Teilchenphysik mit höchstenergetischen Beschleunigern (Higgs & Co) - Future Colliders - Indico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Teilchenphysik mit höchstenergetischen Beschleunigern (Higgs & Co) 13. Future Colliders 25.01.2015 Prof. Dr. Siegfried Bethke Dr. Frank Simon
Important: Exams If you want to take an exam in this course remember to register! The time & date for the exam is flexible (the one given in TUMOnline is a dummy date) - Send me an email to fix one! Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 2
Prelude: Particle Physics Today Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 3
The Role of Colliders • To explore the smallest constituents of matter, and the particles and interactions that governed the earliest phases of the Universe, one needs high energies • In a controlled laboratory setting, such energies can only be reached with accelerators - and the highest energies are reached in colliding beam configurations • Progress in particle physics has been closely linked with progress in accelerator (and detector) technologies - Advances in energy have brought the discovery of new particles Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 4
The Role of Colliders • To explore the smallest constituents of matter, and the particles and interactions that governed the earliest phases of the Universe, one needs high energies • In a controlled laboratory setting, such energies can only be reached with accelerators - and the highest energies are reached in colliding beam configurations • Progress in particle physics has been closely linked with progress in accelerator (and detector) technologies - Advances in energy have brought the discovery of new particles The current state of the art marks the “Energy Frontier” Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 4
The Standard Model - A Collider Success Story • The “Standard Model” is a result of generations of accelerators, and the interplay of experiment and theory - it provides testable predictions c: SPEAR/AGS 1974 ✔ b: Fermilab 1977 ✔ t: Tevatron 1995 ✔ g: PETRA 1979 ✔ W, Z: SppS 1983 ✔ τ: SPEAR 1975 ✔ (ντ: Fermilab 2000 ✔) H: LHC 2012 ✔ Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 5
The Standard Model - A Collider Success Story • The “Standard Model” is a result of generations of accelerators, and the interplay of experiment and theory - it provides testable predictions c: SPEAR/AGS 1974 ✔ b: Fermilab 1977 ✔ t: Tevatron 1995 ✔ g: PETRA 1979 ✔ W, Z: SppS 1983 ✔ τ: SPEAR 1975 ✔ (ντ: Fermilab 2000 ✔) H: LHC 2012 ✔ … the Standard Model was established with results from lepton and hadron colliders. Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 5
le new e+e- colliders called “particle factories” were focused on detail exploration Thelower a at much World of Colliders energies. Vladimir Shiltsev, FHEP Hong Kong, Jan. 2015 Teilchenphysik mit höchstenergetischen Beschleunigern: Frank Simon (fsimon@mpp.mpg.de) 6 Figure 2: Colliders over the decades. WS 15/16, 13: Future Colliders
le new e+e- colliders called “particle factories” were focused on detail exploration Thelower World of Colliders olliders: Glorious Past a at much energies. ? E~exp(t/5yrs) UNK ? V.Shiltsev | IAS-HKUST-2015: Future of HEP Vladimir Shiltsev, FHEP Hong Kong, Jan. 2015 Teilchenphysik mit höchstenergetischen Beschleunigern: Frank Simon (fsimon@mpp.mpg.de) 6 Figure 2: Colliders over the decades. WS 15/16, 13: Future Colliders
29 Colliders Built… 7 Work Currently Operating or Approved Colliders“Now” VEPP-2000 VEPP-4M LHC RHIC BEPC-II DAFNE KEK-B • In total 29 colliders, 7 run “now” Vladimir Shiltsev, FHEP Hong Kong, Jan. 2015 6 V.Shiltsev | IAS-HKUST-2015: Future of HEP Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 7
The “Magic” of the Terascale • Within the Standard Model, there were compelling arguments for discoveries at the “Terascale”: • Scattering of W bosons violate unitarity without the Higgs or new physics needs in addition the exchange of a scalar particle: Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 8
The “Magic” of the Terascale • Within the Standard Model, there were compelling arguments for discoveries at the “Terascale”: • Scattering of W bosons violate unitarity without the Higgs or new physics needs in addition the exchange of a scalar particle: A guarantee that something has to turn up in the TeV region - either the Higgs, or some new dynamics in WW scattering Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 8
So: What Now? • With the Higgs, the last particle of the SM has now been observed - and now? It is obvious that the SM cannot be the final answer, but there is no clear indication where things will break and what should be the next relevant energy scale - unlike the “no-loose” situation for the LHC and the Terascale Two options to move forward: Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 9
So: What Now? • With the Higgs, the last particle of the SM has now been observed - and now? It is obvious that the SM cannot be the final answer, but there is no clear indication where things will break and what should be the next relevant energy scale - unlike the “no-loose” situation for the LHC and the Terascale Two options to move forward: ➫ Maximise our knowledge based on things we already know ‣ The Higgs: Fully understand electroweak symmetry breaking and the nature of the Higgs potential ‣ The Top: Measure its properties as precisely as possible - use it as a potential window for New Physics ‣ Other electroweak precision measurements to look for cracks in the SM Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 9
So: What Now? • With the Higgs, the last particle of the SM has now been observed - and now? It is obvious that the SM cannot be the final answer, but there is no clear indication where things will break and what should be the next relevant energy scale - unlike the “no-loose” situation for the LHC and the Terascale Two options to move forward: ➫ Maximise our knowledge based on things we already know ‣ The Higgs: Fully understand electroweak symmetry breaking and the nature of the Higgs potential ‣ The Top: Measure its properties as precisely as possible - use it as a potential window for New Physics ‣ Other electroweak precision measurements to look for cracks in the SM ➫ Direct searches for New Physics - Explore higher energy scales, and regions of phase space not yet accessible to find new particles and / or evidence for new fundamental interactions and phenomena Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 9
What will we find at the Energy Frontier? • Many ideas - some have been discussed in this series: • Supersymmetry • New gauge bosons • “Exotic” phenomena - black holes, extra dimensions • Dark matter • …. All of those ideas might be wrong - and nothing is guaranteed. Remember: Fundamental research is about open exploration - with uncertain outcome. The tools in particle physics: high-energy colliders - LHC, and future machines. Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 10
Interlude: No Sign for BSM - Give up? stolen from John Ellis Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 11
Interlude: No Sign for BSM - Give up? • “The more important fundamental laws and facts of physical science have all been discovered” – Albert Michelson, 1894 stolen from John Ellis Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 11
Interlude: No Sign for BSM - Give up? • “The more important fundamental laws and facts of physical science have all been discovered” – Albert Michelson, 1894 • “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement” – Lord Kelvin, 1900 stolen from John Ellis Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 11
Interlude: No Sign for BSM - Give up? • “The more important fundamental laws and facts of physical science have all been discovered” – Albert Michelson, 1894 • “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement” – Lord Kelvin, 1900 • “Is the End in Sight for Theoretical Physics?” – Stephen Hawking, 1980 stolen from John Ellis Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 11
Interlude: No Sign for BSM - Give up? • “So many centuries after the Creation, it is unlikely that anyone could find hitherto unknown lands of any value” – Spanish Royal Commission, rejecting Christopher Columbus proposal to sail west, < 1492 • “The more important fundamental laws and facts of physical science have all been discovered” – Albert Michelson, 1894 • “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement” – Lord Kelvin, 1900 • “Is the End in Sight for Theoretical Physics?” – Stephen Hawking, 1980 stolen from John Ellis Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 11
Possible Future Facilities at the Energy Frontier Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 12
Future Facilities at the Energy Frontier - Options • Two different (complementary) approaches: • proton-proton colliders: composite particles: initial state unknown, different processes contribute wide variation of energy in reaction - most at low energy, but with some up to very high energies dominant production via strong interaction (gluons, quarks): largest cross-sections and highest sensitivity to strongly interacting particles Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 13
Future Facilities at the Energy Frontier - Options • Two different (complementary) approaches: • proton-proton colliders: composite particles: initial state unknown, different processes contribute wide variation of energy in reaction - most at low energy, but with some up to very high energies dominant production via strong interaction (gluons, quarks): largest cross-sections and highest sensitivity to strongly interacting particles • electron-positron colliders: ~ full energy available in reaction - can explore thresholds electroweak production: all particles produced with ~ equal probability - particularly sensitive to electroweak particles, which are suppressed at hadron colliders Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 13
Hadrons vs Leptons • Colliding elementary particles, electroweak “universal” production • Much more favorable ratio of signal to background p+p e+e- Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 14
Hadrons vs Leptons • Colliding elementary particles, electroweak “universal” production • Much more favorable ratio of signal to background p+p e+e- x 1010 x 100 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 14
Hadrons vs Leptons Higgs production in pp: (almost) every particle in the event originates from other reactions, only four leptons are from the Higgs decay Higgs production in e+e-: (almost) every particle in the event originates from the Higgs or the Z produced with it • At hadron colliders: Triggering is crucial - Need to pick out events based on “interesting” signatures out of 109 times higher background • In e+e- collisions: All reactions are equally probable - overall low event rates, but most are interesting - no trigger needed, all collisions are analyzed offline Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 15
Challenges: Leptons • Main challenge for circular colliders: Energy loss through synchrotron radiation • Power proportional to E4/R2 - Loss per turn ~ E4/R ‣ Very hard to compensate increasing energy by increasing radius: Linear colliders get more attractive with increasing electron energy Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 16
Challenges: Leptons • Main challenge for circular colliders: Energy loss through synchrotron radiation • Power proportional to E4/R2 - Loss per turn ~ E4/R ‣ Very +hard to compensate increasing energy by increasing radius: Linear colliders Circular e e machines - get more attractive with increasing electron energy 30 of cost [a.u.] N. Walker, N.Walker & BFB. Foster e in otons 25 C vs 20 circular um of Cost HAUL 15 EP – linear imistic 10 st. 5 cular . 0 200 400 600 800 1000 E CM HGeVL Teilchenphysik mit höchstenergetischen Beschleunigern:3 WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 16
Challenges: Leptons • Main challenge for circular colliders: Energy loss through synchrotron radiation • Power proportional to E4/R2 - Loss per turn ~ E4/R ‣ Very +hard Circular e +e- machines to compensate increasing energy by increasing radius: Linear colliders Circular e e machines - get more attractive with increasing electron energy 30 assuming 100 MW beam power of cost [a.u.] N. Walker, N.Walker & BFB. Foster e in At Beamstrahlung & otons 25 tune-shift limit, assuming 100 MW beam power: C vs 20 circular um of Cost HAUL 15 EP – linear imistic 10 st. 5 cular Telnov / Yokoya . 0 200 400 600 800 1000 E CM HGeVL (Telnov via Yokoya) Teilchenphysik mit höchstenergetischen Beschleunigern:3 WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 16
Challenges: Linear Colliders • Need high energy and high luminosity • High energy requires high acceleration gradients • High luminosity requires low emittance and very small beam size at interaction point (“nano-beams”) main linac detector main linac e- source e+ source Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 17
Challenges: Linear Colliders • Need high energy and high luminosity • High energy requires high acceleration gradients • High luminosity requires low emittance and very small beam size at interaction point (“nano-beams”) damping main linac detector main linac damping ring ring e- source RTML RTML e+ source Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 17
Challenges: Linear Colliders • Need high energy and high luminosity • High energy requires high acceleration gradients • High luminosity requires low emittance and very small beam size at interaction point (“nano-beams”) damping main linac detector main linac damping ring ring e- source RTML BDS BDS RTML e+ source Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 17
Challenges: Hadron Colliders • Main Dipole field (and radius) determines maximum energy: E ~ B x R ‣ 100 TeV requires 16 T main dipoles for a circumference of 100 km (20 T for 80 km) • 16 T seem achievable with Nb Sn e LHC dipole cross section showing details of the coil around 3 one of the two beam pipes (see drawing in better understanding). The highly packed coil demonstrates the concepts discussed in the text. An LHC • 20 T require HTS magnets - substantial additional challenge ched strand is shown in the inset. current density ofTeilchenphysik mit höchstenergetischen high field superconductors Beschleunigern: (courtesy of P. Lee, Applied Superconductivity Center of WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 18
WSPC/253-RAST : SPI-J100 1230003 Challenges: Hadron Colliders • Main Dipole field (and radius) determines maximum energy: E ~ B x R ‣ 100 TeV requires 16 T main dipoles for a circumference of 100 km (20 T for 80 km) • 16 T seem achievable with Nb Sn e LHC dipole cross section showing details of the coil around 3 one of the two beam pipes (see drawing in better understanding). The highly packed coil demonstrates the concepts discussed in the text. An LHC ched strand is shown in the inset. L. Rossi & L. Bottura • 20 T require HTS magnets - substantial additional challenge etry reproducibility, which m component of the field couraging and improving, tatistics. A cored cable is to avoid ramp rate effects low interstrand resistance, intering. The next genera- make use of a cored cable, his issue, which is also rel- e project. ll materials have to with- radiation current load — density ofTeilchenphysik high field to reach mit höchstenergetischen superconductors WS 15/16, 13: Future Colliders Beschleunigern: (courtesy of Fig. P. Lee, Applied Superconductivity Center of 34. Dipole field versus Frank Simon time(fsimon@mpp.mpg.de) 18 for the main past projects
The Landscape - Past, Present and Future Colliders Constituent Center-of-Mass Energy [GeV] Comparison of Colliders at the Energy Frontier ders CLIC olli LHC LHC n c 10 3 o ILC a dr H LHeC Tevatron HERA LEP2 rs 10 2 SppS LEP, SLC li de l Tristan − co e PETRA e+ PEP CESR KEK-B 10 ISR SuperKEKB Spear2 PEP-II Doris Spear Adone VEP-2 DAFNE 1 ACO VEP-1 -1 10 1960 1970 1980 1990 2000 2010 2020 2030 2040… Year of First Physics taken from Nick Walker The LHC is a big step forward Teilchenphysik mit höchstenergetischen Beschleunigern: Excellent potential for major discoveries WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 19
The Landscape - Past, Present and Future Colliders Constituent Center-of-Mass Energy [GeV] Comparison of Colliders HL-LHC at the Energy Frontier ders CLIC Running lli LHC LHC n co 10 3 o ILC dr Ha LHeC Tevatron HERA LEP2 rs 10 2 SppS LEP, SLC li de l Tristan − co e PETRA e+ PEP CESR KEK-B 10 ISR SuperKEKB Spear2 PEP-II Doris Spear Adone VEP-2 DAFNE 1 ACO VEP-1 -1 10 1960 1970 1980 1990 2000 2010 2020 2030 2040… Year of First Physics taken from Nick Walker The LHC is a big step forward Teilchenphysik mit höchstenergetischen Beschleunigern: Excellent potential for major discoveries WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 19
The Landscape - Past, Present and Future Colliders Constituent Center-of-Mass Energy [GeV] Comparison of Colliders HL-LHC at the Energy Frontier ders CLIC Running lli LHC LHC HL-LHC n co 10 3 o ILC dr Ha LHeC Tevatron HERA Plans LEP2 rs Dreams 10 2 SppS LEP, SLC li de l Tristan − co Aspirations e PETRA e+ PEP Hopes… CESR KEK-B 10 ISR SuperKEKB Spear2 PEP-II Doris Spear Adone VEP-2 DAFNE 1 ACO VEP-1 -1 10 1960 1970 1980 1990 2000 2010 2020 2030 2040… Year of First Physics taken from Nick Walker The LHC is a big step forward Teilchenphysik mit höchstenergetischen Beschleunigern: Excellent potential for major discoveries WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 19
The Landscape - Past, Present and Future Colliders Constituent Center-of-Mass Energy [GeV] Comparison of Colliders Linear Colliders: HL-LHC at the Energy Frontier ders CLIC Running 30 - 50 km in length lli LHC LHC HL-LHC n co 10 3 o ILC dr Ha LHeC Tevatron HERA Plans LEP2 rs Dreams 10 2 SppS LEP, SLC li de l Tristan − co Aspirations e PETRA e+ PEP Hopes… CESR KEK-B 10 ISR SuperKEKB Spear2 PEP-II Doris Spear Adone e+e- Linear Colliders VEP-2 DAFNE 1 ACO VEP-1 -1 10 1960 1970 1980 1990 2000 2010 2020 2030 2040… Year of First Physics taken from Nick Walker The LHC is a big step forward Teilchenphysik mit höchstenergetischen Beschleunigern: Excellent potential for major discoveries WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 19
The Landscape - Past, Present and Future Colliders Constituent Center-of-Mass Energy [GeV] Comparison of Colliders Linear Colliders: HL-LHC at the Energy Frontier ders CLIC Running 30 - 50 km in length lli LHC LHC HL-LHC n co 10 3 o ILC dr Ha LHeC Synchrotrons: Tevatron HERA Plans 50 km - 100 km tunnels, LEP2 rs Dreams 10 2 SppS LEP, SLC li de main drivers typically pp, l Tristan − co Aspirations also come with e+e- e PETRA e+ option PEP Hopes… CESR KEK-B 10 ISR SuperKEKB Spear2 PEP-II Doris Spear Adone e+e- Linear Colliders 1 VEP-2 ACO DAFNE HE e+e- Storage Rings VEP-1 -1 10 1960 1970 1980 1990 2000 2010 2020 2030 2040… Year of First Physics taken from Nick Walker The LHC is a big step forward Teilchenphysik mit höchstenergetischen Beschleunigern: Excellent potential for major discoveries WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 19
The Landscape - Past, Present and Future Colliders Constituent Center-of-Mass Energy [GeV] Comparison of Colliders Linear Colliders: HL-LHC at the Energy Frontier ders CLIC Running 30 - 50 km in length lli LHC LHC HL-LHC n co 10 3 o ILC dr Ha LHeC Synchrotrons: Tevatron HERA Plans 50 km - 100 km tunnels, LEP2 rs Dreams 10 2 SppS LEP, SLC li de main drivers typically pp, l Tristan − co Aspirations also come with e+e- e PETRA e+ option PEP Hopes… CESR KEK-B 10 ISR SuperKEKB Spear2 PEP-II Doris Spear Adone e+e- Linear Colliders 1 VEP-2 ACO DAFNE HE e+e- Storage Rings HE pp Colliders VEP-1 -1 10 1960 1970 1980 1990 2000 2010 2020 2030 2040… Year of First Physics taken from Nick Walker The LHC is a big step forward Teilchenphysik mit höchstenergetischen Beschleunigern: Excellent potential for major discoveries WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 19
New Colliders - The Line-Up: Linear Colliders • The International Linear Collider: a 30 - 50 km long linear tunnel • e+e- collisions up to 500 GeV / 1 TeV for Higgs, Top, BSM • Superconducting acceleration structures, ~ 30 MV/m • Technologically far advanced: Technical design report completed in 2012, ILC technology is being used for XFEL construction at DESY • Japan as potential host - Site north of Sendai (Kitakami) Current time line • Construction starting in 2018, physics 2027 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 20
New Colliders - The Line-Up: Linear Colliders • The Compact Linear Collider: A 50 km long linear tunnel as one of CERNs future options • e+e- collisions up to 3 TeV for Higgs, Top, BSM • Two-Beam acceleration, 100 MV/m • Main technological issues demonstrated, Conceptual Design report published in 2012 Current time line • Technical Design by 2018 • Construction could start in 2025, physics by 2035 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 21
Detector (SiD/ILD) specifications New Colliders - The Line-Up: Linear Colliders • Concepts for the Experiments (“Detectors”) at ILC and CLIC exist, the physics capabilities have been studied in detailed simulations ILD (International Large Detector) SiD (Silicon Detector) Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 22
New Colliders - The Line-Up: Rings Qinhuangdao ( ! • A ~ 50 km (maybe 70 - 100 km) circumference ring in China (compare: LHC 27 km) 50#km## easy access • “Dual-use”: 300 km from Beijing • CEPC - e+e- collider with 240 GeV - 3 h by car 1 h by train just enough for Higgs production 70#km## • SppC - pp collider with ~ 60 TeV - relies in 20 T dipole magnets 50km Current time line • First stage: e+e- - R&D until 2020, could run by 2030 • Second stage: pp - R&D until 2030, J. Gao – Introduction to CEPS-SppC Design Status technical design until 2035, could run by 2042 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 23
New Colliders - The Line-Up: Rings • A ~ 100 km circumference ring at CERN as one of CERNs future options (compare: LHC 27 km) • “Dual-use”: • FCCee - e+e- collider with ~ 400 GeV - Higgs and Top • FCChh - pp collider with ~ 100 TeV - ~16 T dipole magnets Current time line • 100km • Conceptual Design by 2018 R&D, Prototyping until ~2027 • Could run by ~ 2038 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 24
The Physics of Future Colliders - with a slight emphasis on Linear Colliders - Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 25
Electron-Positron Colliders: Guaranteed Program Cross-section [fb] • The main focus of present studies: 10 3 tt H+X Higgs and Top physics • 2 In addition: Interest in high precision 10 measurements at the Z pole and at the WW threshold 10 1 10-1 10-2 0 1000 2000 3000 s [GeV] Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 26
Electron-Positron Colliders: Guaranteed Program Cross-section [fb] • The main focus of present studies: 10 3 tt H+X Higgs and Top physics • 2 In addition: Interest in high precision 10 measurements at the Z pole and at the WW threshold 10 CEPC: 250 GeV 1 10-1 10-2 0 1000 2000 3000 s [GeV] Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 26
Electron-Positron Colliders: Guaranteed Program Cross-section [fb] • The main focus of present studies: 10 3 tt H+X Higgs and Top physics • 2 In addition: Interest in high precision 10 measurements at the Z pole and at the WW threshold 10 CEPC: 250 GeV 1 FCCee / TLEP: 350 GeV 10-1 10-2 0 1000 2000 3000 s [GeV] Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 26
Electron-Positron Colliders: Guaranteed Program Cross-section [fb] • The main focus of present studies: 10 3 tt H+X Higgs and Top physics • 2 In addition: Interest in high precision 10 measurements at the Z pole and at the WW threshold 10 CEPC: 250 GeV 1 FCCee / TLEP: 350 GeV 10-1 ILC500: 500 GeV 10-2 0 1000 2000 3000 s [GeV] Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 26
Electron-Positron Colliders: Guaranteed Program Cross-section [fb] • The main focus of present studies: 10 3 tt H+X Higgs and Top physics • 2 In addition: Interest in high precision 10 measurements at the Z pole and at the WW threshold 10 CEPC: 250 GeV 1 FCCee / TLEP: 350 GeV 10-1 ILC500: 500 GeV ILC1TeV: 1 TeV 10-2 0 1000 2000 3000 s [GeV] Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 26
Electron-Positron Colliders: Guaranteed Program Cross-section [fb] • The main focus of present studies: 10 3 tt H+X Higgs and Top physics • 2 In addition: Interest in high precision 10 measurements at the Z pole and at the WW threshold 10 CEPC: 250 GeV 1 FCCee / TLEP: 350 GeV 10-1 ILC500: 500 GeV ILC1TeV: 1 TeV 10-2 0 1000 2000 3000 CLIC: 3 TeV s [GeV] Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 26
Electron-Positron Colliders: Guaranteed Program Cross-section [fb] • The main focus of present studies: 10 3 tt H+X Higgs and Top physics • 2 In addition: Interest in high precision 10 measurements at the Z pole and at the WW threshold 10 CEPC: 250 GeV 1 FCCee / TLEP: 350 GeV 10-1 ILC500: 500 GeV ILC1TeV: 1 TeV 10-2 0 1000 2000 3000 CLIC: 3 TeV s [GeV] The strength of circular machines: High luminosity at low energy - Z and W physics, some aspects of Higgs physics with high statistics, potentially top threshold physics Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 26
Electron-Positron Colliders: Guaranteed Program Cross-section [fb] • The main focus of present studies: 10 3 tt H+X Higgs and Top physics • 2 In addition: Interest in high precision 10 measurements at the Z pole and at the WW threshold 10 CEPC: 250 GeV 1 FCCee / TLEP: 350 GeV 10-1 ILC500: 500 GeV ILC1TeV: 1 TeV 10-2 0 1000 2000 3000 CLIC: 3 TeV s [GeV] The strength of circular machines: High luminosity at low energy - Z and W physics, some aspects of Higgs physics with high statistics, potentially top threshold physics The strength of linear machines: High luminosity at high energy - Full coverage of Higgs physics, top threshold and continuum physics Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 26
e+e-: A Closer Look at Higgs Production ILC energy range CLIC energy range CEPC / FCCee energy range • Several different Higgs production mechanisms • Access to various Higgs properties • Different energy to access different processes - from 250 GeV to 1 TeV and beyond Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 27
Precision Measurements of the Higgs • A flagship measurement: Model-independent Higgs couplings What it means: Measure the coupling of the Higgs to bosons and fermions free from model assumptions (e.g. how it decays) • Requires: The “tagging” of Higgs production without observing the particle directly ‣ Not possible at hadron colliders Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 28
Precision Measurements of the Higgs • A flagship measurement: Model-independent Higgs couplings What it means: Measure the coupling of the Higgs to bosons and fermions free from model assumptions (e.g. how it decays) • Requires: The “tagging” of Higgs production without observing the particle directly ‣ Not possible at hadron colliders The strategy in e+e- collisions: measure only the Z boson from the known e+e- center-of-mass energy, calculate the “recoil mass”: p m2rec =s+ m2Z 2EZ s Exploits: known initial state in e+e- Requires: Identification of Z independent of decay mode of H (or any other particle) ➫ Best results for Z -> µµ, but (almost) model-independent measurements also possible in Z -> qq Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 28
Model-Independent Measurement of H Production SiD full Simulations µ from Z µ from Z 2 p m rec =s+ m2Z 2EZ s e+e≠h and µ+µ≠h channels are shown y di-boson production (W+W≠, ZZ). by running exclusively with the 80eR e+ e ! ZH ! µ+ µ bb̄ ILD, 250 GeV modes and using What both 80eR and this provides: 80eL ZH Total cross section, and with coupling of H to Z Channel Mh ‡hZ /‡hZ (GeV) +e≠h 0.078 0.041 +µ≠h 0.046 0.037 +e≠h + µ+µ≠h 0.040 0.027 +e≠h 0.066 0.067 +µ≠h 0.037 0.057 +e≠h + µ+µ≠h 0.032 0.043 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 29
Model-Independent Measurement of H Production SiD full Simulations b - jet µ from Z from Higgs µ from Z 2 p m rec =s+ m2Z 2EZ s b - jet e+e≠h and µ+µ≠h channels are shown from Higgs y di-boson production (W+W≠, ZZ). by running exclusively with the 80eR e+ e ! ZH ! µ+ µ bb̄ ILD, 250 GeV modes and using What both 80eR and this provides: 80eL ZH Total cross section, and with coupling of H to Z • Channel In addition: Reconstruction of specific final states provides access to couplings to Mh ‡hZ /‡hZ fermions and bosons via Higgs decay (GeV) +e≠h 0.078 0.041 +µ≠h ‣ Makes use of “clean” e+e- environment - also allows the reconstruction of final states +e≠h + µ+µ≠h 0.046 0.037 0.040 0.027 + ≠ which are not accessible at hadron colliders: cc, gg e h 0.066 0.067 +µ≠h 0.037 0.057 +e≠h + µ+µ≠h 0.032 0.043 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 29
Higgs Processes at Higher Energy • Direct measurement of the coupling to the top quark (requires at least 500 GeV) Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 30
Higgs Processes at Higher Energy • Direct measurement of the coupling to the top quark (requires at least 500 GeV) • The ultimate challenge: The Higgs self-coupling • Directly study the Higgs potential - prove (or disprove) the Higgs mechanism • First measurements possible at 500 GeV - significant results require 1+ TeV and high luminosity Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 30
Natural SUSY: Light, degenerate higgsinos New Physics in e+e- - Making the Invisible Visible Natural SUSY:2 2 2 m tan m • A key goal: 2 StudyingHdark mZ = 2 1 tan2u matterHdat colliders2 2 |µ| ) Low fine-tuning ) µ = O(weak scale). If multi-TeV gaugino masses: √s = 500 GeV ˜01 , ˜02 and ˜± 1 pure higgsino. Rest of SUSY at multi-TeV. M ˜0 , M ˜± ⇡ µ 1,2 1 Degenerate ( M is 1 GeV or less) To detect: Tag using ISR photon, then look at rest of event: SUSY signal and background ... and with an ISR photon in additio Mikael Berggren (DESY) Teilchenphysik Discovering SUSY and DM atFrank mit höchstenergetischen Beschleunigern: ILCSimon (fsimon@mpp.mpg.de) ICHEP14 31 WS 15/16, 13: Future Colliders
New Physics in e+e- - Direct Searches SUSY with no loop-holes • LHC has already covered quite a large phase space for new particles No loop-holes • Particularly powerful for strongly produced particles • Universal electroweak coupling: EW particles not penalized in e+e- Compare with LHC, here 350 mχ∼0 [GeV] Atlas (arXiv:1403.5294v1 The main strength of ): e+e-: ATLAS Observed limit (± 1 σtheory) SUSY ∫ 1 300 L dt = 20.3 fb , s=8 TeV -1 Expected limit (± 1 σexp) SmallDi- and tri-lepton background - ∼ χ ∼χ →W ∼ ± 0 1 (*) 0 (*) ∼0 2 χ Z χ 1 1 ATLAS 4.7 fb-1, s = 7 TeV searches, no (or M ˜trigger very modest) 0 = M ±, ˜1 250 m∼χ± = m∼χ0 1 2 All limits at 95% CL 2 requirements, also(⇤)in analysis 3L+2L combined ∼0 Z m mχ1 (⇤) 0 =2 Br( ! W /Z ˜1 )=1. = 200 0 m∼χ 2 χ∼ 0 -m 1 χ∼ 0 m 1 As illustration: Note cut x-axis! Here is LEP, χ∼ 0 < m 2 χ∼ 0 150 m 2 ATLAS ± EW SUSY search 1 only, ˜(di- any final / tri-lepton decay-mode! states) 100 (JHEP 1405 (2014) 071), Below thick line: Can’t fulfil e+e- study: M. Berggren 50 gaugino-mass GUT-relation. Discovery projections to 14 0 100 150 200 250 300 350 400 450 500 m∼χ0, ∼χ± [GeV] TeV 300/3000 fb 1 2 1 (arXiv:1307.7292v2). Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 32
New Physics in e+e- - Direct Searches SUSY SUSY with with no no loop-holes loop-holes • LHC has already covered quite a large phase space for new particles No No loop-holes loop-holes • Particularly powerful for strongly produced particles • Universal electroweak coupling: EW particles not penalized in e+e- Compare with Compare with LHC, LHC, here here 350 mχ∼0 [GeV] Atlas Atlas ((arXiv:1403.5294v1 strength of): arXiv:1403.5294v1 The main ): e+e-: ATLAS Observed limit (± 1 σtheory) SUSY ∫ 1 300 L dt = 20.3 fb , s=8 TeV -1 Expected limit (± 1 σexp) SmallDi- Di- and tri-lepton and tri-lepton background - ∼ χ ∼χ →W ∼ ± 0 1 (*) 0 (*) ∼0 2 χ Z χ 1 1 ATLAS 4.7 fb-1, s = 7 TeV searches, searches, no (or MM˜˜trigger very modest) =M 00 = M˜˜±±,, 250 m∼χ± = m∼χ0 1 2 All limits at 95% CL 22 11 requirements, also in analysis 3L+2L combined ∼0 Z m mχ1 (⇤) 00 =2 Br( ! Br( !WW (⇤) (⇤) (⇤) /Z /Z )=1. ˜˜11)=1. = 200 0 m∼χ 2 χ∼ 0 -m 1 χ∼ 0 m 1 As illustration: Note Note cut x-axis! cut x-axis! Here Here is is LEP, LEP, χ∼ 0 < m 2 χ∼ 0 150 m 2 ±ATLAS ± EW SUSY search ˜˜1(di-only, 1 only, any final any / tri-lepton decay-mode! decay-mode! states) 100 (JHEP 1405 (2014) 071), Below Below thick line: thick line: Can’t e+e- study: M. Berggren Can’t fulfil fulfil below thick line: 50 gaugino-mass GUT-relation. gaugino-mass GUT-relation. gaugino-mass GUT relation not fulfilled Discovery Discovery projections to projections to 14 14 0 LEP (χ± only) 100 150 200 250 300 350 400 450 m∼χ0, ∼χ± [GeV] 500 TeV 300/3000 TeV 300/3000 fb fb 11 2 1 ((arXiv:1307.7292v2 ). arXiv:1307.7292v2). Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 32
New Physics in e+e- - Direct Searches SUSY SUSYwith SUSY withno with noloop-holes no loop-holes loop-holes • LHC has already covered quite a large phase space for new particles o loop-holes No No loop-holes loop-holes • Particularly powerful for strongly produced particles • Universal electroweak coupling: EW particles not penalized in e+e- Comparewith Compare Compare withLHC, with LHC,here LHC, here here 350 mχ∼0 [GeV] Atlas Atlas Atlas (((arXiv:1403.5294v1 The main strength of): arXiv:1403.5294v1 arXiv:1403.5294v1):): e+e-: ATLAS Observed limit (± 1 σtheory) SUSY ∫ 1 300 L dt = 20.3 fb , s=8 TeV -1 Expected limit (± 1 σexp) Di- Di- Di- Small andtri-lepton and and tri-lepton tri-lepton background - ∼ χ ∼χ →W ∼ ± 0 1 (*) 0 (*) ∼0 2 χ Z χ 1 1 ATLAS 4.7 fb-1, s = 7 TeV searches, searches, no (or very modest) searches, MMM˜˜˜trigger =M = 000 = M˜˜˜±±±,,, M 250 m∼χ± = m∼χ0 1 2 All limits at 95% CL 222 111 requirements, also in analysis 3L+2L combined ∼0 Z m mχ1 (⇤) 000 =2 Br( ! Br( Br( !W ! W /Z W (⇤) )=1. )=1. (⇤) (⇤) /Z ˜˜˜111)=1. /Z (⇤) (⇤) = 200 0 m∼χ 2 χ∼ 0 -m 1 χ∼ 0 m 1 As illustration: Note Note cutx-axis! cut x-axis! Here x-axis! Here is Here is LEP, is LEP, LEP, χ∼ 0 < Note cut m 2 χ∼ 0 150 m 2 ±ATLAS ± EW SUSY search ± only, only, 1 only, ˜˜˜11(di- anydecay-mode! any any / tri-lepton decay-mode! decay-mode! final states) 100 (JHEP 1405 (2014) 071), Below Below Below thick thick thick e+e- study: line: Can’t line: line: M. Berggren Can’t fulfil Can’t fulfil fulfil below thick line: 50 gaugino-massGUT-relation. gaugino-mass gaugino-mass GUT-relation. GUT-relation. gaugino-mass GUT relation not fulfilled Discovery Discovery projections projections to 14 to 14 14 0 Discovery LEP (χ± only)projectionsLHC 300 / 3000 to fb-1 100 150 200 250 300 350 400 450 m∼χ0, ∼χ± [GeV] 500 TeV TeV 300/3000 300/3000 fb fb 11 1 TeV 300/3000 fb 2 1 (arXiv:1307.7292v2 ((arXiv:1307.7292v2 arXiv:1307.7292v2 ).). ). Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 32
New Physics in e+e- - Direct Searches SUSY SUSYwith SUSY withno with noloop-holes no loop-holes loop-holes • LHC has already covered quite a large phase space for new particles o loop-holes No No loop-holes loop-holes • Particularly powerful for strongly produced particles • Universal electroweak coupling: EW particles not penalized in e+e- Comparewith Compare Compare withLHC, with LHC,here LHC, here here 350 mχ∼0 [GeV] Atlas Atlas Atlas (arXiv:1403.5294v1 ((arXiv:1403.5294v1 strength of): arXiv:1403.5294v1 The main ):): e+e-: ATLAS Observed limit (± 1 σtheory) SUSY ∫ 1 300 L dt = 20.3 fb , s=8 TeV -1 Expected limit (± 1 σexp) Di- Di- Di- Small andtri-lepton and and tri-lepton tri-lepton background - ∼ χ ∼χ →W ∼ ± 0 1 (*) 0 (*) ∼0 2 χ Z χ 1 1 ATLAS 4.7 fb-1, s = 7 TeV searches, searches, no (or very modest) searches, MMM˜˜˜trigger =M = 000 = M˜˜˜±±±,,, M 250 m∼χ± = m∼χ0 1 2 All limits at 95% CL 222 111 requirements, also in analysis 3L+2L combined ∼0 Z m mχ1 (⇤) 000 =2 Br( ! Br( Br( !W ! W(⇤) /Z W (⇤) (⇤) (⇤) (⇤) /Z (⇤))=1. )=1. /Z(⇤) ˜˜˜0111)=1. = 200 0 m∼χ 2 χ∼ 0 -m 1 χ∼ 0 m 1 As illustration: Note Note cutx-axis! cut x-axis! Here x-axis! Hereis Here isLEP, is LEP, LEP, χ∼ 0 < Note cut m 2 χ∼ 0 150 m 2 ±ATLAS ± EW SUSY search ± only, only, 1 only, ˜˜˜11(di- anydecay-mode! any any / tri-lepton decay-mode! decay-mode! final states) 100 (JHEP 1405 (2014) 071), Below Below Below thick thick thick e+e- study: line: Can’t line: line: M. Berggren Can’tfulfil Can’t fulfil fulfil below thick line: 50 gaugino-massGUT-relation. gaugino-mass gaugino-mass GUT-relation. GUT-relation. gaugino-mass GUT relation not fulfilled Discovery Discovery projections projections to 14 to 14 14 0 Discovery LEP (χ± only)projectionsLHC 300 / 3000 to fb-1 100 150 200 250 300 350 400 450 m∼χ0, ∼χ± [GeV] 500 TeV TeV 300/3000 300/3000 fb fb 11 1 TeV e+e300/3000 fb 2 1 - 500 GeV (arXiv:1307.7292v2 ((arXiv:1307.7292v2 arXiv:1307.7292v2 arXiv:1307.7292v2 ).). ). Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 32
New Physics in e+e- - Direct Searches SUSY SUSYwith SUSY SUSY withno with with no loop-holes noloop-holes no loop-holes loop-holes • LHC has already covered quite a large phase space for new particles oo loop-holes No No loop-holes loop-holes loop-holes • Particularly powerful for strongly produced particles • Universal electroweak coupling: EW particles not penalized in e+e- Compare Comparewith Compare Compare withLHC, with with LHC,here LHC, here here 350 mχ∼0 [GeV] Atlas Atlas Atlas Atlas (((arXiv:1403.5294v1 The main strength of): (arXiv:1403.5294v1 arXiv:1403.5294v1 arXiv:1403.5294v1 ):): e+e-: ATLAS Observed limit (± 1 σtheory) SUSY ∫ 1 300 L dt = 20.3 fb , s=8 TeV -1 Expected limit (± 1 σexp) Di- Di- Di- Di- Small andtri-lepton and and and tri-lepton tri-lepton tri-lepton background - ∼ χ ∼χ →W ∼ ± 0 1 (*) 0 (*) ∼0 2 χ Z χ 1 1 ATLAS 4.7 fb-1, s = 7 TeV searches, searches, no searches, (or very modest) searches, M MM˜˜˜˜trigger =M = 0000 = M˜˜˜±±±,,, M 250 m∼χ± = m∼χ0 1 2 All limits at 95% CL 2222 111 requirements, also in analysis 3L+2L combined ∼0 Z m mχ1 (⇤) 000 =2 Br( ! Br( Br( Br( !W ! W(⇤)/Z W W (⇤) /Z(⇤) )=1. )=1. /Z(⇤) ˜˜˜1011)=1. (⇤) (⇤) (⇤) (⇤) = ! 200 0 m∼χ 2 χ∼ 0 -m 1 χ∼ 0 m 1 As illustration: Note Note cutx-axis! cut x-axis!Here x-axis! Hereis Here isLEP, is LEP, LEP, χ∼ 0 < Note Note cut cut x-axis! m 2 χ∼ 0 150 m 2 ±ATLAS ± EW SUSY search ±± only, only, only, 1 only, ˜˜˜˜111(di- anydecay-mode! any any any / tri-lepton decay-mode! decay-mode! final states) 100 (JHEP 1405 (2014) 071), Below Below Below Below thick thick thick e+e- study: line: Can’t line: line: M. Berggren Can’tfulfil Can’t fulfil fulfil below thick line: 50 gaugino-massGUT-relation. gaugino-mass gaugino-mass gaugino-mass GUT-relation. GUT-relation. gaugino-mass GUT relation not fulfilled Discovery Discovery ± only) projections to 14 projections to 14 0 Discovery Discovery LEP (χ projections LHC 300 / to 3000 14 fb -1 100 150 200 250 300 350 400 450 m∼χ0, ∼χ± [GeV] 500 TeV TeV 300/3000 300/3000 fb fb 11 1 TeV 300/3000 e+fb 2 1 TeV e+e300/3000 - 500 GeV e- 1 TeV (arXiv:1307.7292v2 (arXiv:1307.7292v2 ((arXiv:1307.7292v2 arXiv:1307.7292v2 arXiv:1307.7292v2 ).). ). Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 32
New Physics in e+e- - Direct Searches SUSY SUSYwith SUSY SUSY withno with with no loop-holes noloop-holes no loop-holes loop-holes • LHC has already covered quite a large phase space for new particles oo loop-holes No No loop-holes loop-holes loop-holes • Particularly powerful for strongly produced particles • Universal electroweak coupling: EW particles not penalized in e+e- Compare Comparewith Compare Compare withLHC, with with LHC,here LHC, here here 350 mχ∼0 [GeV] Atlas Atlas Atlas Atlas (((arXiv:1403.5294v1 The main strength of): (arXiv:1403.5294v1 arXiv:1403.5294v1 arXiv:1403.5294v1 ):): e+e-: ATLAS SUSY Observed limit (± 1 σtheory) ∫ 1 300 -1 L dt = 20.3 fb , s=8 TeV Expected limit (± 1 σexp) Di- Di- Di- Di- Small andtri-lepton and and and tri-lepton tri-lepton tri-lepton background - ∼ χ ∼χ →W ∼ ± 0 1 (*) 0 (*) ∼0 2 χ Z χ 1 1 ATLAS 4.7 fb-1, s = 7 TeV searches, searches, no searches, (or very modest) searches, M MM˜˜˜˜trigger =M = 0000 = M˜˜˜±±±,,, M 250 m∼χ± = m∼χ0 1 2 All limits at 95% CL 2222 111 requirements, also in analysis 3L+2L combined ∼0 Z m mχ1 (⇤) 000 =2 Br( ! Br( Br( Br( !W ! W(⇤)/Z W W (⇤) /Z(⇤) )=1. )=1. /Z(⇤) ˜˜˜1011)=1. (⇤) (⇤) (⇤) (⇤) = ! 200 0 m∼χ 2 χ∼ 0 -m 1 χ∼ 0 m 1 As illustration: Note Note cutx-axis! cut x-axis!Here x-axis! Hereis Here isLEP, is LEP, LEP, χ∼ 0 < Note Note cut cut x-axis! m 2 χ∼ 0 150 m 2 ±ATLAS ± EW SUSY search ±± only, only, only, 1 only, ˜˜˜˜111(di- anydecay-mode! any any any / tri-lepton decay-mode! decay-mode! final states) 100 (JHEP 1405 (2014) 071), Below Below Below Below thick thick thick e+e- study: line: Can’t line: line: M. Berggren Can’tfulfil Can’t fulfil fulfil below thick line: 50 gaugino-mass gaugino-mass gaugino-mass GUT-relation. gaugino-mass GUT-relation. GUT-relation. gaugino-mass GUT relation not fulfilled Discovery Discovery projections projections to to 14 14 0 Discovery Discovery LEP (χ ± only) projections LHC 300 / to 3000 14 fb -1 100 150 200 250 300 350 400 m 450 500 [GeV] χ ,∼ ∼ 0 χ± TeV TeV 300/3000 300/3000 fb fb 11 1 TeV 300/3000 e+fb 2 1 TeV e+e300/3000 - 500 GeV e- 1 TeV In general: (almost) any type of new particle up to √s/2 (arXiv:1307.7292v2 (arXiv:1307.7292v2 ((arXiv:1307.7292v2 arXiv:1307.7292v2 arXiv:1307.7292v2 ).). ). Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 32
20 Working group r Proton-Proton Colliders: Guaranteed Physics 8 TeV 14 TeV 33 TeV 100 TeV • The full range of 109 LHC LHC HE LHC VLHC 109 processes known from 108 total 108 the LHC will be 107 107 accessible at higher 106 106 energies as well - details bb 105 105 of analysis possibilities jet will strongly depend on 104 jet (pT >50 GeV) 104 experimental conditions 103 103 σ [nb] 102 W 102 Z 10 γ γ 10 (pT>50 GeV) 1 gg→H 1 Double Higgs production 10-1 tt t VBF 10-1 ttH up by x40 at 100 TeV: WW WZ WH 10-2 ZZ ZH 10-2 Crucial for a measurement γγ of the self-coupling 10-3 HH 10-3 10-4 10-4 MCFM + Higgs European Strategy 10-5 10-5 10 102 s [TeV] Teilchenphysik mitFigure höchstenergetischen 1-6. CrossBeschleunigern: section predictions at proton-proton colliders as a function of center-of-mas p WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 33 energy, s.
New Physics in Proton-Proton Collisions • As for LHC: Highest sensitivity to strongly interacting particles cern.ch/collider-reach • Generic study to assess sensitivity as a function of energy: from 8 TeV to 14 TeV 7 http://cern.ch/collider-reach by G.P. Salam and A. Weiler • Assumptions: qq different production system mass [TeV] for 14.00 TeV, 20.00 fb-1 Σi qi q- i processes • signal and background scale in 6 qg gg the same way 5 • Reconstruction efficiencies, background rejection etc. stay 4 constant 3 • Cross sections are proportional to partonic luminosity / m2 2 • Given as system mass: mass of a 1 equal sensitivity single particle (Z’ etc), or 2 x mass of pair-produced particles 0 (SUSY-particles etc) 0 0.5 1 1.5 2 2.5 3 3.5 4 system mass [TeV] for 8.00 TeV, 20.00 fb-1 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 34
New Physics in Proton-Proton Collisions • As for LHC: Highest sensitivity to strongly interacting particles cern.ch/collider-reach • Generic study to assess sensitivity as a function of energy: from from 8today TeV to to 14 TeV 2035 7 http://cern.ch/collider-reach • Assumptions: 9 qq different production http://cern.ch/collider-reach system mass [TeV] for 14.00 TeV, 20.00 fb-1-1 qq Σi qi q--i system mass [TeV] for 14.00 TeV, 3000.00 fb processes • signal and background scale in 68 qΣgi qi q i gqgg the same way 7 gg 5 • Reconstruction efficiencies, 6 by by G.P. background rejection etc. stay 4 G.P. Salam 5 Salam constant and 34 and • Cross sections are proportional A.A. Weiler Weiler to partonic luminosity / m2 2 3 • Given as system mass: mass of a 2 1 equal sensitivity single particle (Z’ etc), or 2 x 1 mass of pair-produced particles 00 (SUSY-particles etc) 00 0.5 0.5 11 1.5 1.5 22 2.5 2.5 33 3.5 3.5 4 4 system -1 systemmass mass[TeV] [TeV]for for8.00 8.00 TeV, TeV, 20.00 20.00 fb fb-1 Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 34
New Physics in Proton-Proton Collisions • As for LHC: Highest sensitivity to strongly interacting particles cern.ch/collider-reach • Generic study to assess sensitivity as a function of energy: from from 8today TeV to to 14 TeV 2035 7 from 14 TeV to 100 TeV http://cern.ch/collider-reach • Assumptions: 9 45 qq different production http://cern.ch/collider-reach http://cern.ch/collider-reach by G.P. Salam and A. Weiler -1 -1 fb-1 qq qq Σi qi q--i 20.00 fb system mass [TeV] for 14.00 TeV, 3000.00 fb processes • signal and background scale in 640 8 qΣΣgii qqii qq-ii 3000.00 gqqggg the same way 7 35 gg gg 5 TeV, • Reconstruction efficiencies, TeV, 6 30 by by 14.00 G.P. background rejection etc. stay 4 100.00 G.P. Salam 5 25 Salam constant for and 320 and 4 for • [TeV] Cross sections are proportional A.A. Weiler [TeV] Weiler to partonic luminosity / m2 3 15 mass 2 mass • Given as system mass: mass of a 2 10 system 1 equal sensitivity single particle (Z’ etc), or 2 x system 15 mass of pair-produced particles 0 00 (SUSY-particles etc) 0 00 0.5 0.5 1 11 2 1.5 1.5 3 24 2 2.5 2.5 5 33 6 3.5 3.5 7 84 4 system mass [TeV] for 8.00 TeV, 20.00 -1 system system mass mass [TeV] [TeV] forfor 8.00TeV, 14.00 20.00 fb TeV,3000.00 -1 -1 fbfb Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 34
have more limited mass reach. Many examples of this complementarity are discussed in the body of this report. New Physics at Future Colliders - Summary Attempt direct indirect T quarks 140,000 quark compositeness gluinos 4,000 ewkino pp, 100 TeV, 3000/fb colorons pp, 33 TeV, 3000/fb RPV stop pp, 14 TeV, 3000/fb pp, 14 TeV, 300/fb stop pp, 8 TeV, 20/fb Z'B ee, 3 TeV, 1000/fb any NLSP ee, 1 TeV, 1000/fb ee, 0.5 TeV, 500/fb squarks Z' WIMPs 0 1000 2000 3000 0 10000 20000 30000 40000 50000 60000 70000 mass (GeV) mass (GeV) Snowmass 2013 - arXiv:1311.0299 Figure 1-1. 95% confidence level upper limits for masses of new particles beyond the standard model expected from pp and e+ e colliders at di↵erent energies. Although upper mass reach is generally higher at pp colliders, these searches often have low-mass loopholes, while e+ e collider searches are remarkably free of such loopholes. Teilchenphysik mit höchstenergetischen Beschleunigern: WS 15/16, 13: Future Colliders Frank Simon (fsimon@mpp.mpg.de) 35
You can also read