Evolution of matter from the interstellar medium to exoplanets with the JWST - Indico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Evolution of matter from the interstellar medium to exoplanets with the JWST Modeling of protoplanetary disks Robert Brauer (DAp/IAS) CSNSM: C. Engrand, J. Duprat, M. Godard, L. Delauche, L. Delbecq, D. Le Du, J. Bourcois, C. Baumier, C. Bachelet, F. Fortuna, B. Augé, E. Charron, B. Guerin, J. Roja IAS: A. Abergel, A. Aleon, R. Brunetto, E. Habart, A. Jones, M. Olivier, L. Verstraete, N. Ysard, Z. Djouadi, O. Mivumbi, K. Dassas, C. Cossou, R. Brauer, T. Bouteraon, Z. Dionnet, T. Schirmer, R. Maupin, R. Urso ISMO: E. Dartois IPNO: M. Chabot, G. Martinet, S.Bouneau, N. De Sereville, F. Hamache DAp/AIM: P. Bouchet, D. Dicken, S. Fromang, P.-O. Lagage, E. Pantin, A. Coulais, R. Gastaud, R. Brauer, G. Morello, M. Martin-Lagarde Maison de la Simulation: P. Tremblin PhD and post-doc since Sept. 2016
Evolution of interstellar dust Everywhere Optical ⇒ Infrared Visible (ESO/S. Brunier) Planck HFI (thermal dust) Key actor of matter evolution at all angular scales ∼ 50 kpc ∼ 280 AU Herschel, FIR, M31 NRAO, visible in Orion HST visible, M16 ALMA 1 mm, HL Tau 2
Evolution of interstellar dust Everywhere Optical ⇒ Infrared Visible (ESO/S. Brunier) Planck HFI (thermal dust) Key actor of matter evolution at all angular scales ∼ 50 kpc ∼ 280 AU Star and planet formation Herschel, FIR, M31 NRAO, visible in Orion HST visible, M16 ALMA 1 mm, HL Tau 2
Evolution of interstellar dust Everywhere Optical ⇒ Infrared Visible (ESO/S. Brunier) Planck HFI (thermal dust) JWST Herschel Planck Key actor of matter evolution at all angular scales ∼ 50 kpc ∼ 280 AU Warm dust, Cold dust Dust bands Herschel, FIR, M31 NRAO, visible in Orion HST visible, M16 ALMA 1 mm, HL Tau Jones et al. 2013 + DUSTEM 2
The JWST: successor of the HST A 6.5 meter infrared telescope in space Optimized in the IR Spring Launch: ✭ ✭✭2019✭✭ → March 2021 In operation for 5 to 10 years (2021→2031) 3
The JWST: successor of the HST A 6.5 meter infrared telescope in space Optimized in the IR Spring Launch: ✭ ✭✭2019✭✭ → March 2021 In operation for 5 to 10 years (2021→2031) Four IR instruments: NIRIS (0.6 − 5 µm) (Canada) NIRCAM (1 − 5 µm) (US) NIRSPEC (1 − 5 µm) (ESA) MIRI (5 − 28 µm) (Europe – US) 3
The JWST: successor of the HST A 6.5 meter infrared telescope in space Optimized in the IR Spring Launch: ✭ ✭✭2019✭✭ → March 2021 In operation for 5 to 10 years (2021→2031) Four IR instruments: Four scientific themes: NIRIS (0.6 − 5 µm) (Canada) First light and the reionisation NIRCAM (1 − 5 µm) (US) Assembly of galaxies NIRSPEC (1 − 5 µm) (ESA) Birth of stars and proto-planetary systems MIRI (5 − 28 µm) (Europe – US) Planetary systems and the origin of life 3
Overview of work packages Extraterrestrial JWST data JWST proposals material / analogues (from 2021) Laboratory Pre-JWST data Data processing experiments Simulation of exoplan- Laboratory data Data analysis etary atmospheres Simulations of Dust modelling Radiative transfer codes JWST observations WP2 WP3 WP4 Geometry and chemical JWST simulated structure of PDRs & disks data processing 4
WP2: Preparation of JWST observations (ongoing work) Prior to launch (2016-2020) • Participation to the French Center of Expertise for MIRI • Simulations of JWST observations • Participation of test campaigns and pipeline developments and testing 5
WP2: Preparation of JWST observations (ongoing work) Prior to launch (2016-2020) • Participation to the French Center of Expertise for MIRI • Simulations of JWST observations • Participation of test campaigns and pipeline developments and testing Strongly involed in several observing programs • Eearly Released Science programs • Guaranteed Time Observations (GTO) • Open Time Observations (Cycle 1 call in 2019) 5
WP3: Modelisation & Simulations (ongoing work) 6
WP3: Modelisation & Simulations (ongoing work) Photodissociation Regions (PDRs) and Disks • New charge model for dust grains H+ 5’’ H0 • Optical properties of large aggregates H2 • Laboratory-based silicate optical properties (collaboration with IRAP/Toulouse) • Dust and radiative transfer models to analyse pre-JWST data (RT codes: MCRT, MCFOST, POLARIS) • Nano carbon dust emission in protoplanetary disks (VLT IR spectroscopy data) • Dust evolution in PDRs (Spitzer, Herschel, and HST data) Horsehead nebula 6
WP3: Modelisation & Simulations (ongoing work) Photodissociation Regions (PDRs) and Disks • New charge model for dust grains H+ 5’’ H0 • Optical properties of large aggregates H2 • Laboratory-based silicate optical properties (collaboration with IRAP/Toulouse) • Dust and radiative transfer models to analyse pre-JWST data (RT codes: MCRT, MCFOST, POLARIS) • Nano carbon dust emission in protoplanetary disks (VLT IR spectroscopy data) • Dust evolution in PDRs (Spitzer, Herschel, and HST data) Horsehead nebula Exoplanet atmospheres • Effect of composition variations • Influence of the convection 6
WP4: Laboratory experiments (ongoing work) 7
WP4: Laboratory experiments (ongoing work) Organic matter • Analysis of cometary matter (CONCORDIA) and comparison with Rosetta/COSIMA data • Measurements at Soleil and at UMET Lille ⇒ N/C, C/Si and O/Si ratios • Micrometeorites extraction from the 2016 Antarctic campaign ⇒ 3 new UCAMM candidates (2018) 7
WP4: Laboratory experiments (ongoing work) Organic matter • Analysis of cometary matter (CONCORDIA) and comparison with Rosetta/COSIMA data • Measurements at Soleil and at UMET Lille ⇒ N/C, C/Si and O/Si ratios • Micrometeorites extraction from the 2016 Antarctic campaign ⇒ 3 new UCAMM candidates (2018) Evolution of chemistry in the ISM and Solar System • Branching ratios & reaction rates (Cn Ny Hz ) with AGAT (ALTO/IPNO) ⇒ Kida database • High- (GANIL, GSI, …) and low- (SIDONIE, ARAMIS) energy ion irradiation 7
WP4: Laboratory experiments (ongoing work) Organic matter • Analysis of cometary matter (CONCORDIA) and comparison with Rosetta/COSIMA data • Measurements at Soleil and at UMET Lille ⇒ N/C, C/Si and O/Si ratios • Micrometeorites extraction from the 2016 Antarctic campaign ⇒ 3 new UCAMM candidates (2018) Evolution of chemistry in the ISM and Solar System • Branching ratios & reaction rates (Cn Ny Hz ) with AGAT (ALTO/IPNO) ⇒ Kida database • High- (GANIL, GSI, …) and low- (SIDONIE, ARAMIS) energy ion irradiation Mineral matter • Sample preparation (new microscope for micromanipulation) • Multi-technique analysis of refractory inclusions from primitive meteorites (micro-IR, TEM, nano-SIMS) • IR hyperspectral imaging of meteorites and dust from sample return missions 7
PhD students and post-doc 4 two year post-doc (2 in the initial project) • E. Charron - Cometary matter (CSNSM, P2IO) • R. Brauer - Disks (DAp/AIM & IAS, P2IO) • G. Morello - Exoplanets (DAP/AIM, P2IO) • R. Urso - Laboratory experiments (IAS1) 7 PhD (4 in the initial project, only 21/2 PhD founded by P2IO) • T. Bouteraon - Disks (IAS, 1/2 P2IO - 1/2 Paris-Sud) • M. Martin-Lagarde - Exoplanets (DAP/AIS, 1/2 CNES and 1/2 P7) • T. Schirmer - PDRs (IAS, 1/2 CNES and 1/2 P2IO) • R. Maupin - Silicate Matter (IAS) • Z. Dionet - IR and X micro-tomography (IAS, IDEX Paris-Saclay) • B. Guériin - Cometary matter/matter in disks (CSNSM/ISMO) • J. Rojas - Analyses isotopiques UCAMMs, Irradiation (CSNSM/ISMO) 8
PhD students and post-doc 4 two year post-doc (2 in the initial project) • E. Charron - Cometary matter (CSNSM, P2IO) • R. Brauer - Disks (DAp/AIM & IAS, P2IO) • G. Morello - Exoplanets (DAP/AIM, P2IO) • R. Urso - Laboratory experiments (IAS1) 7 PhD (4 in the initial project, only 21/2 PhD founded by P2IO) • T. Bouteraon - Disks (IAS, 1/2 P2IO - 1/2 Paris-Sud) • M. Martin-Lagarde - Exoplanets (DAP/AIS, 1/2 CNES and 1/2 P7) • T. Schirmer - PDRs (IAS, 1/2 CNES and 1/2 P2IO) • R. Maupin - Silicate Matter (IAS) • Z. Dionet - IR and X micro-tomography (IAS, IDEX Paris-Saclay) • B. Guériin - Cometary matter/matter in disks (CSNSM/ISMO) • J. Rojas - Analyses isotopiques UCAMMs, Irradiation (CSNSM/ISMO) 8
Observations of protoplanetary disks 9
Observations of protoplanetary disks Near-Infrared (λ = 1.65 µm) (Sub-)mm (λ = 1.3 mm) ∼ 100 AU ∼ 240 AU SAO 206462 (Credit: NAOJ/Subaru) HL Tau (Credit: ESO/ALMA) (with coronograph) 9
Observations of protoplanetary disks Near-Infrared (λ = 1.65 µm) (Sub-)mm (λ = 1.3 mm) ∼ 100 AU ∼ 240 AU SAO 206462 (Credit: NAOJ/Subaru) HL Tau (Credit: ESO/ALMA) (with coronograph) 9
Observations of protoplanetary disks Near-Infrared (λ = 1.65 µm) (Sub-)mm (λ = 1.3 mm) ? JWST ∼ 100 AU ∼ 240 AU SAO 206462 (Credit: NAOJ/Subaru) HL Tau (Credit: ESO/ALMA) (with coronograph) 9
Radiative transfer simulations of protoplanetary disks • Derive constraints from existing observations • Provide predictions for observations 10
Radiative transfer simulations of protoplanetary disks • Derive constraints from existing observations • Provide predictions for observations disk structure and star(s) POLArized RadIation Simulator Dust model (Reissl et al. 2016, Brauer et al. 2017) For disks ⇒ (Brauer et al. in prep.) Spectral cube λ MIRI simulator Synthetic observation 10
THEMIS The Heterogeneous dust Evolution Model for Interstellar Solids 11
THEMIS The Heterogeneous dust Evolution Model for Interstellar Solids core/mantle grains (CM) increasing AV, nH, NH diffuse ISM a-C a-C a-C a-SilFe a-SilFe pyroxene- olivine- a-C:H photo-processing type type core/mantle/mantle grains (CMM) a-C/a-C:H a-C/a-C:H a-SilFe a-SilFe a-C:H a-C:H accretion a-C/a-C:H coagulation & ice mantle accretion aggregated core/mantle a-C:H a-SilFe grains (AMM) a-C:H a-SilFe a-SilFe a-SilFe aggregated core/mantle/ice a-SilFe a-SilFe grains (AMMI) dense ISM Overview of the THEMIS model (Jones et al. 2017) 11
THEMIS The Heterogeneous dust Evolution Model for Interstellar Solids aromatic r = 0.4 nm r = 0.7 nm r = 1.0 nm aliphatic Optical properties of carbonaceous grains depending on size and structure (derived from laboratory data) 11
Radiative transfer simulations of protoplanetary disks • Provide predictions for observations • Derive constraints from existing observations disk structure and star(s) POLArized RadIation Simulator Dust model (Reissl et al. 2016, Brauer et al. 2017) For disks ⇒ (Brauer et al. in prep.) Lab. data Spectral cube λ MIRI simulator Synthetic observation 12
Radiative transfer simulations of protoplanetary disks • Provide predictions for observations • Derive constraints from existing observations disk structure and star(s) Dust temperature distribution Dust model Thermal dust emission Scattered stellar emission Lab. data Spectral cube λ MIRI simulator Synthetic observation 12
Planet formation in disks around multiple stars • Multiple star systems are very frequent • GG Tau A: Unique system with a large disk around at least 2 stars 13
Planet formation in disks around multiple stars • Multiple star systems are very frequent • GG Tau A: Unique system with a large disk around at least 2 stars Near-Infrared (λ = 1.65 µm) CO 2-1 line at 1.3 mm Continuum around 1.3 mm (Yang et al. 2017) (Dutrey et al. 2014) 13
Planet formation in disks around multiple stars • Multiple star systems are very frequent • GG Tau A: Unique system with a large disk around at least 2 stars Near-Infrared (λ = 1.65 µm) CO 2-1 line at 1.3 mm Continuum around 1.3 mm (Yang et al. 2017) (Dutrey et al. 2014) Planet? 13
Planet formation in disks around multiple stars • Multiple star systems are very frequent • GG Tau A: Unique system with a large disk around at least 2 stars Near-Infrared (λ = 1.65 µm) CO 2-1 line at 1.3 mm Continuum around 1.3 mm ? JWST (Yang et al. 2017) (Dutrey et al. 2014) Planet? 13
Planet formation in disks around multiple stars • Multiple star systems are very frequent • GG Tau A: Unique system with a large disk around at least 2 stars Dust density as a cut through the midplane 13
Planet formation in disks around multiple stars • Multiple star systems are very frequent • GG Tau A: Unique system with a large disk around at least 2 stars 300 0.010 200 0.008 0.006 100 0.004 FI [Jy/as2 ] ∆y [au] 0 0.002 −100 −200 −300 0.000 −200 0 200 ∆x [au] Dust density as a cut through the midplane Simulated emission (λ = 7.7 µm) 13
Planet formation in disks around multiple stars • Multiple star systems are very frequent • GG Tau A: Unique system with a large disk around at least 2 stars Near-Infrared (λ = 1.65 µm) CO 2-1 line at 1.3 mm Continuum around 1.3 mm ? JWST (Yang et al. 2017) (Dutrey et al. 2014) 13
Planet formation in disks around multiple stars • Multiple star systems are very frequent • GG Tau A: Unique system with a large disk around at least 2 stars Infrared (λ = 7.7 µm) Near-Infrared (λ = 1.65 µm) 3 0.014 CO 2-1 line at 1.3 mm Continuum around 1.3 mm 0.012 0.010 2 0.008 0.006 1 0.004 FI [Jy/as2 ] ∆y [′′] 0 0.002 −1 −2 −3 0.000 −2 0 2 (Yang et al. 2017) (Dutrey et al. 2014) ∆x [′′] Synthetic observation (MIRI simulator) 13
Ongoing work and perspectives Extraterrestrial JWST data JWST proposals material / analogues (from 2021) Laboratory Pre-JWST data Data processing experiments Simulation of exoplan- Laboratory data Data analysis etary atmospheres Simulations of Dust modelling Radiative transfer codes JWST observations WP2 WP3 WP4 Geometry and chemical JWST simulated structure of PDRs & disks data processing 14
Ongoing work and perspectives Ongoing studies: Extraterrestrial dust band spectroscopy JWST data origin of disk structures JWST proposals material / analogues (from 2021) other evolutionary states Laboratory Pre-JWST data Data processing experiments Simulation of exoplan- Laboratory data Data analysis etary atmospheres Simulations of Dust modelling Radiative transfer codes JWST observations WP2 WP3 WP4 Geometry and chemical JWST simulated structure of PDRs & disks data processing 14
Ongoing work and perspectives Ongoing studies: Extraterrestrial dust band spectroscopy JWST data origin of disk structures JWST proposals material / analogues (from 2021) other evolutionary states Continue JWST proposal Laboratory (to be submitted in 2020) Pre-JWST data Data processing experiments Additional JWST proposals MATISSE/VLTI proposals Simulation of exoplan- Laboratory data Data analysis etary atmospheres Simulations of Dust modelling Radiative transfer codes JWST observations WP2 WP3 WP4 Geometry and chemical JWST simulated structure of PDRs & disks data processing 14
Ongoing work and perspectives Ongoing studies: Extraterrestrial dust band spectroscopy JWST data origin of disk structures JWST proposals material / analogues (from 2021) other evolutionary states Continue JWST proposal Laboratory (to be submitted in 2020) Pre-JWST data Data processing experiments Additional JWST proposals MATISSE/VLTI proposals Simulation of exoplan- Laboratory data Data analysis etary atmospheres Simulations of Dust modelling Radiative transfer codes JWST observations WP2 WP3 WP4 Geometry and chemical JWST simulated structure of PDRs & disks data processing Future perspectives: Continue to work on star and planet formation Combine gained expertise/knowledge with new topics 14
You can also read