchester Univ. Univ. Delhi Durham Mannheim IFIC Oxford Univ. IPJ RHUL 3 Regions IPN-Orsay IPPP Durham Rostock Krakow 16 Countries 76 Institutes
The CLIC/CTF3 collaboration 24 collaborating institutes Oslo University JASRI (Japan) Ankara University (Turkey) IRFU/Saclay (France) PSI (Switzerland), JINR (Russia) Berlin Tech. Univ. (Germany) Helsinki Institute of Physics (Finland) Polytech. University of Catalonia (Spain) JLAB (USA) BINP (Russia) IAP (Russia) RAL (England) KEK (Japan) CERN IAP NASU (Ukraine) RRCAT-Indore (India) LAL/Orsay (France) CIEMAT (Spain) Instituto de Fisica Corpuscular Royal Holloway, Univ. London, (UK) LAPP/ESIA (France) Finnish Industry (Finland) (Spain) 21/07/09 Krakow LLBL/LBL - HEP 2009 SLAC (USA) (USA) Gazi Universities (Turkey) INFN / LNF (Italy) NCP (Pakistan) Svedberg Laboratory (Sweden) 25 C.Biscari - "Accelerators R&D" Uppsala University (Sweden) J.Adams Institute, (UK) North-West. Univ. Illinois (USA)
CLIC ILC • Dual beam acceleration • Well extablished technology SuperConducting RF • R&D at CERN ~ 25 y technology (TESLA, FLASH, XFEL…) • Normal conducting • Decision in 2004 cavities • Rf cavities ~ TESLA like • 12 GHz, 100 MV/m • 1.3 GHz, 31.5 MV/m • Maximum energy 3 TeV • Maximum energy 1 TeV cm – Phase I at 0.5 TeV cm - Phase I at 0.5 TeV • International • GDE (Global Design collaboration around Effort) - International CTF3 collaboration • Site independent
ILC Gradient: Primary Cost Driver Linac and Civil: 75% cost • Feasibility DEMONSTRATED (2000 – 2005) • European X-FEL in construction @DESY using this technology • Challenge: deploy and industrialize technology in each region • Realistic in-kind cost models independently developed in each region • Prepare for project approval process in each region R & D objectives: 1) Transfer technology 2) Industrialization
Global SCRF Technology FNAL, ANL Cornell DESY SLAC JLAB LAL KEK, Japan Saclay INFN Milan N. Walker - ILC08 28
SRF: 1970 - 2011: • Gradient progress: – High pressure, high purity – Standardized recipe rinsing – Electron beam welding – Solvent / detergent rinse – Purification (thermal – Diagnostics conductivity) – Mechanical grinding – Chemical polishing /tumbling: surface repair Global Installed Voltage (β=1) SRF for ILC Main Linac Value ILC ?? C.M. Energy 500 GeV Beam Rep. rate 5 Hz EU-XFEL SNS, FLASH Pulse d uration 1 ms LEP-II beam current 9 mA TRISTAN, HERA, CEBAF Av. field gradient 31.5 MV/m +/- 20% HEPL # 9-cell cavities 14,560 from Hasan Padamsee – SRF2011 # cryomodules 1,680 # RF units (10 MW Kly) 560
The CLIC Layout Drive Beam Generation Complex Main Beam Generation Complex 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
CLIC Test Facility (CTF3) After delay loop linac Delay Combiner ring 150 MeV e-linac loop Thermionic source 3.5 A – 1200 ns Photo injector Experimental area 28 A - 140 ns High current, full-loaded linac operation • 95 % RF to beam efficiency measured • No instabilities
CTF3 team TBTS: Two Beam Acceleration Maximum gradient Consistency between 145 MV/m • produced power TD24 • drive beam current • test beam acceleration
CLIC energy staging Lower energy machine can run most of the time during the construction of the next stage. Physics results will determine the energies of the stages Linac 1 I.P. Linac 2 At each stage the energy can be tuned to lower values within a factor three and with limited loss on L 0.5 TeV Stage performances. Injector Complex 4 km 4 km ~14 km Linac 1 I.P. Linac 2 1-2 TeV Stage Injector Complex 7.0-14 km 7.0-14 km ~20-34 km Linac 1 3 TeV Stage I.P. Linac 2 Injector Complex 20.8 km 3 km 3 km 20.8 km 48.2 km
Layout 14 km, ~100 m deep 31 km, ~100 m deep
LC Main parameters http://clic-meeting.web.cern.ch/clic-meeting/ComparisonTable.html Center-of-mass energy ILC CLIC 500 G CLIC 3 TeV 500 GeV Nominal Nominal Total (Peak 1%) luminosity 2.0(1.5)·1034 2.3(1.4)·1034 5.9(2.0)·1034 Repetition rate (Hz) 5 50 50 Loaded accel. gradient MV/m 33.5 80 100 Main linac RF frequency GHz 1.3 (SC) 12 12 Bunch charge109 20 6.8 3.72 Bunch separation ns 176 0.5 0.5 Beam pulse duration (ns) 1000 177 156 Beam power/linac (MWatts) 10.2 4.9 14 Hor./vert. norm. emitt (10-6/10-9) 10/40 2.4 / 25 0.66/20 Hor/Vert FF focusing (mm) 20/0.4 8/0.1 4 / 0.07 Hor./vert. IP beam size (nm) 640/5.7 202/ 2.3 40 / 1.0 BDS length (km) 2.23 (1 TeV) 1.87 2.75 Total site length (km) 31 13.0 48.3 Wall plug to beam transfer eff. 9.4% 7.5% 6.8% Total power consumption MW 180 220 415
Energy frontier lepton collider Full √s is available to generate particle Compact Low synchrotron radiation Multi-pass acceleration Multi-pass collisions in ring Possible to fit a Multi-TeV CoM machine at Fermilab Small energy spread at interaction region No beamstrahlung effect δE/E ≤ 10-3 Katsuya Yonehara @ IPAC12
Project X Accelerate Hydrogen ions to 8 GeV using SRF technology. Compressor Ring Reduce size of beam (2±1 ns). Target Collisions lead to muons with energy of about 200 MeV. Muon Capture and Cooling Capture, bunch and cool muons to create a tight beam. Initial Acceleration In a dozen turns, accelerate muons to 20 GeV Recirculating Linear Accelerator In a number of turns, accelerate muons up to Multi-TeV using SRF techlnology. Collider Ring Bring positive and negative muons into collision at two locations 100 meters underground. www.fnal.gov/pub/muon_collider Katsuya Yonehara @ IPAC12
18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
Laser driven Plasma e- driven accelerators: Transform transverse fields into longitudinal fields p driven Dielectric wakefields Demonstrated accelerating Gradients up to 3 orders of magnitudes beyond presently used RF technologies. 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
Laser driven PLASMA ACCELERATORS Lasers as tools for fundamental physics (ELI 1023-25 W/cm2, ELI 4° Pillar, LIL, Russian Mega, Japanese Exawatt, IZEST) Over few cm Chirped-pulse amplification Decrease plasma Computing tools & density and computing power (PIC increase laser codes) -> prediction of power to reduce bubble regime for mono- total power energetic beams and short consumption laser pulses V. Malka 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
e- driven PLASMA ACCELERATORS Tens of GeV High brilliance, short pulse e- beams from photon facilities GeV Eacc ~ Nb / sz2 MeV Higher acceleration (longer – 50 cm) than l-d Higher final energy spread Maximum gain < 2 incoming energy.. Going to ramped bunch train, weak blowout, … 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
EURONACC: most important Technical Goals 1. External Optical injection 2. External RF injection 3. LWFA with self injection 4. Multi-stage LWFA 5. Synchrotron radiation with advanced beams 6. Electron beam driven PWFA 7. Proton beam driven PWFA Investments : 8. Betatron radiation in plasma 1 billlion Euro over 10 year horizon 9. Plasma undulator EuroNNAc : 52 institutes 10. Stability and beam quality 11. Polarized beams in plasmas 12. Positron acceleration 13. Femto-second synchronization 14. Power and efficiency 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
HIGGS Factories
HIGGS FACTORIES e+e- 250 GeV ILC 500 GeV Linear 250 GeV + Klystron based Colliders CLIC 500 GeV > 500 GeV e+ e- LEP3 at LHC tunnel Circular CERN DLEP – New tunnel, 53 km Colliders TLEP – New tunnel, 80 km 250 GeV– 40, 60 km tunnel Super 400 TRISTAN 500
HIGGS FACTORIES e+e- rough costs estimations (B$) 500 GeV: 7B$ (2007), 31 km ILC next costing end ‘12 240 Klystron based – costing not Linear Colliders ready 500 GeV : 8B$ (2012), 13 km CLIC next costing end ’12 > 500 GeV staging up to 3 TeV Costing to be defined e+ e- LEP3: 1.5B$ CERN DLEP, TLEP (40, 80 km), 3-4B$ Circular Colliders 2.7, 3.5B$ (40, 60 km), 250 GeV Super 4B$ – 60 km 400 GeV TRISTAN 5B$ – 60 km 500GeV
HIGGS FACTORIES: g-g Collider E/beam = 80 GeV + Compton Scattering LASER • laser system close to IP for Compton backscattering off the high energy electron beams • electron beam energy lower than for the e+e colliders: 80 GeV, instead of 120 • cross section for Higgs production is high (about 200 fb ) • positrons are not required. • equivalent e-e- luminosity of few 1034cm-2s-1 yielding several 10000 Higgs bosons /year. • possibility of high polarization in both the primary e− and the colliding γ beams
Comparison of possible HIGGS factories at the lowest energy: 250 GeV for e+e-, 160 GeV for g-g Reliable SITE Need First COST FUTURE Technol Ready of HIGGS Within energy - TESTS R&D Boson 50% conf. UPGRADE (today level T0) ILC 2012 Japan? X 2020 5 1 TeV CLIC - 2014 GREEN XX 2022 5 3 TeV klystrons LEP3 2012 2020 X 2024 2 250 GeV SuperTRISTAN 2012 GREEN X 2022 3 500 GeV SAPPHIRE 2016 2016 XXX 2022 ? 160 GeV New g-g 2016 GREEN XXX >2022 ? 160 GeV Muon collider 2020 GREEN XXXX 2025 ? 3 TeV 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
Luminosity frontiers Intensity frontiers Power frontiers + Energy frontiers N1 N 2 L f s xs y Dimension frontiers 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
Luminosity Frontiers in Leptons Factories Superfactories New colliding schemes for reducing beam-beam effects (limiting beam currents and increasing beam dimensions) • Operating factories Crossing scheme • BEPC II - tau ‘classical’ scheme • VEPP2000 -2 GeV round beam • DAFNE - PHI crab waist - > (SuperB) • KEKB - B crab cavity 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
BEPCII/(BESIII): upgrade of BEPC, constructed in 2004-2008. BEPCII in Beijing — A two-ring factory style machine — Provide beams to HEP & SR Luminosity @1.89GeV: 6.49×1032cm-2s-1
VEPP 2000 - round beam Ecm 1 to 2 GeV Lmax achieved 1*1031 cm-2s-1 at 1 GeV C = 24 m (highest single bunch L at this energy) 1 bunch Potentially 2*1031 cm-2s-1 at 1 GeV 1011 particles 1.6*1032 cm-2s-1 at 2 GeV 21/07/09 Krakow - HEP 2009 52 C.Biscari - "Accelerators R&D"
DAFNE – LNF - FRASCATI e+ e- E = 0.51 GeVKrakow - HEP 2009 21/07/09 53 1032- "Accelerators C.Biscari L = 4.5 cm-2 sec-1R&D"
Crab-Waist crossing scheme Collision with large F is not a new idea ….. Crab-Waist transformation is (P.Raimondi) Principle: beams more focused at IP + “large” crossing angle (LPA) + 2 sextupoles/ring to “twist” the beam waist at the IP (CW) • Lgeometric gain sextupole (anti)sextupole • synchro-betatron and x ,y *x , *y x, y x betatron resonance suppression IP y • Weak parasitic crossing 2 x no CWCW with compensation! (3D)(3D) compensation! no CW compensation! with CW compensation! Y e+ e- 2sx/ 2sz* z 2sz 2sx E. Paoloni, SuperB case
Gain in luminosity KLOE classical with apparatus solenoidal field Siddharta CRAB waist without solenoidal field Lmax =1.7 1032 cm-2 sec-1 Lmax = 4.5 1032 cm-2 sec-1 0.4 pbarn-1 / hour 1.0 pbarn-1 / hour 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
SuperB @ Tor Vergata University campus Layout Main parameters Parameter SuperB IP HER (e+) LER (e-) Main Rings Luminosity (cm-2s-1) 1036 C (m) 1200 E (GeV) 6.7 4.18 Crossing angle (mrad) 60 Piwinski angle 20.8 16.9 LER Spin Rotators I (mA) 1900 2440 ex/y (nm/pm) (with IBS) 2/5 2.5/6.2 IP sx/y (mm/nm) 7.2/36 8.9/36 FEL Hall sl (mm) 5 5 N. bunches 978 Part/bunch (x1010) 5.1 6.6 sE/E (x10-4) 6.4 7.3 bb tune shift (x/y) 0.0026/0.107 0.004/0.107 Injection & Beam losses (MeV) 2.1 0.86 RF section Total beam lifetime (s) 254 269 Polarization (%) 0 70-80 RF (MHz) 476 Linac complex 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
Contribution ID: 561 SuperKEKB collider The SuperKEKB accelerator status e+ 4GeV 3.6 A Colliding bunches Belle II New IR e- 7GeV 2.6 A New superconducting /permanent final focusing quads near the New beam pipe & bellows SuperKEKB IP Replace short dipoles with longer ones (LER) Add / modify RF systems for higher beam current Low emittance positrons to inject Positron source Damping ring Redesign the lattices of HER New positron target / & LER to squeeze the capture section emittance Low emittance gun TiN-coated beam pipe with antechambers Low emittance electrons to inject Target: L = 8x1035/cm2/s
~1 abarn-1 KEK – B : Highest luminosity ever achieved : : Lmax 2.11 1034
Luminosity Prospects 50ab-1 by ~2020 Results from Belle II @ ~10ab-1 LHC(b) Prospects of ILC… L~8x1035 cm-2s-1 10ab-1 (initial target ) ~ 2016 3year shutdown for upgrade L~2x1035 cm-2s-1 18/09/2012 Napoli SIF A.Ghigo - Futuri acceleratori per la fisica delle particelle
Timelines of HE projects 2012 2015 2020 2025 2030 2035 LHC HL-LHC HE-LHC RHIC LHeC eRHIC Higgs factory ILC ILC 0.5 TeV Higgs factory CLIC CLIC 0.5 GeV CLIC 3 GeV LEP3 SuperTristan - TLEP SAPPHiRE MUON COLLIDER LWFA LC RDR (CDR) TDR R&D Operation Construction PROPOSED APPROVED 12/09/12 Krakow – ESG C.Biscari - "High Energy Accelerators"
Thanks for your attention
You can also read