ARIEL - Ignasi Ribas Institut d'Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l'Espai (ICE, CSIC) - Carmenes
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
ARIEL Enabling planetary science across light-years Ignasi Ribas Institut d’Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l’Espai (ICE, CSIC) 1st meeting of ExoNet, Granada, 22/2/2019
Huge diversity: why? Formation & evolution processes? Migration? Interaction with star? Accretion Gaseous planets form here Interaction with star Planet migration Ices, dust, gas
Key exoplanet questions • How diverse are exoplanets chemically? • Does chemical diversity correlate with other parameters? • How do planets form? • How do planets evolve?
Warm/hot exoplanets O, C, N, S (TI, VO, SI) MOLECULES ARE IN GAS FORM Atmospheric pressure 0.01Bar H2O gas CO2 gas CO gas CH4 gas HCN gas TiO gas T ~ 500-2500 K Condensates VO gas H2S gas 1 Bar Gases from interior
Issues with current data • Low SNR & R observations • Data are sparse, not enough wavelength coverage • Broad wavelength coverage is not simultaneous • Absolute calibration at the level of 10-4 is not guaranteed! • Instrument systematics are difficult to disentangle from the signal • Stellar activity is the largest source of astrophysical noise • We need observations on a population of objects to draw conclusions
ARIEL – ESA M4 mission • 1-m telescope, spectroscopy from VIS to IR • Satellite in orbit around L2 • ~1000 exoplanets observed (rocky + gaseous) • Launch in 2028 – 3.5-yr mission • Simultaneous coverage 0.5-7.8 micron • Payload consortium: 15 ESA countries + NASA under study
A chemical survey of a large population SCIENCE REQUIREMENTS: EXOPLANET RADIATION, MOLECULAR & CLOUD SIGNATURES, STELLAR ACTIVITY H2 O CO2 CH4 CO H + 3 HCN NH3 SO 2 SiO TiO VO C H 2 2 C H 2 (R /R ) 2 4 s C H 2 6 p PH 3 1 2 3 4 5 6 7 8 Wavelength ( m) Simultaneous observations in the VIS and IR are needed
ARIEL 3-tier approach INDIVIDUAL PLANETS & POPULATION ANALYSIS • Main atmospheric component • Trace gases SURVEY • Thermal structure • Cloud characterization • What fraction of planets • Elemental composition D EEP SURVEY have clouds? • Have small planets still retained H/He? BENCHMARK • Color-color diagrams • Refinement of ~ 50-100 orbital/planet parameters in IR • Atmospheric ~ 500 circulation • Spatial & temporal ~ 1000 PLANETS variability
Chemical diversity ARIEL WILL CLARIFY CORRELATION WITH THE DENSITY – 42 – Density observations Atmospheric composition through ● ARIEL will clarify the degeneracy 3.0 O 3.0 / T(K) K-20c H2 4000 2200 K-26b 0% 1600 ▲ K-26c 10 1000 2O ▲● H % 400 1200 GJ1214b 50 2O ● 2.5 2.5 H 100 900 HIP116454 % K-307b 20 ▲ 40 700 ● K-307c K-10c ) ck ● 10 500 ▲ HD97658b (3 ro Fe Rocky Icy ● 55Cnce i O % gS 25 K-60d r (R⊕) 2.0 ▲ ▲ M % Fe 2.0 Interior Interior K-60c ● 50 K-60b K-20b ▲ K-21b ● HD219134b Fe ● ● % 100 COROT7b 1.5 K-10b ● ▲ 1.5 H/He ● K-93b K-36b Water vapor ▲ K-105c Atmosphere Atmosphere ● K-78b 1.0 ● 1.0 ● Earth Venus 0.8 1 1.5 2 3 4 5 6 7 8 910 m (M⊕) 15 20 Same mean density – Different atmospheric signatures López-Morales et al. 2016; Valencia et al. 2013 Mass-Radius relation for planets with masses < 20 M , measured with precisions
Large population of warm/hot planets TODAY AND IN THE NEXT DECADE TESS yields Sullivan et al. 2015
ARIEL sky visibility Instantaneous Sky 100% 80% 60% 40% Survey Visibility Deep Benchmark
ARIEL science working groups Spectral retrieval: Michiel Min (SRON), Joanna Barstow (UCL), Ingo Waldmann (UCL) Planet interior: Ravit Helled (Un. Zurich), Stephanie Werner (Un. Oslo) Planet formation: Diego Turrini (INAF) Disks: Mihkel Kama (Cambridge), Olja Panic (Leeds) Atmospheric chemistry: Olivia Venot (LISA), Yamila Miguel (Un. Leiden), Franck Selsis (Un. Bordeaux) Mass measurement with RV: Lars A. Buchhave (DTU), Olivier Demangeon (Un. Porto) Stellar characterisation: Camilla Danielski (CEA) Data challenges: Subi Sarkar (Un. Cardiff) and Theresa Leuftinger (Un. Vienna) (Stellar activity) Nikos Nikolaou (UCL) (Data reduction), Michel Min (SRON) (Retrievals) Stellar activity: Bart Vandenbussche (Un. Leuven), Ignasi Ribas (IEEC-CSIC), Giusi Micela (INAF) Data analysis: Ingo Waldmann (UCL), Angelos Tsiaras (UCL)
ARIEL science working groups Upper atmosphere/star-planet interaction: Antonio Garcia Muñoz (TU Berlin), Manuel Guedel (U. Vienna), Luca Fossati (U. Graz) High-cadence photometry: Davis Waltham (RH), Gyula Szabo (Un. Eötvös Loránd), Luca Borsato (Un. Padova) Ephemerides: Vincent Coudé du Foresto (Obs. Paris) Phase-curves: Benjamin Charnay (Obs. Paris), João Mendonça (DTU) Albedo and reflected light (+ synergy with other instruments): Olivier Demangeon (Un. Porto) Synergy with ELT & ground-based obs.: Enric Palle (IAC) Synergy with JWST: Pierre-Olivier Lagage (CEA) Synergy with Solar System science: Gabriella Gilli (Obs. Lisboa), Pedro Machado (Obs. Lisboa) Synergy with PLATO and CHEOPS: Isabella Pagano (INAF), Giampaolo Piotto (Un. Padova)
ARIEL science working groups Scheduling: Juan Carlos Morales (ICEE-CSIC), Andrea Moneti (IAP) Performance simulations: Enzo Pascale (La Sapienza/Cardiff), Subi Sarkar (Cardiff), Billy Edwards (UCL), Lorenzo Mugnai (La Sapienza) Spectroscopic database: Clara Sousa-Silva (MIT), Svatopluk Civiš (Heyrovsky Institute) Other science: brown dwarfs: Sarah Casewell (Un. Leicester) Other science: young stellar objects: Csaba Kiss (Konkoly Obs.), Krisztián Vida (Konkoly Obs.) Novel methods to handle high-volume, high-dimensional data: James Cho (QMUL) Synergy with NGTS, HAT: Matt Burleigh (Leicester Un.), Gaspar Bakos (Princeton) Synergy with TESS: TBA from US Synergy with amateur astronomers: Anastasia Konkori (Royal Museums Greenwich), Marco Rocchetto (Konica Minolta)
ARIEL payload + EGSE + mission planning
Our role in the ARIEL consortium ARIEL Consortium France Co-PI Italy Co-PI Spain Co-PI Belgium Co-PI Poland Co-PI UK Co-PI Steering Committee Giusi Micela Jean-Philippe Ignasi Ribas Bart Vandenbussche Miroslaw Rataj Matt Griffin Beaulieu (MLA Mandated Member INAF - Palermo IEEC – CSIC KU Leuven SRC Warsaw Cardiff University CNRS IAP State Representatives) Consortium PI Austria Co-PI USA Co-PI Italy Co-PI France Co-PI Spain Co-PI Netherlands Co-PI Giovanna Tinetti Pino Malaguti Pierre-Olivier Lagage Enric Palle Michiel Min Manuel Güdel Mark Swain UCL CEA CEA Saclay IAC SRON Uni of Vienna JPL Consortium Project Czech Rep co-PI Manager Denmark Co-PI Ireland Co-PI Norway co-PI Martin Ferus Paul Eccleston Lars Buchhave Tom Ray Stephanie Warner Czech Academy of RAL Space DTU Space DIAS University of Oslo Science ARIEL Science Team Chaired by ESA ARIEL PS Germany Co-PI Sweden co-PI Portugal Co-PI Hungary co-PI Paul Hartogh Kay Justtanont Pedro Machado Robert Szabo MPS Chalmers Uni. Uni de Lisboa Konkoly Obs Consortium Co-PI Board ESA ARIEL Project Team Consortium Project Systems Engineering Instrument Scientist Telescope Scientist Mission Scientist Consortium PI Lead Manager Kevin Middleton Marc Ollivier Enzo Pascale Matt Griffin Giovanna Tinetti ESA ARIEL Project ESA ARIEL Project Paul Eccleston IAS Uni di Roma Cardiff University UCL Manager Scientist RAL Space RAL Space Italy NPM France NPM Spain NPM Belgium NPM Poland NPM ESA ARIEL Payload ESA ARIEL Emanuele Pace Michel Berthe Pep Colome Bart Vandenbussche Miroslaw Rataj Manager Project Team Uni di Firenze CEA IEEC – CSIC KU Leuven SRC Warsaw Netherlands NPM UK NPM Ireland NPM Austria NPM USA NPM Matthijs Krijger Rachel Drummond Deirdre Coffey Manfred Steller Kirk Seaman SRON RAL Space UCD / DIAS IWF Graz JPL Czech Rep NPM Germany NPM Denmark NPM Portugal NPM Norway NPM Svata Civis TBD Søren Møller Pedersen Manuel Abreu TBD Czech Academy of MPS DTU Space Uni de Lisboa TBD Science Consortium Management Team
Spanish consortium organization + M.R. Zapatero Osorio (member of ESA’s ARIEL Science Team)
Conclusions • ARIEL has been conceived to deliver the first chemical survey of ~1000 exoplanets, probing uniformly the gamut of planet and stellar parameters • The Spanish participation in the ARIEL mission science consortium and payload development is very significant • Timeline: Phase B1 (2019-2020), mission adoption (Nov 2020), phase B2 (2021-2022) • Think abut joining the science WGs!
You can also read