Experimental approach of dust processing in protoplanetary disks and comparison with returned samples - Mathieu Roskosz
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Experimental approach of dust processing in protoplanetary disks and comparison with returned samples Mathieu Roskosz Workshop MarcoPolo-R, December 2012, CNES-Hqs Mathieu.roskosz@univ-lille1.fr
ISM Vs. Protoplanetary disk Evaporation/condensation Thermal annealing Amorphous-Crystalline F. Kemper, W. J. Vriend, and A. G. G. M. Tielens R. van Boekel, et al. Ap. J. 609, 826–837 Nature 432, 479-482
A controversial mineralogical zoning VLT Spitzer An inner disk dominated An outer disk dominated by pyroxenes by olivine Detection of SiO2 polymorphs Watson et al., ApJS 180 (2009) 84-101 Sargent et al., ApJS 182 (2009) 477-508 Sargent et al., ApJ 690 (2009) 1193-1207 R. van Boekel, et al. Nature 432, 479-482
Experimental details • 970-1070 K • In situ HT X-ray Diffraction • A few hours to 2 months • TEM • Glasses and homogeneous • Conventional XRD nanoporous volatile-free • Spectroscopies (Raman and IR) gels
Subsolidus Quelques crystallization résultats: 740°C, 10j Dynamical annealing of MgSiO3 (Roskosz et al., ApJ (2009))
Local and bulk cation dynamics control low-T dust crystallization • Even starting from an enstatite precursor, below 700°C, only forsterite forms… MgSiO3 amorphous Mg2SiO4+SiO2 (Roskosz et al., A&A, 2011) Mobility decouplings in solids explains the metastable low-temperature formation of the MgO-(CaO)-rich phases (Roskosz et al., JNCS (2005) 351, 1266-1282; JNCS (2006) 352, 180-184)
Conclusion et applications Metastable low-T assemblages in Stardust samples identified " Al Si SiO2 1 µm Pt Mg S Fe 500 nm « Fo58 » « Fo93 » Close association of olivines and quartz polymorphs (micrography H. Leroux)
Irradiation in astrophysical environments • SN shock waves Irradiation : • Cosmic rays interactions particles-matter • X-winds (photons, electrons, ions) inducing • Solar flairs, outflows… modifications of the material • Grain size distribution • Lifetime • Structure • Composition • Porosity • Optical properties • Isotopic signatures Implantation Sputtering Lin et al., 1994, Adv. Space Res, 20, 465
Electron irradiation Transmission Electron Microscope(MET) • Irradiation and in situ characterization (microstructure, crystallinity, composition).
Electron irradiation: Amorphization, radiolysis, chemistry Chemical changes associated with amorphization Phase transition Olivine MgO +SiO2 1 µm (Carrez et al. 2002) Irradiation of MgSiO3 composition at 300 keV Carrez et al., 2001 San Carlos olivine irradiated : Oxygen bubbles formation Differential loss of the different elements. Structure-dependent kinetics
Itokawa Dust particules collected from the Hayabusa mission Amorphization, In situ reduction of iron from minerals into metallic nuggets, Noble gas implantation… A closer look at experimental data may help to quantitatively describe the space weathering Noguchi et al., Science, 2011
Electron irradiation of OM’s Polyethylene terephthalate (PET) is a semicrystalline symetrical arrangement of aromatic groups and aliphatic chains Comprehensive description of irradiation-induced modifications of the IOM in relation with their D/H signatures PhD thesis of Boris Laurent, UMET in coll. MNHN http://umet.univ-lille1.fr/Projets/FrIHIDDA/ 12 keV, e-, PET, 2500 nm
Electron irradiation of OM’s IR spectra of electron-irradiated PET at 30 keV EPR spectroscopy of irradiated PET showing the appearance of mono- and biradicals IR image of the growing band at 1600 cm-1 in electron-irradiated PET at 30 keV Laurent et al. coming LPSC
Electron irradiation of OM’s:" Waiting for MarcoPolo-R… D/H ratios of irradiated PET as a function of Dose: Several hundreds permil fractionation, attainment of a steady state (??) For a detailed study of the correlations between irradiation, catalysis, structural and D/H modification of OM, please attend the coming LPSC Laurent et al. coming LPSC
Thanks to • H. Leroux, B. Laurent, J. Gillot, UMET • L. Rémusat, F. Robert, MNHN • H. Vezin, LASIR
Experimental approach of dust processing in protoplanetary disks and comparison with returned samples Mathieu Roskosz Workshop MarcoPolo-R, December 2012, CNES-Hqs Mathieu.roskosz@univ-lille1.fr
Exemple 1: composition enstatite Cristallisation sous la température de transition vitreuse a b c 200 nm
Durée de vie de l’assemblage Forsterite+SiO2 120 580MPa 1 Wt% H2O 25 450 MPa 100 1000°C nominally anhydrous 210 MPa 0,1 Wt% H2O 210 MPa Thickness ^2 (microns) 20 1 Wt% H2O 1000°C Thickness^2 (microns) 80 15 60 40 10 20 5 0 0 10 20 30 40 50 60 70 80 90 100 time (h) 0 0 10 20 30 40 50 60 70 80 90 100 time (h) 700 1450°C 600 1400°C 1350°C Fo+SiO2 DOIT se transformer en enstatite thickness^2 (microns) 500 400 0 Wt% H2O 1 bar La vitesse de cette transformation 300 dépend fortement de P, H2O, et T 200 100 Que se passe-t-il à basse P, T et 0 0 20 40 60 80 100 120 sans eau (sous 1000°C) ? time (h) Data from Yund, 97, CMP; Fisler et al., 97, PCM
Durée de vie de l’assemblage Forsterite+SiO2 Recuits sur un assemblage de fin grains de forsterite encapsulés dans une matrice de silice pure formée par sol-gel. Recuits à 1000°, 1100° et 1250°C jusqu’à 1 mois Les extrapolations arrhéniennes des données HP ou HT avec et sans eau prédisent une vitesse de croissance de la couche d’enstatite d’au moins 10-11m.s-1 à 1100°C
Durée de vie de l’assemblage Forsterite+SiO2 500 nm 200 nm Moins de 4 10-16 m.s-1 Pourtant la diffusion cationique opère (murissement des textures) En l’absence de pression de confinement et d’eau La nucléation d’enstatite est L’assemblage Fo+SiO2 peut être inhibée à l’interface préservé à T
Mineralogical zoning
Conclusion et applications
Mineralogical zoning
Irradiation in astrophysical environments • Nature des particules (photon, électrons, ions) • Flux des particules (particules cm-2 s-1) • Fluence (particules cm-2) • Spectre d’énergie (eV, keV or MeV ?) Stone et al., 2008, Adv. Space Res, 454, 71 Lin et al., 1994, Adv. Space Res, 20, 465
Irradiation par des ions: exemple 2/3 amorphisation Conditions experimentales: He sur olivine Energie: 4 keV 5 1016 ions/cm2 1017 ions/cm2 Porosité des poussières Implantation Implantations de gaz rares Réduction de la taille des poussières dans l’ISM ? Surpression, fracturation Demyk et al., 2001, 5 1017 ions/cm2 1018 ions/cm2 Carrez et al., 2002
Le grand recyclage stellaire X
You can also read