COURSE DESCRIPTION ADVANCED PATTERN RECOGNITION TECHNIQUES YEAR 1 SEMESTER 1 MASTER IN BIOMEDICAL ENGINEERING MODALITY: ON CAMPUS ACADEMIC YEAR ...

 
CONTINUE READING
COURSE DESCRIPTION
ADVANCED PATTERN RECOGNITION TECHNIQUES
YEAR 1 SEMESTER 1
MASTER IN BIOMEDICAL ENGINEERING
MODALITY: ON CAMPUS
ACADEMIC YEAR 2020/2021
POLYTECHNIC SCHOOL
Advanced Pattern Recognition Techniques / 2020-2021

                      1. COURSE/SUBJECT IDENTIFICATION
1.- COURSE/SUBJECT:

Name: Advanced Pattern Recognition Techniques

Code:

Year (s) course is taught: 1                         Semester(s) when the course is taught: 1st

Type: Compulsory subject                             ECTS of the course: 5      Hours ECTS= 30

Language: English                                    Type of course: On campus

Degree (s) in which the course is taught: Biomedical Engineering

School in which the course is taught: EPS

2.- ORGANIZATION OF THE COURSE:

Department: Information technology

Area of knowledge: Biomedical engineering

                  2. LECTURERS OF THE COURSE/SUBJECT
1.-LECTURERS:

Responsible of the Course              CONTACT
Name:                                  Abraham Otero Quintana
Phone (ext):                           913724046 (14649)
Email:                                 aotero@ceu.es
Office:                                D 2.6.4
Teaching and Research profile          Associate Professor of computer science and artificial
                                       intelligence
Research Lines                         Analysis of physiological parameters; bioinformatics.

2.- TUTORIALS:

For any queries students can contact lecturers by e-mail, phone or visiting their office during the
teacher’s tutorial times published on the students’ Virtual Campus.

                                3. COURSE DESCRIPTION

 This course presents the techniques most commonly employed in the analysis of large volumes of data, in
 the extraction of knowledge from this data, and in making decisions based on the knowledge acquired.

                                                                                                           2
Advanced Pattern Recognition Techniques / 2020-2021

                                      4. COMPETENCIES
1.- COMPETENCIES

Código de la
                                                   Competencias Básicas
competencia
               Poseer y comprender conocimientos que aporten una base u oportunidad de ser
   CB6         originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de
               investigación.
               Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de
   CB7         resolución de problemas en entornos nuevos o poco conocidos dentro de contextos
               más amplios (o multidisciplinares) relacionados con su área de estudio.
               Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la
               complejidad de formular juicios a partir de una información que, siendo incompleta o
   CB8
               limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a
               la aplicación de sus conocimientos y juicios.
               Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones
   CB9         últimas que las sustentan a públicos especializados y no especializados de un modo
               claro y sin ambigüedades.
               Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar
   CB10
               estudiando de un modo que habrá de ser en gran medida auto dirigido o autónomo.

Código de la
                                               Competencias generales
competencia
   CG1         Aplicar el pensamiento analítico.
   CG2         Ofrecer soluciones innovadoras a los problemas planteados.

Código de la
                                              Competencias específicas
competencia
               Aplicar herramientas avanzadas de la ingeniería, las matemáticas y la física en la
   CE01
               resolución de problemas biomédicos.
               Aplicar técnicas de aprendizaje automático para la extracción de patrones y
   CE03
               conocimiento a partir de datos médicos.
               Diseñar sistemas de gestión de información hospitalarios, incluyendo soluciones de
   CE04        eHealth y de mHealth, conociendo los estándares que permiten la interoperabilidad de
               dichos sistemas.
               Comprender los requerimientos legales aplicados al almacenamiento y al tratamiento
   CE07
               de datos biomédicos.

2.- LEARNING OUTCOMES:

Code      Learning outcomes
RA-1      Collect, integrate and biomedical data preprocessing for building a data warehouse.
RA-2      Ability to graph data and to preprocess data.
RA-3      Discover, interpret and evaluate patterns (knowledge) using data mining techniques.
RA-4      Knowing, understanding the ethical and legal implications of Data mining.

                                                                                                           3
Advanced Pattern Recognition Techniques / 2020-2021

                                  5. LEARNING ACTIVITIES
1.- DISTRIBUTION OF STUDENTS` ASSIGNMENT:

Total hours of the course                                                                      150

DESCRIPTION OF LEARNING ACTIVITIES:

Code        Name                                                                         On-campus
                                                                                         hours
AF1         Lecture                                                                            25
AF2         Seminar of exercises-problems                                                      10
AF3         Practice                                                                           15
TOTAL Presence Hours                                                                           50

Code        Name                                                                            Not on-
                                                                                         campus hours
AF5         Self student work                                                                  100

2.- DESCRIPTION OF LEARNING ACTIVITIES:

 Activity                               Definition
 AF1 Lecture                            Learning activity oriented preferably to the competence of
                                        acquisition of knowledge and representative of more
                                        theoretical subjects. This activity gives priority to the
                                        transmission of knowledge by the professor, with the
                                        previous preparation or later study from the student.
 AF2 Seminar of exercises-problems      Learning activity oriented preferably to the competence of
                                        application of knowledge (competence 2 MECES) and
                                        representative of subjects or practical activities (labs, radio
                                        studies, TV studies and/or any other proper space).
 AF3 Practice                           Training activity involving appropriate laboratory material
                                        and, under the guidance of the teacher-tutor, fosters
                                        autonomous and / or cooperative learning of the student
                                        through the technical realization of practices or projects.
 AF5 Self student work                  Training activity which consists on the autonomous student
                                        learning outside the class environment.

                                6. ASSESMENT OF LEARNING
1.- CLASS ATTENDANCE:

 Class attendance is recorded on the student portal but is not evaluated. Justifications of absence
 will not be accepted.

                                                                                                          4
Advanced Pattern Recognition Techniques / 2020-2021

2.- ASSESMENT SYSTEM AND CRITERIA:

ORDINARY EXAMINATION (continuous assessment)
                                                                            Percentage
Partial test (S1)                                                                      15%
Mid term project (S2)                                                                  25%
Final course project (S2)                                                              35%
Final test (S1)                                                                        25%

Test                    Description of the test                   Approximate weight
SE-1: Written test      Written tests.                            40%
SE-2: Portfolio         Set of physical or digital deliverables   60%
                        results or parts of a project.

RE-TAKE EXAM/EXTRAORDINARY EXAMINATION
Name                                                                        Percentage
Final exam                                                                            100%

                                7. COURSE PROGRAMME
1.- COURSE PROGRAMME:

    1. Introduction to Pattern Recognition
    2. Data warehouses
    3. Data preparation
    4. Clustering
    5. Classifiers
    6. Model Evaluation
    7. Ethical considerations of data mining in medicine

Practical projects:
    1. Analysis of a database using supervised pattern recognition techniques (for example,
       decision trees, neural networks, Bayesian networks ...) of data mining, including cleaning,
       pre-processing, visualization, model training and validation of the models learned.
    2. Analysis of a database using unsupervised pattern recognition techniques (for example,
       association rules, clustering, correlation search ...).

                             8. RECOMMENDED READING
1.- ESSENTIAL BIBLIOGRAPHY:

        Data Mining: The Textbook (2015)         de Charu C. Aggarwal 978-3-319-141
        Data Mining for the Masses, Second Edition: with implementations in RapidMiner and R r.
         Matthew North (Autor), Nivedita Bijlani (Redactor), Erica Brauer 0615684378

                                                                                                      5
Advanced Pattern Recognition Techniques / 2020-2021

                        9. ATTITUDE IN THE CLASSROOM
1.- REGULATIONS

    Any irregular act of academic integrity (no reference to cited sources, plagiarism of work or
    inappropriate use of prohibited information during examinations) or signing the attendance
    sheet for fellow students not present in class will result in the student not being eligible for
    continuous assessment and possibly being penalized according to the University regulations.

                           10. EXCEPTIONAL MEASURES

   Should an exceptional situation occur which prevents continuing with face-to-face teaching
   under the conditions previously established to this end, the University will take appropriate
   decisions and adopt the necessary measures to guarantee the acquisition of skills and
   attainment of learning outcomes as established in this Course Unit Guide. This will be done in
   accordance with the teaching coordination mechanisms included in the Internal Quality
   Assurance System of each degree.

                                                                                                        6
You can also read