Environmental Impact of Electric Vehicles: Potential of the Circular Economy? - Forschungsstelle für ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Environmental Impact of Electric Vehicles: Potential of the Circular Economy? Anika Regett Prof. Dr. Ulrich Wagner, Prof. Dr. Wolfgang Mauch, Jane Bangoj 13. Internationale MTZ-Fachtagung Zukunftsantriebe „Der Antrieb von morgen“ 24th of January 2019 Project “Ressourcensicht auf die Energiezukunft” funded by: 1
The Environmental Footprint of Electric Vehicle Batteries – A Story of Misleading References and an Emotional Debate Myth 1 Carbon footprint of an electric vehicle battery = 17 t CO2 Myth 2 Amortisation period of an electric vehicle = 8 years so-called ”Sweden Study“ provides an overview of studies on the carbon Starting point: footprint of battery production BUT: doesn‘t include these values… Tesla-example of Swedish scientists and journalists picked up by Danish and then German media A chain reaction… transfered to all electric vehicles not considering range of validity (100 kWh and 150-200 kg CO2 eq./kWh) and future improvements An overview of the whole story: 2 https://edison.handelsblatt.com/erklaeren/elektroauto-akkus-so-entstand-der-mythos-von-17-tonnen-co2/23828936.html?social=twitter
Plea: Need for Objectivity and a Life Cycle Perspective! Potential of the circular economy to reduce the environmental impact of electric 3 vehicles?
1. Carbon Footprint of Battery Production – Impact of Efficiency and Renewables 4
1. Carbon Footprint of Battery Production – System Boundaries Valid for: Energy-related greenhouse Raw material extraction gas (GHG) emissions Cradle-to-Gate Material production Fuel supply and GHG emissions conversion Manufacturing of cells and other components Battery assembly Li-ion traction battery: 1 kWh capacity 5
1. Carbon Footprint of Battery Production – Energy-related Greenhouse Gas Emissions per Process Valid for: 30 kWh system NMC622 (Nickel-Manganese- Cobalt) Inventory data from Argonne National Laboratory (2017) Emission factors from ecoinvent Battery production mix from Fraunhofer roadmap Large contribution of electricity in battery manufacturing process 6 But large variation of demand in current Life Cycle Assessment (LCA) studies
1. Carbon Footprint of Battery Production – Impact of Electricity Demand and Emission Factor in Battery Manufacturing Energy-related GHG emissions of battery production in kg CO2 eq. per kWh battery capacity Valid for: 30 kWh system Emission factor of electricity in battery manufacturing in kg/kWh NMC622 (Nickel-Manganese- Cobalt) coal 1.0 112 162 212 Inventory data from Argonne National Laboratory (2017) battery Emission factors from ecoinvent production mix Battery production mix from Fraunhofer roadmap German electricity mix 0.5 87 112 137 renewable 0.0 62 62 62 50 100 150 Electricity demand for battery manufacturing in kWh/kWh battery capacity industrial pilot plant plant analysis Swedish literature at hand overview Strong dependency on state-of-the-art and location of production plant 7 Significant improvement potential for efficiency and renewables
2. Battery Electric (BEV) vs. Internal Combustion Engine Vehicle (ICEV) – Impact of Origin of Charged Electricity 8
2. BEV vs. ICEV – Payback Periods ≙169 g/km Valid for: Well-to-Wheel Golf class 30 kWh capacity ≙ 99 g/km 14 000 km/a Battery: 106 kg ≙ 80 g/km CO2 eq./kWh Other components from Hawkins et al. Similar lifetime and occupancy assumed No additional benefits (e.g. range of ICEV) ≙ 17 g/km considered PV: Mix DE 2015: ~1.6 years ~3.6 years 9
2. BEV vs. ICEV – Sensitivities of Payback Period Payback Period of BEV vs. ICEV PV: ~1.6 years - + • Comparison to Diesel • Efficiency and renewables in 2.1 years for PV production (62 kg CO2 eq./kWh) • Larger battery 1.4 years for PV (simplified scaling to 50 kWh) • Large reduction potential through 2.6 years for PV increase of energy density (trend) • Lower annual mileage • Higher annual mileage Further potential of End-of-Life approaches such as recycling and 10 Second-Life to improve the environmental footprint?
3. Impact of Recycling and Second-Life (SL) on Critical Metal Demand – Further Reduction Potential at End-of-Life (EoL) 11
3. Impact of Recycling and SL on Critical Metal Demand – Modelling Approach and Advantages Approach • Primary demand of lithium (Li) and cobalt (Co) • Dynamic Material Flow Analysis • Stock-and-Flow-Model for Germany • Production and EoL (recycling and SL) • 2015 to 2050 (annual resolution) • Batteries: electric vehicles, PV home storage, power control reserve • Linking of mobile and stationary applications through SL • Considerations of lifetimes Time dependencies Substitution effects in stationary battery markets 12 Figure: VDE Study on „Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen“: FfE, TUM, 2016
3. Impact of Recycling and Second-Life on Critical Metal Demand – “Reference“ vs. “Recycling“ Scenario Valid for: Market development: NEP for stationary, ERP for traction Av. battery capacity: 34 kWh (2015) to 44 kWh (2050) Rec. rate Co: 94% Rec. Rate Li: 0 %, from 2020: 57 % Max. collection rate: 100 % Current mix of cell technologies Battery lifetime: 20 a stationary, 12 a traction As expected: large reduction of primary demand for Li and especially Co But still high level of demand despite conservative electric vehicle scenario: 2 100 t Co in 2050 (about 2 % of current global production) 13 NEP=Netzentwicklungsplan, ERP=Energiereferenzprognose
3. Impact of Recycling and Second-Life on Critical Metal Demand – “Recycling“ vs. “Second-Life“ Scenario Valid for: Market development: NEP for stationary, ERP for traction Av. battery capacity: 34 kWh (2015) to 44 kWh (2050) Rec. rate Co: 94% Rec. Rate Li: 0 %, from 2020: 57 % Max. SL feasibility and collection rate: 100 % Current mix of cell technologies Battery lifetime: 20 a for stationary, 12 a for traction, 8 a SL Overall: reduction of primary Li and Co demand through Second-Life But in the short- to medium-term: depending on boundary conditions 14 increase in critical metal demand (in this case Co)
4. Conclusion – The Bigger Picture 15
4. Conclusion – Key Messages 1 The higher efficiency of an electric vehicle is currently reduced by a larger environmental impact in the production phase. 2 But overall, electric vehicles (batteries or fuel cells) are from today's view the only notable and indispensable option for a comprehensive integration of renewables in the transport sector. 3 The circular economy offers a considerable potential for an improvement of the environmental performance in all phases of the battery’s life cycle. 4 In this context efficiency and renewables in battery production and the vehicle’s use phase play a decisive role to improve the carbon footprint of electric mobility. 5 A thought-through implementation of recycling and Second-Life approaches offers further improvement potential, also with regard to critical metals such as lithium and cobalt. 16
Analysis: „Carbon footprint of electric vehicles – a plea for more objectivity“ Press release: https://www.ffe.de/publikationen/pressemeldungen/856-klimabilanz-von-elektrofahrzeugen-ein- plaedoyer-fuer-mehr-sachlichkeit Detailed analysis: https://www.ffe.de/attachments/article/856/Klimabilanz_Elektrofahrzeugbatterien_FfE.pdf Supplementary material: https://www.ffe.de/attachments/article/698/Begleitdokument_Klimabilanz_Elektrofahrzeugbatterien _FfE.pdf Data on recent production processes and battery systems to update this analysis? 17
Thank you for your attention! Anika Regett, M.Sc. +49 (89) 158121-45 ARegett@ffe.de Forschungsstelle für Energiewirtschaft (FfE) e.V. Am Blütenanger 71 80995 München www.ffe.de Register now for “FfE-Energietage“ (1st - 4th of April 2019): www.ffe.de/aktuelles/energietage2019 18
Ergebnis-Symposium des Projekts Dynamis Dynamische und intersektorale Maßnahmenbewertung zur kosteneffizienten Dekarbonisierung des Energiesystems Eckdaten: Anmeldung: www.ffe.de/dynamis Datum: 4. April 2019 | Teilnahmegebühr: Kostenlos | Räumlichkeiten: Bayerische Akademie der Wissenschaften in München Vorabend Get-Together am 3. April 2019 von 17:30 bis 19:30 Uhr Dynamis: Agenda: • Bewertung von Dynamische Bewertung von Zukunft in einem dekarbonisierten CO2-Verminderungsmaßnahmen unter sich CO2-Verminderungsmaßnahmen Energiesystem verändernden Randbedingungen des 09:00 Uhr Einleitung, Motivation & Überblick über 13:15 Uhr Potenziale der Erneuerbaren Energien Energiesystems hinsichtlich ihrer Dynamis (Photovoltaik & Windenergie) Kosteneffizienz und ihres Potenzials zur • Begrüßung durch das Emissionsreduktion 13:45 Uhr Elektrifizierung vs. Green Fuels – Partner Bundesministerium für Wirtschaft und oder Konkurrenten? • Fokus insbesondere auf Rückwirkungen der Energie • Das Projekt Dynamis im Kontext der 15:15 Uhr 90 % bis 95 % CO2-Emissionsreduktion – anwendungsseitigen Maßnahmen auf das Energiewende Ja bitte! Aber wie? Energiesystem • Der Dynamis-Ansatz zur Bewertung von 15:30 Uhr Podiumsdiskussion "Leben in einer • Abbildung der Maßnahmen durch CO2-Verminderungsmaßnahmen dekarbonisierten Welt: Chancen und Erweiterung der Optimierungsmodelle der 10:30 Uhr Die großen Stellhebel zur Herausforderungen für Energiewirtschaft Bereitstellungsseite um eine detaillierte Dekarbonisierung der und Politik“ Modellierung der vier Endenergiesektoren Endenergiesektoren 16:30 Uhr Zusammenfassung & Ausblick Verkehr, Haushalte, GHD und Industrie Jeweils: 10 Minuten wissenschaftlicher Vortrag • Berücksichtigung dynamischer + 10 Minuten Kommentar eines 16:45 Uhr Ausklang bei gemütlichem Get-Together Wechselwirkungen in der Berechnung von Industrievertreters CO2-Verminderungskosten + 10 Minuten Diskussion im Plenum • Verkehr • Industrie • Haushalte & GHD 19
You can also read