Destination: Mars - Activity Packet

Page created by Dan Floyd
 
CONTINUE READING
Destination: Mars

    Activity Packet
      National Aeronautics and Space Administration
              Lyndon B. Johnson Space Center
    Earth Science and Solar System Exploration Division

           Houston Museum of Natural Science
                Burke Baker Planetarium
                    Houston, Texas
About Destination: Mars
Contents                                                                        Jaclyn S. B. Allen
                                                                                 Scientist/Ed. Specialist, Lockheed Martin
                                                                                Anita Dodson
Lesson 1. Getting There — Navigation
                                                                                 Graphic Design, Lockheed Martin
          and Trajectory ............................................3
Lesson 2. Tricky Terrain — Investigating
          Planetary Soils ......................................... 11
Lesson 3. Lava Layering — Making and
                                                                                Educational Video
                                                                                The Destination: Mars educational video presents a
          Mapping a Volcano .................................. 17
                                                                                useful parallel with the lessons. The 33 minute video
Lesson 4. Mapping Mars — Geologic
                                                                                chronicles a simulated human mission to Mars in 2018.
          Sequence of Craters and River
                                                                                The six astronauts narrate their exploration through “real
          Channels .................................................. 27
                                                                                time” log reports. Destination: Mars is available as an
Lesson 5. Searching for Life on Mars .................... 35
                                                                                educational video from NASA CORE, Lorain County Joint
Lesson 6. Why Do We Explore? .............................. 49
                                                                                Vocational School, 15181 Route 58 South, Oberlin, OH
Glossary ................................................................. 55
                                                                                44074, (440) 774-1051, ext. 249 or 293, Fax (440) 774-2144. It
Mars Fact Sheet ........................................................ 56
                                                                                is also a multimedia planetarium program available from
                                                                                Spitz Inc., P. O. Box 198, Route 1, Chadds Ford, PA 19317,
                                                                                contact John Schran (610) 459-5200, Fax (610) 459-8330.
The lessons are designed to increase students’
knowledge, awareness, and curiosity about the process
of scientific exploration of Mars. As scientists look for
evidence of life on Mars, they will focus much of their
                                                                                Internet
                                                                                NASA Johnson Space Center, Office of the Curator
search in areas where volcanic heat and water interacted
                                                                                Lunar Rocks and Antarctic Meteorites
early in the geologic history of the planet. Two lessons
                                                                                http://www-curator.jsc.nasa.gov/curator/curator.htm
in this packet on volcanoes and mapping river channels
                                                                                Contains educational material and information about
reinforce these basic geologic processes. These
                                                                                rocks from space.
lessons lead directly to a set of simple activities that
help students develop an understanding of the microbial
life scientists will be searching for on Mars. The                              Lunar and Planetary Institute
hands-on, interdisciplinary activities reinforce and                            http://cass.jsc.nasa.gov/lpi.html
extend important concepts within existing curricula.                            Contains educational material and Lunar and Mars
                                                                                images.

Acknowledgements                                                                NASA Jet Propulsion Laboratory
This activity packet was developed by teachers working                          Mars Global Surveyor
with scientists at Johnson Space Center’s Earth Science                         http://mgswww.arc.nasa.gov/index.html
and Solar System Exploration Division.                                          Mars Pathfinder
                                                                                http://www.mars.ucar.edu/default.html
Marilyn M. Lindstrom
 Planetary Scientist, NASA JSC - Office of Curator
Kathleen Mayse
 Teacher, Clear Creek ISD, Houston, Texas
Linda Schrade
 Teacher, Clear Creek ISD, Houston, Texas
Karen Stocco
 Teacher, Pasadena ISD, Pasadena, Texas
Kay Tobola
 Teacher, Clear Creek ISD, Houston, Texas
Carlton C. Allen
 Planetary Scientist, Lockheed Martin

2    Destination: Mars                                                                                                     10/97 NASA JSC
Lesson One                                        Getting There!

Navigation and Trajectory
About This Lesson
In Activity One students represent the orbital paths
of Earth and Mars through dramatic group
demonstrations.

In Activity Two students working in pairs plot the
paths (trajectories) of a spacecraft traveling
between Earth and Mars in the year 2018 and
returning in 2020. These paths use the minimum
amount of fuel, and take about six months to fly
from one planet to the other.

Objectives                                                 Vocabulary
Students will:                                             orbit, trajectory
    • consider the relationships of the planets as
        they move around the Sun.
    • consider expenditure of time/fuel for                Activity One —
        payload in space travel.
    • develop awareness of what actually
        happens on minimum fuel orbits.                    Dancing with the
    • plot the paths of spacecraft leaving Earth           Planets
        in 2018 for Mars and leaving Mars in 2020
        for Earth.                                         Materials
                                                             q Student Procedure, Dancing with the
Background                                                       Planets (pg. 7), one per group
Major considerations for traveling to Mars are the           q costume and prop materials as needed
amount of time the trip takes, the amount of fuel
needed for the trip, and the size of the payload. A        Procedure
fast trip would be advantageous to the crew by                Advanced Preparation
reducing the time they are exposed to weightless-             1. Read background and Student Procedure.
ness, radiation, and other dangers inherent to space              Research other sources of information as
travel. However, fast trips require more fuel and                 needed.
that means less payload. People, equipment, and               2. Gather materials.
supplies would be reduced as larger amounts of                3. Determine the time and space limitations
fuel are carried to increase the speed of the trip.               that will best fit the learning situation.
                                                              Classroom Procedure
Earth and Mars move at different speeds around                1. Divide the class into groups of 4-6.
the Sun. The Earth completes its solar orbit every            2. Hand out the Student Procedure.
365 days while Mars completes its orbit every 687             3. Discuss the time and space limitations for
days. This happens for two reasons. First, the                    groups to consider in planning their
Earth is closer to the Sun so it travels less distance.           dramatic demonstrations. Encourage the
Secondly, it travels faster in its orbit. Planets                 use of music, props, and choreography.
closer to the Sun travel faster.                              4. Allow adequate time for presentation and
                                                                  discussion of observations.

10/97 NASA JSC                                                                            Destination: Mars    3
Activity Two —
                                                           4. Help students become familiar with the
                                                              data. Check for understanding. It is
Plotting the Paths                                            essential that students understand that Earth
of Spacecraft                                                 and Mars are moving and that the slashes
                                                              on the Earth orbit represent the first of each
Materials                                                     month.
  ❑ Student Procedure, Plotting the Paths                  5. Help students plot the first date —
      of Spacecraft (pg. 8)                                   May 11, 2018.
  ❑ Student Sheets, Earth to Mars and Mars
      to Earth (pgs. 9-10)                                 Note: When plotting the distance from Sun point,
  ❑ pencils                                                   the compass point is always put on the Sun;
  ❑ drawing compass                                           when plotting the distance from Earth, the
  ❑ Teacher Answer Key (pgs. 5-6)                             compass point is put in a different place each
                                                              time. The point should be put on the slash
Procedure                                                     mark that represents where the Earth will be
  Advanced Preparation                                        located on that date.
  1. Gather materials.
  2. Review background.                                    5. Make answer keys available to students so
  3. Complete the plotting exercise for practice.             they can check their work. If their orbits
  Classroom Procedure                                         are not similar to the answer key,
  1. Have students share familiar experiences                 encourage them to redo the procedures to
     that require aiming at a moving target.                  find their error.
     Their examples might be passing a football,           6. Instruct students to apply the procedures to
     catching a fly ball, driving vehicles in paths           plot the return to Earth.
     to avoid being hit, or playing dodge ball.            7. Closing discussion should encourage
     Lead students to discuss the how and why                 students to think about how a six month
     of the movements.                                        flight effects planning trips to Mars.
  2. Have students work in pairs. They may
     switch jobs for each plotting exercise.              More background information is contained in
  3. Hand out Student Procedure and Student               the Destination: Mars Educational video. See
     Sheets.                                              pg. 2 to order.

Suggested Questions
1. What are the orbital challenges of traveling from one planet to another?

2. What are some possible paths for a spacecraft traveling from Earth to Mars?

3. What could make a spacecraft get to Mars faster?

4. What are some of the problems considered by engineers and scientists as they design trips to Mars?

4   Destination: Mars                                                                       10/97 NASA JSC
Earth to Mars
                 Teacher Answer Key

10/97 NASA JSC                        Destination: Mars   5
Mars to Earth
                        Teacher Answer Key

6   Destination: Mars                        10/97 NASA JSC
Student Procedure

  Dancing with the Planets
Student Procedure
As scientists and engineers plan for travel to
other planets, they have to deal with some
basic planetary science.

   A     Earth and Mars move at different speeds around the Sun.
   A     Earth’s orbit is about 150 million kilometers (km) from the Sun.
   A     Mars’ orbit is about 200 million km from the Sun.
   A     Earth completes a solar orbit every 365 days.
   A     Mars completes a solar orbit every 687 days. (The difference in orbit times
         is about a 2 to 1 ratio Mars/Earth.)
   A     Earth completes its orbit in shorter time because it is closer to the Sun and
         has less distance to travel.
   A     Earth travels faster in its orbit. Planets closer to the Sun travel faster.

Using these facts, demonstrate dramatically the movement of Earth and Mars around
the Sun. Incorporate music, costumes, and props in your demonstration for added
effects. Your group may gather other information about Earth and Mars. Make your
presentation scientifically accurate demonstrating as many facts as possible.

10/97 NASA JSC                                                          Destination: Mars   7
A
                                Student Procedure

    Plotting the Paths of Spacecraft
Student Procedure
1. Locate the following on the Earth to Mars Student Sheet;
         • Earth and Mars orbit paths • the Sun
         • Earth and Mars on launch date • the scale in millions of kilometers(km)
         • Earth and Mars on landing date • the location of Earth on the first of each month
2. Review the Spacecraft Position Data Table at the bottom of Earth to Mars Student Sheet.
   The Data Table shows the position of the spacecraft on the first day of each month.
   The first column is the distances of the spacecraft from the Sun in million km.
   The second column is the distances of the spacecraft from the Earth in million km.
   Note: Remember the Earth is moving. Each month it will be in a different place.
3. Plot the path (trajectory) of the spacecraft.
   a. Put the point of the compass on 0 on the scale and extend the angle until the pencil reaches
       the first distance from Sun measurement given in the Data Table (152 million km). Pick up
       the compass and place the point on the Sun in the diagram. Line the compass up with the
       first date given. Strike an arc.
   b. Since the distance from Earth measurement is 0, the first point is where the distance from
       the Sun arc crosses Earth’s orbit.
   c. Using the second set of data, measure the distance from the Sun (155 million km) on the
       scale with the compass. Place the compass point on the Sun and draw a circle. Measure the
       distance from the Earth (5 million km) on the scale with the compass. Place the point of
       the compass on the June 1 slash mark and draw a circle. Notice that there are two points
       where the circles intersect. Choose the intersection which is closest to the launch
       site. This intersection represents the location of the spacecraft. Label location with
       the date (June 1).
   d. Repeat this process using each set of data. Each time, the intersection that is nearer the
       launch site represents where the spacecraft is located on that date.
   e. Repeat these steps with each set of measurements on a given date.
   f. When all 8 points have been plotted, connect the points. This line is the path the spacecraft
       will follow on its trip to Mars.
4. Using the key, check that your line is similar to the model. If the two lines differ, find the
   place in the process where the error occurred. Make sure you understand the process before
   going to step 5.
5. Plot the trajectory of the return trip to Earth from Mars using the second diagram and
   Data Table. Follow steps 1-4.
6. A minimum fuel trip between Earth and Mars takes about 200 days. Think about how this
   effects planning trips to Mars. Because of this long time in space, what must happen? What
   cannot happen? What might happen? These are the questions that mission planners must
   answer. What are other questions that might be asked about planning trips with minimum fuel
   orbits?

8   Destination: Mars                                                               10/97 NASA JSC
Earth to Mars
       Student Sheet

                       Data Table

       (1)
       (2)
       (3)
       (4)
       (5)
       (6)
       (7)
       (8)

10/97 NASA JSC                      Destination: Mars   9
Mars to Earth
         Student Sheet

                         Data Table

         (1)
         (2)
         (3)
         (4)
         (5)
         (6)
         (7)
         (8)

10   Destination: Mars                10/97 NASA JSC
Lesson Two                                       Tricky Terrains

                          Investigating
                         Planetary Soils
About This Lesson
Students working in teams will read paragraphs
describing the soil samples and record information
on the appropriate chart. Students will then examine
and test unknown soil samples and record test
observations. Using the charts, each unknown
sample will be identified. Students will be asked to
defend their decisions.

Objectives
Students will:
    • extract pertinent information from written
        soil descriptions. They will organize
        information using a fact chart.                    Apollo 17 astronaut using rake to collect small lunar
    • examine characteristics of three soils or soil       rock samples.
        simulants.
    • identify soils by matching the given                 Materials
        descriptions with their own observations of        q Student Sheets, one each per group, Soil
        the soil properties.                                 Information Sheet, Chart of Known Soil
    • identify properties of soils from different            Data, and Chart of Unknown Soil Properties
        bodies in our solar system and note                  (pgs. 13-16)
        similarities and differences.                      q transparencies of the handouts (optional)
                                                           q sets of 3 soil samples (1 set per group)
Background see Soil Information Sheet                        each set contains Mars simulant, Lunar simulant,
                                                             Earth soil (in containers - bottles, vials, or jars)
Soil Samples                                               q 1 magnet per group (Protect the magnet with thin
1. Obtain Lunar and Mars simulants from Johnson              paper so that it is easier to remove fine particles.)
    Space Center, Houston, Texas, 77058,                   q 1 magnifier per group
    Attention: Carl Allen C23. (Allow several              q 1 metric ruler per group
    weeks. Simulants are free in small quantities.
    Cost of shipping is charged for larger quantities.)    Procedure
2. Earth soil that is red or brownish orange can be          Advanced Preparation
    found outdoors in many parts of the country.              1. Obtain soil simulants.
    You will need to write your own description if            2. Make copies of Student Sheets.
    you are not using a typical east Texas orange soil.       3. Prepare sets of 3 soil samples. Label them
                                                                  #1, #2, #3. Keep a record Sample Key.
Vocabulary                                                    4. Assemble and distribute equipment per
properties, robotic, analyze, simulant, composition,              Classroom Procedure.
meteorite, impact, organic, mare, texture

10/97 NASA JSC                                                                              Destination: Mars      11
Classroom Procedure                                          5. Using the information from both charts,
      1. Divide the class into groups (3-4 per                       ask the students to decide which known
          group).                                                    sample matches which unknown sample.
      2. Explain to the students that they are going to              Record the names at the bottom of the
          be acting as real scientists. Scientists need              Chart of Unknown Soil Properties.
          to be very organized and often keep their               6. Lead a discussion that examines the
          information in charts. Students will record                similarities and differences in the soil
          data in chart form.                                        properties.
      3. Hand out Soil Information Sheet and the
          Chart of Known Soil Data. Have the                          •      For some classes, comparing the
          class or teacher read the introduction.                            samples with the chart could be done
          Groups read the soil description                                   as a class.
          paragraphs and fill in the chart (10 to 20                  •      For more advanced students, the
          minutes).                                                          reasoning behind the choices could be
      4. Hand out the Chart of Unknown Soil                                  debated either verbally or in writing.
          Properties and the three unknown soil                       •      Ask students to write their own
          samples. Direct students to examine the                            description of the properties of a
          samples and record their observations.                             different soil sample, possibly samples
          Students should refer to the previous                              they have provided.
          chart to aid their data collection on
          unknown samples.

         Apollo astronaut collecting lunar rocks with tongs, on Apollo 12.

12    Destination: Mars                                                                              10/97 NASA JSC
Student Sheet
                      Tricky Terrain
                 Soil Information Sheet
Human and robotic                                                        on spacecraft help
trips to the Moon                                                        scientists know more
have returned a few                                                      about the soils of
hundred kilograms of                                                     other        planets.
rocks and soil.                                                          Everything in our
Spacecraft have                                                          solar system formed
landed on the Mars                                                       from          similar
surface and analyzed                                                     materials. Similar
the soil, but no                                                         processes formed
samples have been                                                        Earth and other
returned from the red                                                    parts of our solar
planet. In order to                                                      system. Therefore,
become          better                                                   scientists are able to
prepared for future                                                      find soils on our
visits to both the                                                       planet that fairly
Moon and Mars,                                                           closely match the
scientists use the                                                       soils of the Moon
information already                                                      and Mars.
known about these
planetary bodies.                                                        Lunar soil is
The information                                                          composed of rock
helped scientists find Top: Apollo 11 footprint on the Moon.             that has been broken
material on Earth for Bottom: The surface of Mars taken from the         and melted by
use as substitutes for Viking Lander.                                    meteorite impacts.
the Moon and Mars soils. These                  Mars soil is probably volcanic material,
substitutes, called soil simulants, are used    altered by contact with water. Earth soil
to test equipment and techniques for            is also the product of weathered rock
future space exploration.                       minerals, but usually it also has organic
                                                material from dead plants and animals.
What is commonly called dirt is sample
material for scientific studies. Scientists     • Read the descriptions on
have special ways to study soils.               the next page
                                                and complete the
Scientists determine the composition of
                                                “Chart of Known
the soils by using advanced scientific          Soil Data.” Pay
equipment. Many kinds of soils form in          special attention to the words
our solar system. Data from instruments         scientists use to describe the
                                                 soil materials.

10/97 NASA JSC                                                               Destination: Mars   13
Student Sheet

                     JSC-1                      Individual particles are smaller than
                     The Moon                   1 mm. The finest portion can be
                                                separated from the coarser material by
                 JSC-1 is a powder made         repeated shaking. The finer portion is
                 from crushed volcanic          considerably more yellow than the
ash. The ash erupted from a volcano in          coarser material. The powder contains
Arizona. JSC-1 is uniformly dark gray in        about fifty percent dark material which
color. Most of the powder is very fine,         can be separated using a magnet. JSC
with an average size of 0.1 mm. The finest      Mars-1 closely matches the color and
portion can be separated from the coarser       approximates the size and composition
material by repeated shaking. The finer         of soil in the bright areas of Mars.
material looks slightly lighter gray than the
coarser material. Chunks larger than 1                         Earth ET-1
mm are generally masses of the fine
powder, easily broken down with                                 Earth ET-1 is from Polk
moderate pressure. The powder contains                          County in East Texas. It
a small percentage of material that can be                      is not volcanic. Earth
separated using a magnet. JSC-1 closely         ET-1 is orange in color. Most particles
matches the color, size, and composition        are bigger than 1 mm in size. The finest
of soil in the mare areas of the Moon.          portion can be separated from the coarser
                                                material by repeated shaking. There is
                     JSC Mars-1                 no difference in color between the fine
                                                and coarse material. A very small
              JSC Mars-1 is a powder            percentage of the material can be
              made from weathered               separated from the rest using a magnet.
              volcanic ash. The ash was         Some organic material may be present.
erupted from a volcano in Hawaii. JSC           Earth ET-1 is only one of many different
Mars-1 is orange-yellow in color.               soils on our planet.

14   Destination: Mars                                                      10/97 NASA JSC
Student Sheet
Tricky Terrain — Chart of Known Soil Data

                                            15
                                            Destination: Mars
                                            10/97 NASA JSC
Student Sheet

                                                    10/97 NASA JSC
Tricky Terrain — Chart of Unknown Soil Properties

                                                    Destination: Mars
                                                    16
Lesson Three                                          Lava Layering

              Making and Mapping
                   a Volcano
         (Original activity is from Exploring the Moon, a Teacher’s Guide with Activities for Earth and Space
                                   Sciences, NASA Education Product EP-306 1994.)

Part 1—                                                      Where volcanic heat and water interact here on
                                                             Earth, scientists are finding life. In the hot springs
                                                             of Yellowstone Park they have found abundant life
Volcano Construction                                         forms including some very small bacteria. There
Experiments                                                  is a possibility that life may have found a place in
                                                             the ancient volcanic terrain of Mars.

About This Lesson                                            Some of the volcanoes on Mars are basaltic
The focus of this activity is on the sequence of             shield volcanoes like Earth’s Hawaiian Islands.
lava flows produced by multiple eruptions.                   Interpretations of photographs and soil analyses
Baking soda, vinegar, and play dough, are used to            from the Viking and Pathfinder missions indicate
model fluid lava flows. Various colors of play               that many of the lava flows on Mars are probably
dough identify different eruption events. Students           basalt. Scientists believe that basalt is a very
will be asked to observe where the flows travel,             common rock type on all the large bodies of the
make a model, and interpret the stratigraphy.                inner solar system, including Earth.

Objectives
Students will:
    • construct a model volcano.
    • follow a procedure to produce a
        sequence of lava flows.
    • observe, draw, record, and interpret the
        history of the volcano.

Background
Volcanoes and/or lava flows are prominent
features on all large rocky planetary bodies. Even
some asteroid fragments show evidence of lava
flows. Volcanism is one of the major geologic
processes in the solar system. Mars has a long
history of volcanic activity from the ancient
volcanic areas of the southern highlands to the
more recent major volcanoes of the Tharsis bulge.
Olympus Mons is a volcanic mound over 20 km
above the surrounding plains. This one volcano               Olympus Mons, a martian shield volcano, as seen by the
would cover the entire state of Arizona!                     Viking Orbiter.

10/97 NASA JSC                                                                                 Destination: Mars   17
In addition to shield volcanoes, there are dark, flat   Procedure
layers of basaltic lava flows that cover most of           Advanced Preparation
the large basins of Mars and the Earth’s moon.             1. Review background information and
The eruption sources for most of the basin lava               procedure.
flows are difficult to identify because source areas       2 Gather materials.
have been buried by younger flows.                         3. Prepare play dough using recipes
                                                              provided or purchase play dough.
Generally, the overall slope of the surface, local         4. Cover flat work area with newspaper to
topographic relief (small cliffs and depressions),            protect from spills.
and eruption direction influence the path of lava          Classroom Procedure
flows. Detailed maps of the geology of Mars and            1. This activity may be done individually or
the Moon from photographs reveal areas of                     in cooperative teams. Groups of 2-4
complicated lava layering. The study of rock                  usually work well.
layering is called stratigraphy.                           2. Follow procedure on Student Sheet,
                                                              Lava Layering-Part 1.
Older flows become covered by younger flows                3. Discuss the progression of flows, noting
and/or become more pocked with impact craters.                that the youngest is on top and the oldest
Field geologists use differences in roughness,                is on the bottom.
color, and chemistry to differentiate between lava         4. If Lava Layering Part 2 will be completed
flows. Good orbital images allow them to follow               at a later time, be sure to cover the
the flow margins, channels, and levees to try to              volcanoes securely with plastic.
trace lava flows back to the source area.

Vocabulary                                              Recipes
eruption, source, stratigraphy, slope, layers           Play Dough (stove-top recipe)
                                                        Best texture and lasts for months when refriger-
                                                        ated in an air tight container.
Materials Per Volcano Team                                 2 cups flour          1/3 cup oil, scant
  q 1 paper cup, 100 ml (4 oz.) size, cut                  1 cup salt            2 cups cold water
      down to a height of 2.5 cm                           4 teaspoons cream of tartar
  q 2 paper cups, 150-200 ml (6-8 oz.) size                food colorings (20 drops more or less)
  q cardboard, approximately 45 cm square
      (other materials may be used: cookie              Make this large batch one color or divide ingredi-
      sheet or box lid)                                 ents in half to make 2 colors. You will need 4
  q playdough or soft clay — at least 4 fist-           colors total. Combine ingredients and cook mixture
      size balls, each a different color                in a large sauce pan, stirring constantly, until the
  q tape                                                dough forms a ball. Turn dough out onto a floured
  q spoon                                               surface to cool. Then kneed until smooth and
                                                        elastic. Cool completely; refrigerate in air tight
  q baking soda (4-10 spoonfuls depending               containers.
      on number of flows)
  q vinegar, 100-150 ml (4-6 oz.) depending             Play Dough (no-cooking recipe)
      on number and size of flows                          2 cups flour           2 tablespoons oil
  q paper towels                                           1 cup salt             1 cup cold water
  q marker or grease pencil                                6 teaspoons alum or cream of tartar
  q paper and pencil                                       food colorings (as above)
  q optional food coloring to color the vinegar
      if desired, 4 colors; for example, red,           Make this large batch one color or divide ingredi-
      yellow, blue, green                               ents in half to make 2 colors. You will need at
  q Student Sheet, Lava Layering - Part 1               least 4 colors. Mix ingredients and kneed until
      (pgs. 19-20)                                      smooth and elastic. Store in air tight containers.

18   Destination: Mars                                                                        10/97 NASA JSC
Student Sheet

          Lava Layering — Part 1
Materials
  q 1 paper cup, 100 ml (4 oz.) size, cut down to a height
      of 2.5 cm
  q 2 paper cups, 150-200 ml (6-8 oz.) size
  q cardboard or other surface, approx.
      45 cm sq.
  q playdough or soft clay,                      q vinegar, 100 ml (1/2 cup)
      4 fist size balls, each a different color. q paper towels
  q tape                                         q marker or grease pencil
  q spoon                                        q paper and pencil
  q baking soda, 50 ml (1/4 cup)                 q optional: food coloring to
                                                   color vinegar if desired.
Procedure
    1.    Take one paper cup that has been cut to a height of 2.5 cm and secure it onto the cardboard.
          (You may use a small loop of tape on the outside bottom of the cup.) This short cup is your
          eruption source and the cardboard is the original land surface.
    2.    Mark North, South, East, and West on the edges of the cardboard.
    3.    Fill a large paper cup about half full with baking soda.
    4.    Place one heaping spoonful of baking soda in the short cup.
    5.    Pour vinegar into a large paper cup leaving it half full.
          (optional: Fill 4 cups with 25 ml (1/8 cup) of vinegar. To each paper cup of vinegar add 3
          drops of food coloring; make each cup a different color to match playdough. Set them aside.)
    6.    Set aside 4 balls of playdough, each in a different color.
    7.    You are now ready to create an eruption. Slowly pour a small amount of vinegar into your
          source cup and watch the eruption of simulated lava.
    8.    When the lava stops, quickly draw around the flow edge with a pencil or marker.
    9.    Wipe up the fluid with paper towels.
    10.   As best you can, use a thin layer of playdough to cover the entire area where lava flowed.
          Exact placement is not necessary. Match flow color and playdough if available.
    11.   On a separate sheet of paper record information about the flow. Indicate color, shape, direction
          of flow, and thickness. Indicate where this flow is in the sequence; first, second, etc.
    12.   Repeat steps 7 - 11 for each color of play dough available. Four to six flows show a good
          example of a shield volcano.

          NOTES: You may add fresh baking soda to the source cup or spoon out excess vinegar from
          the source cup as needed. Be sure you mark where the lava flows go over previous flows as
          well as on the cardboard. Cover the entire area of each succeeding flow. This will resemble a
          strange layer cake with new flows overlapping old ones.

10/97 NASA JSC                                                                        Destination: Mars   19
Student Sheet

                               Results
1. Look down on your volcano and describe what you see. Add your written
   description to the paper where you recorded the information about the flows.
   Include observations of flows covering or overlapping other flows. Make a quick
   sketch.

2. Where is the oldest flow?

3. Where is the youngest flow?

4. Did the flows always follow the same path? (be specific)

5. What do you think influences the path direction of lava flows?

6. If you had not watched the eruptions, how would you know that there are many
   different layers of lava? Give at least 2 reasons.

7. Which of the reasons listed in answer 6 could be used to identify real lava layers
   on Earth?

8. What are other ways to distinguish between older and younger layered lava flows
   on Earth?

9. Which of the reasons listed in answer 8 could be used to identify lava layers on
   Mars or the Moon?

10. What are other ways to distinguish between older and younger layered lava flows
   on Mars or the Moon? Look at orbital photographs if possible.

20   Destination: Mars                                                     10/97 NASA JSC
Photo geologists use pictures taken by planes and
Part 2—                                                spacecraft to interpret the history of a planet’s
                                                       surface. If they can get to the surface, they do
Volcano Mapping                                        field work by making maps and collecting
Extensions                                             samples. Geologists used pictures taken from
                                                       Mars orbit to interpret the history of the planet’s
                                                       surface. Soon there will be some new data to
About This Activity                                    add to the knowledge of Mars. The Mars Global
 Students will simulate a mapping and field            Surveyor arrived at Mars in the fall of ‘97 and will
exercise. It is very similar to the first steps that   return photos and other data about the surface of
geologists employ when they map and interpret          Mars. Pathfinder landed on July 4, 1997, and
the geologic history of an area. Student teams will    returned valuable data on weather, rocks and soil.
map and study the volcanoes produced by
another team in Lava Layering, Part 1. Lava            Materials
Layering, Part 2 is designed to promote the use of       q volcano made of playdough from Lava
higher order thinking skills and encourages the              Layering - Part 1, one volcano per team
questioning, predicting, testing, and interpreting       q colored pencils or crayons
sequence that is important to scientific inquiry.        q metric rulers (two per group)
                                                         q straight edge for cutting (dental floss and
Objectives                                                   wire cut playdough if knives are not
Students will:                                               permissible)
    • produce a map of an unknown volcano                q large width straws (one per group, or one
        and show the sequence of lava flows.                 5 cm-long piece per student.)
    • interpret the map data and infer the               q Student Sheet, Lava Layering - Part 2
        subsurface extent of the flows.                      (pgs. 25-26)
    • predict where excavations will give the            q toothpicks, 5-10 per volcano
        most information.
    • simulate both natural and human                  Procedure
        excavations.                                      Advanced Preparation
    • write a short geologic history of the               1. Gather materials.
        volcano.                                          2. Read procedure and background.
                                                          3. Small groups of students assemble
Background                                                   volcanoes according to directions in Lava
In the solar system, volcanism is a major process            Layering- Part 1.
active now and in the past. All the large, solid          4. Mapping may be done immediately after
inner solar system planetary bodies have surface             volcano assembly or several days later.
features that have been interpreted as lava flows            The playdough volcano must be covered
and volcanoes. Mars has spectacular volcanoes.               with plastic if left more than a few hours.
Where volcanic heat and water are close together,         5. Review map skills such as keys, scales,
hot springs likely formed. These thermal springs             and measuring techniques.
could have harbored microbial life.

The thought processes and sequence of observ-
ing, taking data, and interpreting that students use
when completing this exercise are very similar to
the real investigations done by field geologists.

10/97 NASA JSC                                                                        Destination: Mars   21
Classroom Procedure                                   6. Make the cuts or cores.
     (This activity can easily be simplified as needed.)       • Remove drill core by pushing a straw
     1. Have teams trade volcanoes so that they                     vertically into the playdough, twisting
         will map a volcano with an “unknown”                       if necessary, and withdrawing the
         history. They may give the volcano a                       straw. Blow through the open end of
         name if desired.                                           the straw to remove the core. Put the
     2. Ask groups to draw a map (birds-eye                         core on a toothpick and place it by
         view) of the volcano. This may be made                     the hole for reference.
         in actual size or they may make a scale               • River valleys may be made by cutting
         drawing. The map should include a North                    and removing a “v” shape in the side
         direction arrow. An example drawn on                       of the volcano (open part of “v”
         the board or overhead may be helpful if                    facing down slope).
         students are not familiar with transferring           • To make road cuts, use knife or
         measurements to a grid. Students will                      dental floss to cut and remove a strip
         need to make careful observations and                      about 1 cm wide and as deep as you
         measurements to map the volcanoes                          want from any part of the volcano.
         accurately. Color and label the map.                  • To make earthquake exposures,
     3. Answer the questions on Student Sheet.                      make a single cut and lift or drop one
         Note: Some volcanoes may be more                           side of the fault line. Some support
         complex than others—each will be                           will be necessary.
         different!! There may be flows that are           7. Record cuts and cores on the map and in
         completely covered, some flows that have              notes. Be sure to use location
         two separate lobes, and some flows for                information, i.e., core # 2 is located on
         which the sequential relationship can not             the blue flow in the Northeast quadrant of
         be determined at the surface.                         the volcano.
     4. Lead the students to question what they            8. Observe hidden layers. Interpret data
         cannot see below the surface. Where do                and draw dotted lines on the map
         the flows extend under the exposed                    indicating the approximate or inferred
         surface? Lead them to name ways they                  boundaries of the subsurface flows.
         can see what is below the surface without         9. On a separate paper, write a short history
         lifting the play dough. They may suggest              of the volcano that relates sequence of
         drill holes or cores, river erosion and               flows and relative volumes of flows (or
         bank exposure, earthquakes, or road cuts              make a geologic column, a map key to
         and other excavations.                                the history that shows oldest geologic
     5. Have groups make a plan that shows on                  activity at the bottom and youngest at the
         their map where they want to put the                  top). Math classes may try to figure the
         subsurface exposures. They should                     volume of the various flows.
         indicate how the proposed cores and cuts          10. Compare the history developed by
         will maximize the information they might              mapping in Part 2 with the original history
         gain from excavations. Limit the number               from the group that made the volcano in
         of exposures each group may use, i.e.,                Part 1. Write how they are similar or
         five drill cores and one road cut and one             different.
         river erosion.                                    11. Conduct debriefings at several stages of
                                                               this activity.

22   Destination: Mars                                                                     10/97 NASA JSC
Example of bird’s eye view map of lava flows.

                                         play dough
                                         flows         N

                                          Central
                                          Crater
                                          (cup)

         cardboard or flat surface

10/97 NASA JSC                                        Destination: Mars   23
24   Destination: Mars   10/97 NASA JSC
Student Sheet

       Lava Layering — Part 2
Directions
Make a map of a volcano model. Do this from a birds eye view. Label flows and
features.

1. How many flows can you see on your map?

2. Beside the map make a list of the lava flows, starting with the youngest flow at the
   top and finishing with the oldest flow at the bottom. Example: Top flow is a long,
   skinny, green flow.

3. Can you easily determine the sequence of flows (which came first, which came
   last) or are there some flows where you can’t say which are younger or older?
   Put a question mark by the uncertain flows in the list on the map.

4. Are there parts of any flows that might be covered? Which ones?

5. What would you need to tell the sequence and shape of each flow? How could
   you get that information without lifting the playdough?

6. Think about what techniques will help you learn more about the interior of your
   volcano. Your teacher will lead a class discussion about these techniques before
   you experiment. Stop here and wait for the teacher to continue.

10/97 NASA JSC                                                         Destination: Mars   25
7. Document why each proposed experiment will be helpful in revealing information
   about your volcano. Conduct the experiments and record locations and the
   information gained.

8. Finish your map. On a piece of paper, write a description of the sequence that
   tells the history of the volcano. Compare your sequence to the history written by
   the group that originally made the volcano. Was your interpretation accurate?
   Explain.

9. Why would it be harder to map lava flows on Mars using spacecraft photos?

26   Destination: Mars                                                   10/97 NASA JSC
Lesson Four                                     Mapping Mars

    Geologic Sequence of
 Craters and River Channels
About This Lesson                                         Materials - For activity using paper photos
Students will approach studying the surface of              q photo of Mars surface showing outflow
Mars in the same way as photogeologists. After                  channels emptying into northern plains of
drawing a simple features map, they will have the               Chryse Planitia. Photo available on the
tools to state the general geologic history of a part           World Wide Web at:
of Mar’s surface. Students focus on the evidence                     http://cass.jsc.nasa.gov/expmars/
showing river channels that once flowed and                          channels.html
caused erosion. The evidence for water and                  q Student Sheet, Mars Mapping (pg. 31)
volcanoes (see Lava Layering) on Mars points to             q tracing paper or transparencies, one per
possible environments where life could have                     paper photo
existed.                                                    q tape or paper clips
                                                            q colored markers (3 colors - red, green,
Objectives                                                      and blue are used in the discussion below)
Students will:
    • observe photographic details.                       Materials - For group version using slide
    • make a simple features map.                           q slide projector
    • interpret the geologic history of a part of           q large sheet of paper (not shiny) or a
        Mars’ surface.                                          non-shiny erasable white board may be
    • analyze and discuss sequencing.                           used — test first
                                                            q masking tape
                                                            q slide of Mars surface showing outflow
Background
                                                                channels emptying into northern plains of
Scientists use maps to illustrate the geologic
                                                                Chryse Planitia. Slide # 25
history of a planet or moon. Geologic maps show
                                                                “Outflow Channels Emptying into
present day features and evidence of past events.
                                                                Northern Plains of Chryse Planitia”
The maps show features that were formed earlier
                                                                in the Set THE RED PLANET:
or later than others, giving scientists a relative time
                                                                A SURVEY OF MARS
sequence of events (not precise dates). On Earth
these maps are made using photographs taken
                                                                  Order Department
from airplanes and spacecraft, and from research
                                                                  Lunar and Planetary Institute
on the Earth’s surface. To make maps of other
                                                                  3600 Bay Area Boulevard
planets we must use photographs taken by
                                                                  Houston TX 77058-1113
spacecraft and use lander information from the
                                                                  Phone: (281) 486-2172
planet’s surface.
                                                                  Fax: (281) 486-2186
                                                                  e-mail: order@lpi.jsc.nasa.gov
Vocabulary
crater, ejecta, eroded, channel, sun angle,               Note: A high quality transparency from a photo
                                                          developer works well. Use the slide to make the
sequence, Chryse Planitia (cry´ see plän i´ ti ) e
                                                          transparency. Project with classroom overhead
                                                          projector.

10/97 NASA JSC                                                                             Destination: Mars   27
Procedure                                                8. Show students an example of a river
   Advanced Preparation                                      channel.
   1. Gather materials.                                  9. Have students color (not outline) all
   2. Become familiar with the important                     channels blue. They may try to show
      features in the Mars photo.                            both sides of the channel but a single line
   3. Practice determining the up and down                   in the middle of the channel is adequate.
      slopes of the features by paying attention         10. Have students lift the transparencies and
      to the Sun illumination angle and the                  look at them. Ask the student what they
      shadows on the features.                               have made. (They have made a simple
                                                             feature map.)
     Procedure for Paper Copy of Photograph              11. Answer and discuss the questions on
     Steps below are for individuals or pairs                Student Sheet.
     using a paper copy of the Mars image.
     1. Secure a transparency or sheet of tracing        Group Procedure Using a Slide
         paper to the top of the Mars photo.             Steps below are for a large group activity
     2. Distribute materials.                            using a slide.
     3. Tell students that this is a spacecraft          1. Tape a large sheet of paper to the wall.
         photograph of an area on Mars around            2. Project the slide on the paper, so the
         20º N latitude and 55º W longitude, at the          image is as large as possible.
         northern edge of Chryse Planitia. The               Be aware that it will be easier to clearly
         image shows impact craters and river                distinguish details on the image from
         channels. The area is about 200 kilome-             several feet away due to projector
         ters across. No one has ever been there,            focusing. When students draw on the
         but we can figure out things about this             paper they will either need to ask for
         part of Mars by mapping and thinking.               some help from classmates or step back
     4. Show students an example of a crater                 frequently. This leads to a good
         with a continuous, sharp-edged, unbroken            cooperative activity.
         rim. Note that they should draw the rim         3. Tell students that this is a spacecraft
         and not the fairly flat interior (see drawing       photograph of an area on Mars around
         on student sheet).                                  20º N latitude and 55º W longitude, at the
         If time and skill allow, students may also          northern edge of Chryse Planitia. The
         note and draw the ejecta for the fresh              image shows impact craters and river
         sharp rimmed craters. The ejecta is the             channels. The area is about 200 kilome-
         material that is blasted out of the crater          ters across. No one has ever been there,
         and falls outside the rim of the crater. The        but we can figure out things about this
         ejecta is usually more irregular than most          part of Mars by mapping and thinking.
         of the craters. Review with students            4. Show students an example of a crater
         how to tell what is a depression and                with a continuous, sharp-edged, unbroken
         what is a hill slope by knowing the                 rim. Note that they should draw the rim
         direction of illumination from the Sun.             and not the fairly flat interior (see drawing
     5. Have students carefully outline the rims of          on student sheet).
         all sharp-edged craters red.                        If time and skill allow, students may also
     6. Show students an example of a crater                 note and draw the ejecta for the fresh
         with an uneven, eroded, broken rim (see             sharp rimmed craters. The ejecta is the
         student sheet).                                     material that is blasted out of the crater
     7. Have students carefully outline the rims of          and falls outside the rim of the crater.
         all eroded craters green.

28   Destination: Mars                                                                    10/97 NASA JSC
The ejecta is usually more irregular than     3. Which features are oldest, youngest, and of
        most of the craters.                             medium age? Green craters are oldest,
    5. Have a student or group of students                   red craters are youngest, river
        carefully outline the rims of all                         channels are of medium age.
        sharp-edged craters red.                                      Using the data from ques-
    6. Show students an                                                   tions 1 and 2, the green
        example of a crater                                                  craters were there
        with an uneven,                                                        before the channels,
        eroded, broken                                                         and the channels
        rim (see Student                                                       were there before
        Sheet).                                                                the red craters.
    7. Have students
        carefully outline                                                      4. Are big craters
        the rims of all                                                        older or younger than
        eroded craters                                                        small craters? Big
        green.                                                              (green) craters are
    8. Show students an                                                    older than small (red)
        example of a river                                              craters. The green craters
        channel.                                                     tend to be larger while the red
    9. Have students color (not outline)                        ones are generally smaller. The
        all channels blue. They may try to show          same observation that the green craters
        both sides of the channel but a single line      were there before the channels and the
        is adequate.                                     red craters were formed after the chan-
    10. Turn off the overhead projector and ask          nels sets the larger green craters as
        the students what they have made. (They          being older.
        have made a simple feature map.)
    11. Answer and discuss questions on Student       5. Write a simple geologic history of this part of
        Sheet.                                           Mars. First large meteorites hit the
                                                         surface and made big craters. Later
Questions and Answers                                    flowing water formed river channels
                                                         which cut through some of the old craters.
1. Which are older - river channels or green             After a while the rivers stopped flowing.
   craters? How do you know? Green                       Even later smaller meteorites hit the
   craters are older. When a river channel               surface. Some of these formed craters on
   met a green crater the water broke                    top of the dry channels and on older
   through the rim, entered the crater, broke            craters.
   out somewhere else, and kept going.
                                                      Extra credit
2. Which are older - river channels or red
   craters ? How do you know ? River                  6. What caused the difference in size between
   channels are older. When an impact                    the young craters and the older craters?
   formed a red crater on top of a river                 Most of the big meteorites hit a long time
   channel the crater covered the channel,               ago. Later only smaller meteorites were
   but the crater was not eroded. The river              left. The earlier meteorites were very
   had stopped flowing.                                  large pieces of planetary material that

10/97 NASA JSC                                                                      Destination: Mars   29
were still being pulled together through
     the process of solar system accretion
     (gathering of material into planetary
     bodies). As time passed, the impacts
     were caused by the smaller pieces of
     material leftover from the accretion
     process, thus making smaller craters.

7. Which way does the land slope? The land
   slopes downwards from the west to the
   east. River channels combine as you go
   downhill. A map of the Mississippi River
   or some other terrestrial river basin may
   be used as a comparison. These Mars
   channels do not show a delta formation as      eroded
   some may suggest.                              crater rim

                                                     crater
                                                     floor

                              ejecta                 outer crater
                                                     slope

                                floor and sides
                                of crater

                                                   flow
                                                   channels

                                   crater rim

30   Destination: Mars                               10/97 NASA JSC
Student Sheet

                         Mars Mapping
Objective
To make a simple features map and interpret the geologic history of a part of Mars’
surface.

Background
Scientists use maps to illustrate the geologic history of a planet or moon. Geologic
maps show present day features and evidence of past events. The maps show
features that were formed earlier or later than others, giving scientists a relative time
sequence of events, although not precise dates. On Earth these maps are made using
photographs taken from airplanes and spacecraft, and from research on the Earth’s
surface. To make maps of other planets we must use photographs taken by
spacecraft and use lander information from the planet’s surface.

The area in the photograph of Mars is about 200 kilometers across and shows
impact craters and river channels. Mark these features on the photograph using the
examples below. Then answer the questions on the back of this page.

                                                                                    ejecta
Features found in the photograph are:
                                                                                     floor and sides
                                                                                     of crater

        1. Craters with continuous, sharp-edged, unbroken rims.
                                                                                        crater rim
                 Carefully outline the rims all such craters Red.

                                                                                   eroded
                                                                                   crater rim
        2. Craters with uneven, eroded, broken rims.
                                                                                      crater
                                                                                      floor
                 Carefully outline the rims of all such craters Green
                                                                                      outer crater
                                                                                      slope

        3. River channels.
                                                                                    flow
                 Color (not outline) all channels Blue.                             channels

10/97 NASA JSC                                                            Destination: Mars          31
Questions
Use the map to answer the questions.

1. Which are older — river channels or green craters? How do you know?

2. Which are older — river channels or red craters? How do you know?

3. Which features are oldest, youngest, and of medium age?

4. Are big craters older or younger than small craters?

5. Write a simple geologic history of this part of Mars.

Challenge

What caused the difference in size between the young craters and the older craters?

Which way does the land slope?

32   Destination: Mars                                                   10/97 NASA JSC
10/97 NASA JSC
                                                                                                      Mapping Mars Key

Destination: Mars
33
                    A = sharp-edged crater   B = eroded crater   «= crater wall as seen in sunlight
34   Destination: Mars   10/97 NASA JSC
Lesson Five                                  Searching for
                                                       Life on Mars
This lesson contains four exercises within three activities. The activities have been grouped to encourage
students to think about the characteristics of life and about the possibility of looking for life on Mars.

Activity 1 — Imaginary Martians
   Students will listen to one or more excerpts from science fiction that describe a fictional living
   organism from Mars. They will then draw their interpretations of the creatures and compare them to
   what they already know about life on Mars today.
Activity 2 — Looking for Life
   Part A: An Operational Definition of Life Students will research characteristics of living organisms and
   develop a chart that will help them define important features of a living organism.
   Part B: It’s Alive! They will then use their definition to determine whether there is anything alive in
   three different soil samples, an experiment similar to the Mars Viking Lander in 1976 that looked for
   signs of life. Students will record their observations and draw pictures as they collect data from the
   samples.
Activity 3 — Mars Critters
   Students will design a plant or animal life form that might survive on Mars.

Activity 1—

Imaginary Martians

About This Activity
Students will listen to one or more excerpts from
science fiction that will describe fictional living
organisms from Mars. They will then draw their
interpretations and compare them to what they
already know about life on Mars today.

Objectives
Students will:
    • draw their interpretation of a Martian after
        listening to a science fiction reading.
    • analyze the realism of this Martian based
        on today’s knowledge of Mars
        environment.
    • discuss the popularity of Mars in
        literature.

10/97 NASA JSC                                                                         Destination: Mars     35
Background                                                         life is like on Mars and that you would
There are many science fiction stories related to                  like to share some of these interpretations
Mars. Each one has its own explanation of how a                    with them.
Martian might look. The descriptions are based                2.   Ask the class to close their eyes and listen
on the author’s imagination and the known                          to the reading(s).
information about Mars from the time period. In               3.   Read the excerpt(s) with animation and
this interdisciplinary activity, students will interpret           sound effects.
an author’s description of a Martian (language                4.   Tell the students to open their eyes, take
arts and art) and evaluate the possibility of such a               the drawing materials of their choice, and
creature living on Mars (science).                                 draw what they think the author(s)
                                                                   described.
Vocabulary                                                    5.   Ask the students why they think the
interpretation, atmosphere, radiation                              author wrote the descriptions in this way.
                                                                   Discuss answers in terms of the literature
Materials                                                          and the time when the story was written.
  q drawing paper                                             6.   Ask the students why they think there is
  q coloring utensils                                              so much literature about the planet Mars?
  q Student Sheet, If You Went to Mars                        7.   Ask each student to explain why the alien
      (pg. 37)                                                     drawn could or could not really be found
  q excerpts from science fiction novels                           on Mars.
      Examples are Mars by Ben Bova                           8.   Discuss what it would be like to live on
      (chapter 7), Out of the Silent Planet by                     Mars. Use the If You Went to Mars
      C. S. Lewis (chapter 7), The Martian                         student sheet.
      Chronicles by Ray Bradbury (February
      1999-YUa), The Day The Martians                      Alternatives
      Came by Frederick Pohl (chapter 17)                     1. Instead of a standard sheet of paper, have
                                                                  the students work in groups using a large
Procedure                                                         sheet of butcher paper. Then you can
   Advanced Preparation                                           also discuss how differently we each
   1. Check various novels and choose                             interpret what we hear. Display art.
      excerpt(s) to use.                                      2. Divide the class into teams and read
   2. Practice reading the excerpt(s).                            several different excerpts, each team
   3. Distribute student supplies.                                drawing an interpretation of a separate
   4. Distribute the If You Went to Mars                          excerpt, then comparing the team
      student sheet.                                              drawings. Display art.
   Classroom Procedure
   1. Explain to the students that people in the
      past have had very different ideas of what

36   Destination: Mars                                                                         10/97 NASA JSC
Student Sheet

       If You Went to Mars
       from “Guide to the Solar System,”
       by The University of Texas, McDonald Observatory

       Mars is more like Earth than any other planet in our solar system but is still
       very different. You would have to wear a space suit to provide air and to
       protect you from the Sun’s rays because the planet’s thin atmosphere does
       not block harmful solar radiation. Your space suit would also protect you
       from the bitter cold; temperatures on Mars rarely climb above
       freezing, and they can plummet to -129ºC (200 degrees below zero
       Fahrenheit). You would need to bring water with you; although if you
       brought the proper equipment, you could probably get some Martian
       water from the air or the ground.

       The Martian surface is dusty and red, and huge duststorms occasionally
       sweep over the plains, darkening the entire planet for days. Instead of a
       blue sky, a dusty pink sky would hang over you.

10/97 NASA JSC                                                            Destination: Mars   37
Student Sheet

            Fundamental Criteria
               for Life Chart
Fill in Criteria after the class has made observations and the teacher has grouped the
observations.

      Living
      Organism           Criteria   Criteria   Criteria    Criteria     Criteria

38   Destination: Mars                                                     10/97 NASA JSC
Activity 2—                                             Part A:
                                                        An Operational
Looking for Life                                        Definition of Life
About This Activity                                     About This Part
In Activity A students will use research to develop     Students will conduct research to identify
their criteria for life. The class will combine their   characteristics of living and non-living organisms.
ideas in a teacher-guided discussion. In Activity       They will record their observations on a chart that
B they will then use their definition of life to        will help the class to come to a consensus about
determine whether there is anything alive in three      how to identify living things.
different soil samples. They will make
observations and draw pictures as they collect          Materials
data from the samples and experiment.                     q Student Sheet Fundamental Criteria for
                                                              Life Chart (pg. 38)
Objectives                                                q dictionaries and encyclopedias
Students will:                                            q examples of living and non-living things
    • form an operational definition of life.                 (should include plants, animals, and
    • conduct a simulated experiment with soil                microorganisms—pictures can be
        samples similar to the experiments on the             substituted for the real thing)
        Mars Viking Lander.
    • state relationships between the soil              Procedure
        samples using their operational                    Advanced Preparation
        definition of life.                                1. Gather materials.
    • make an inference about the possibility of           2. Review Background and Procedure.
        life on Mars based on data obtained.
                                                            Classroom Procedure
Background                                                  1. Explain to students that their job is to
We usually recognize something as being alive or               come up with a definition of how living
not alive. But when scientists study very small                things can be detected.
samples or very old fossilized materials, the signs         2. Ask students to state (or write) what
of life or previous life are not easy to determine.            characteristics make an individual item
Scientists must establish criteria to work with in             alive or not alive. Encourage them to
their research. The tests for life used by the Viking          find pictures and definitions of living and
Mars missions were based on the idea that life                 non-living things. Allow the students use
would cause changes in the air or soil in the same             of dictionaries and encyclopedias. Use
way that Earth life does. The Viking tests did not             the examples on the following page to
detect the presence of life on Mars. The Viking                encourage the students but not to limit
tests would not have detected fossil evidence of               them.
past Mars life or a life form that is very
different from Earth life.                                  Example: Consider a bear and a chair—
                                                            they both have legs, but one can move on its
Vocabulary                                                  own and the other would need a motor made
criteria, characteristics, organism, replication,           by humans; therefore, independent movement
metabolic                                                   might be one characteristic that indicates life.

10/97 NASA JSC                                                                         Destination: Mars   39
Not every living organism needs legs or roots.           Part B:                It’s Alive!
     But they do need a mode of locomotion or a
     way to get nutrients. Also, the bear breathes
                                                              About This Part
     and the chair does not, another indication of
                                                              Students will take three different soil samples and
     life. Or consider a tree and a light pole. We
                                                              look for signs of life based on the criteria from
     know that a light pole can not reproduce— it
                                                              Part A.
     is made by humans—and we know that the
     tree makes seeds that may produce more
                                                              Materials
     trees. The tree also takes in nutrients and
                                                                q sand or sandy soil sample
     gives off gasses and grows. The light uses
                                                                q three glass vials, baby food jars, or
     electricity and gives off light, but it is strictly an
                                                                    beakers for soil per group
     energy exchange and there is no growth and
                                                                q sugar- 5 ml (sugar will be added to all
     there are no metabolic processes.
                                                                    soil samples)
                                                                q instant active dry yeast- 5 ml added to 50
     However, students might not list the
                                                                    ml of soil
     fundamental criteria for life. They might go for
                                                                q Alka-Seltzer tablets crushed- 1 tablet
     the more obvious signs like methods of
                                                                    added to 50 ml of soil
     locomotion. The more subtle but fundamental
                                                                q hot water - enough to cover the top of the
     signs of life are:
                                                                    soil in all jars (not hot enough to kill the
                                                                    yeast!)
         •    metabolic processes that show
                                                                q cups for distributing the water
              chemical exchanges which may be
                                                                q magnifying lens- 1 per group or
              detected in some sort of respiration or
                                                                    individual
              exchange of gases or solid materials.
                                                                q Student Sheets Data Chart I and Data
         •    some type of reproduction, replication
                                                                    Chart II (pgs. 43-44)
              or cell division.
         •    growth.
                                                              Procedure
         •    reaction to stimuli.
                                                                 Advanced Preparation
                                                                 1. Fill all jars 1/4th full of soil. (You will need
     3. As a class, discuss the indications of life,
                                                                    3 jars per team.)
        asking for examples from a diverse
                                                                 2. Add just sugar to 1/3rd of the jars. Label
        sampling of living things. The teacher will
                                                                    these jars “A.”
        paraphrase and group criteria on the
                                                                 3. Add instant active dry yeast and sugar to
        blank chart, then guide the students to
                                                                    1/3rd of the jars. Label these jars “B.”
        summarize the groupings to reflect the
                                                                 4. Add the powdered Alka-seltzer and
        fundamental criteria for life.
                                                                    sugar to the remaining jars. Label these
                                                                    jars “C.”
     4. Students will use these criteria for the
                                                                 5. Give each group a set of three jars,
        following activities.
                                                                    magnifying lens, and the chart from
                                                                    previous activity.

40   Destination: Mars                                                                              10/97 NASA JSC
You can also read