Environmental Impact of Electric Vehicles: Potential of the Circular Economy? - Forschungsstelle für ...

Page created by Christian Weaver
 
CONTINUE READING
Environmental Impact of Electric Vehicles: Potential of the Circular Economy? - Forschungsstelle für ...
Environmental Impact of Electric Vehicles:
                             Potential of the Circular Economy?

                                               Anika Regett
                        Prof. Dr. Ulrich Wagner, Prof. Dr. Wolfgang Mauch, Jane Bangoj

                            13. Internationale MTZ-Fachtagung Zukunftsantriebe
                                          „Der Antrieb von morgen“

                                           24th of January 2019

    Project “Ressourcensicht auf
    die Energiezukunft” funded by:

1
Environmental Impact of Electric Vehicles: Potential of the Circular Economy? - Forschungsstelle für ...
The Environmental Footprint of Electric Vehicle Batteries –
    A Story of Misleading References and an Emotional Debate
                         Myth 1
                                      Carbon footprint of an electric vehicle battery = 17 t CO2

                         Myth 2
                                      Amortisation period of an electric vehicle = 8 years

                                                          so-called ”Sweden Study“
                                                          provides an overview of studies on the carbon
      Starting point:
                                                           footprint of battery production
                                                          BUT: doesn‘t include these values…

                                                             Tesla-example of Swedish scientists and journalists
                                                             picked up by Danish and then German media
      A chain reaction…                                      transfered to all electric vehicles
                                                             not considering range of validity (100 kWh and
                                                              150-200 kg CO2 eq./kWh) and future improvements
    An overview of the whole story:
2   https://edison.handelsblatt.com/erklaeren/elektroauto-akkus-so-entstand-der-mythos-von-17-tonnen-co2/23828936.html?social=twitter
Environmental Impact of Electric Vehicles: Potential of the Circular Economy? - Forschungsstelle für ...
Plea: Need for Objectivity and a Life Cycle Perspective!

            Potential of the circular economy to reduce the environmental impact of electric
3           vehicles?
1. Carbon Footprint of Battery Production – Impact of Efficiency
    and Renewables

4
1. Carbon Footprint of Battery Production – System Boundaries

                                                           Valid for:
                                                              Energy-related greenhouse
              Raw material extraction                          gas (GHG) emissions
                                                              Cradle-to-Gate

                Material production
                                         Fuel supply and
                                                           GHG emissions
                                           conversion
              Manufacturing of cells
              and other components

                 Battery assembly

              Li-ion traction battery:
                  1 kWh capacity

5
1. Carbon Footprint of Battery Production – Energy-related
    Greenhouse Gas Emissions per Process
                                                                     Valid for:
                                                                        30 kWh system
                                                                        NMC622 (Nickel-Manganese-
                                                                         Cobalt)
                                                                        Inventory data from Argonne
                                                                         National Laboratory (2017)
                                                                        Emission factors from ecoinvent
                                                                        Battery production mix from
                                                                         Fraunhofer roadmap

             Large contribution of electricity in battery manufacturing process
6
             But large variation of demand in current Life Cycle Assessment (LCA) studies
1. Carbon Footprint of Battery Production – Impact of Electricity
    Demand and Emission Factor in Battery Manufacturing
                                                                                                                    Energy-related GHG emissions of battery production
                                                                                                                         in kg CO2 eq. per kWh battery capacity                    Valid for:
                                                                                                                                                                                      30 kWh system

                                         Emission factor of electricity in battery manufacturing in kg/kWh
                                                                                                                                                                                      NMC622 (Nickel-Manganese-
                                                                                                                                                                                       Cobalt)
                               coal                                                                          1.0        112                  162                     212              Inventory data from Argonne
                                                                                                                                                                                       National Laboratory (2017)
               battery                                                                                                                                                                Emission factors from ecoinvent
           production mix                                                                                                                                                             Battery production mix from
                                                                                                                                                                                       Fraunhofer roadmap

              German
           electricity mix
                                                                                                             0.5         87                  112                     137

                             renewable                                                                       0.0         62                   62                      62

                                                                                                                           50                  100                 150
                                                                                                             Electricity demand for battery manufacturing in kWh/kWh battery capacity

                                                                                                                      industrial                                     pilot
                                                                                                                        plant                                        plant

                                                                                                                      analysis                  Swedish literature
                                                                                                                       at hand                     overview

              Strong dependency on state-of-the-art and location of production plant
7
              Significant improvement potential for efficiency and renewables
2. Battery Electric (BEV) vs. Internal Combustion Engine Vehicle
    (ICEV) – Impact of Origin of Charged Electricity

8
2. BEV vs. ICEV – Payback Periods

                                        ≙169 g/km
                                                    Valid for:
                                                       Well-to-Wheel
                                                       Golf class
                                                       30 kWh capacity
                                        ≙ 99 g/km      14 000 km/a
                                                     Battery: 106 kg
                                        ≙ 80 g/km       CO2 eq./kWh
                                                       Other components
                                                        from Hawkins et al.
                                                       Similar lifetime and
                                                        occupancy assumed
                                                       No additional benefits
                                                        (e.g. range of ICEV)
                                        ≙ 17 g/km       considered

            PV:       Mix DE 2015:
         ~1.6 years    ~3.6 years

9
2. BEV vs. ICEV – Sensitivities of Payback Period
                                        Payback Period of BEV vs. ICEV

                                         PV: ~1.6 years

                        -                                                          +
     • Comparison to Diesel                                     • Efficiency and renewables in
        2.1 years for PV                                         production (62 kg CO2 eq./kWh)
     • Larger battery                                              1.4 years for PV
       (simplified scaling to 50 kWh)                           • Large reduction potential through
        2.6 years for PV                                         increase of energy density (trend)
     • Lower annual mileage                                     • Higher annual mileage

               Further potential of End-of-Life approaches such as recycling and
10
               Second-Life to improve the environmental footprint?
3. Impact of Recycling and Second-Life (SL) on Critical Metal
     Demand – Further Reduction Potential at End-of-Life (EoL)

11
3. Impact of Recycling and SL on Critical Metal Demand –
 Modelling Approach and Advantages

                                                                                                       Approach

                                                                                  • Primary demand of lithium (Li) and
                                                                                    cobalt (Co)
                                                                                  • Dynamic Material Flow Analysis
                                                                                  • Stock-and-Flow-Model for Germany
                                                                                  • Production and EoL (recycling and SL)
                                                                                  • 2015 to 2050 (annual resolution)
                                                                                  • Batteries: electric vehicles, PV home
                                                                                    storage, power control reserve
                                                                                  • Linking of mobile and stationary
                                                                                    applications through SL
                                                                                  • Considerations of lifetimes

                                                                                            Time dependencies
                                                                                            Substitution effects in
                                                                                             stationary battery markets

12   Figure: VDE Study on „Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen“: FfE, TUM, 2016
3. Impact of Recycling and Second-Life on Critical Metal Demand
 – “Reference“ vs. “Recycling“ Scenario
                                                                                     Valid for:
                                                                                      Market development:
                                                                                         NEP for stationary,
                                                                                         ERP for traction
                                                                                        Av. battery capacity:
                                                                                         34 kWh (2015) to 44
                                                                                         kWh (2050)
                                                                                        Rec. rate Co: 94%
                                                                                        Rec. Rate Li:
                                                                                         0 %, from 2020: 57 %
                                                                                        Max. collection rate:
                                                                                         100 %
                                                                                        Current mix of cell
                                                                                         technologies
                                                                                        Battery lifetime: 20 a
                                                                                         stationary, 12 a
                                                                                         traction

                   As expected: large reduction of primary demand for Li and especially Co
                   But still high level of demand despite conservative electric vehicle scenario:
                    2 100 t Co in 2050 (about 2 % of current global production)
13   NEP=Netzentwicklungsplan, ERP=Energiereferenzprognose
3. Impact of Recycling and Second-Life on Critical Metal Demand
 – “Recycling“ vs. “Second-Life“ Scenario

                                                                     Valid for:
                                                                        Market development:
                                                                         NEP for stationary,
                                                                         ERP for traction
                                                                        Av. battery capacity:
                                                                         34 kWh (2015) to 44
                                                                         kWh (2050)
                                                                        Rec. rate Co: 94%
                                                                        Rec. Rate Li:
                                                                         0 %, from 2020: 57 %
                                                                        Max. SL feasibility and
                                                                         collection rate: 100 %
                                                                        Current mix of cell
                                                                         technologies
                                                                      Battery lifetime: 20 a
                                                                         for stationary, 12 a for
                                                                         traction, 8 a SL

          Overall: reduction of primary Li and Co demand through Second-Life
          But in the short- to medium-term: depending on boundary conditions
14         increase in critical metal demand (in this case Co)
4. Conclusion – The Bigger Picture

15
4. Conclusion – Key Messages
     1
         The higher efficiency of an electric vehicle is currently reduced by a larger environmental
         impact in the production phase.

     2
         But overall, electric vehicles (batteries or fuel cells) are from today's view the only notable and
         indispensable option for a comprehensive integration of renewables in the transport sector.

     3
         The circular economy offers a considerable potential for an improvement of the environmental
         performance in all phases of the battery’s life cycle.

     4
         In this context efficiency and renewables in battery production and the vehicle’s use phase
         play a decisive role to improve the carbon footprint of electric mobility.

     5
         A thought-through implementation of recycling and Second-Life approaches offers further
         improvement potential, also with regard to critical metals such as lithium and cobalt.
16
Analysis: „Carbon footprint of electric vehicles – a plea for more
 objectivity“
      Press release:
            https://www.ffe.de/publikationen/pressemeldungen/856-klimabilanz-von-elektrofahrzeugen-ein-
             plaedoyer-fuer-mehr-sachlichkeit

      Detailed analysis:
            https://www.ffe.de/attachments/article/856/Klimabilanz_Elektrofahrzeugbatterien_FfE.pdf

      Supplementary material:
            https://www.ffe.de/attachments/article/698/Begleitdokument_Klimabilanz_Elektrofahrzeugbatterien
             _FfE.pdf

      Data on recent production processes and battery systems to update this
        analysis?

17
Thank you for your attention!

     Anika Regett, M.Sc.
     +49 (89) 158121-45
     ARegett@ffe.de

     Forschungsstelle für Energiewirtschaft (FfE) e.V.
     Am Blütenanger 71
     80995 München
     www.ffe.de

     Register now for “FfE-Energietage“ (1st - 4th of April 2019):
     www.ffe.de/aktuelles/energietage2019

18
Ergebnis-Symposium des Projekts Dynamis
     Dynamische und intersektorale Maßnahmenbewertung zur kosteneffizienten Dekarbonisierung des Energiesystems

         Eckdaten: Anmeldung: www.ffe.de/dynamis
                       Datum: 4. April 2019 | Teilnahmegebühr: Kostenlos | Räumlichkeiten: Bayerische Akademie der Wissenschaften in München
                       Vorabend Get-Together am 3. April 2019 von 17:30 bis 19:30 Uhr

         Dynamis:                                        Agenda:

         • Bewertung von                                        Dynamische Bewertung von                            Zukunft in einem dekarbonisierten
           CO2-Verminderungsmaßnahmen unter sich               CO2-Verminderungsmaßnahmen                                     Energiesystem
           verändernden Randbedingungen des
                                                        09:00 Uhr   Einleitung, Motivation & Überblick über   13:15 Uhr   Potenziale der Erneuerbaren Energien
           Energiesystems hinsichtlich ihrer
                                                                    Dynamis                                               (Photovoltaik & Windenergie)
           Kosteneffizienz und ihres Potenzials zur
                                                                    • Begrüßung durch das
           Emissionsreduktion                                                                                 13:45 Uhr   Elektrifizierung vs. Green Fuels – Partner
                                                                    Bundesministerium für Wirtschaft und
                                                                                                                          oder Konkurrenten?
         • Fokus insbesondere auf Rückwirkungen der                 Energie
                                                                    • Das Projekt Dynamis im Kontext der      15:15 Uhr   90 % bis 95 % CO2-Emissionsreduktion –
           anwendungsseitigen Maßnahmen auf das
                                                                    Energiewende                                          Ja bitte! Aber wie?
           Energiesystem
                                                                    • Der Dynamis-Ansatz zur Bewertung von    15:30 Uhr   Podiumsdiskussion "Leben in einer
         • Abbildung der Maßnahmen durch                            CO2-Verminderungsmaßnahmen                            dekarbonisierten Welt: Chancen und
           Erweiterung der Optimierungsmodelle der      10:30 Uhr   Die großen Stellhebel zur                             Herausforderungen für Energiewirtschaft
           Bereitstellungsseite um eine detaillierte                Dekarbonisierung der                                  und Politik“
           Modellierung der vier Endenergiesektoren                 Endenergiesektoren                        16:30 Uhr   Zusammenfassung & Ausblick
           Verkehr, Haushalte, GHD und Industrie                    Jeweils:
                                                                    10 Minuten wissenschaftlicher Vortrag
         • Berücksichtigung dynamischer                             + 10 Minuten Kommentar eines              16:45 Uhr   Ausklang bei gemütlichem Get-Together
           Wechselwirkungen in der Berechnung von                   Industrievertreters
           CO2-Verminderungskosten                                  + 10 Minuten Diskussion im Plenum
                                                                    • Verkehr
                                                                    • Industrie
                                                                    • Haushalte & GHD

19
You can also read