COURSE DESCRIPTION ADVANCED PATTERN RECOGNITION TECHNIQUES YEAR 1 SEMESTER 1 MASTER IN BIOMEDICAL ENGINEERING MODALITY: ON CAMPUS ACADEMIC YEAR ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
COURSE DESCRIPTION ADVANCED PATTERN RECOGNITION TECHNIQUES YEAR 1 SEMESTER 1 MASTER IN BIOMEDICAL ENGINEERING MODALITY: ON CAMPUS ACADEMIC YEAR 2020/2021 POLYTECHNIC SCHOOL
Advanced Pattern Recognition Techniques / 2020-2021 1. COURSE/SUBJECT IDENTIFICATION 1.- COURSE/SUBJECT: Name: Advanced Pattern Recognition Techniques Code: Year (s) course is taught: 1 Semester(s) when the course is taught: 1st Type: Compulsory subject ECTS of the course: 5 Hours ECTS= 30 Language: English Type of course: On campus Degree (s) in which the course is taught: Biomedical Engineering School in which the course is taught: EPS 2.- ORGANIZATION OF THE COURSE: Department: Information technology Area of knowledge: Biomedical engineering 2. LECTURERS OF THE COURSE/SUBJECT 1.-LECTURERS: Responsible of the Course CONTACT Name: Abraham Otero Quintana Phone (ext): 913724046 (14649) Email: aotero@ceu.es Office: D 2.6.4 Teaching and Research profile Associate Professor of computer science and artificial intelligence Research Lines Analysis of physiological parameters; bioinformatics. 2.- TUTORIALS: For any queries students can contact lecturers by e-mail, phone or visiting their office during the teacher’s tutorial times published on the students’ Virtual Campus. 3. COURSE DESCRIPTION This course presents the techniques most commonly employed in the analysis of large volumes of data, in the extraction of knowledge from this data, and in making decisions based on the knowledge acquired. 2
Advanced Pattern Recognition Techniques / 2020-2021 4. COMPETENCIES 1.- COMPETENCIES Código de la Competencias Básicas competencia Poseer y comprender conocimientos que aporten una base u oportunidad de ser CB6 originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de CB7 resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio. Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o CB8 limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones CB9 últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar CB10 estudiando de un modo que habrá de ser en gran medida auto dirigido o autónomo. Código de la Competencias generales competencia CG1 Aplicar el pensamiento analítico. CG2 Ofrecer soluciones innovadoras a los problemas planteados. Código de la Competencias específicas competencia Aplicar herramientas avanzadas de la ingeniería, las matemáticas y la física en la CE01 resolución de problemas biomédicos. Aplicar técnicas de aprendizaje automático para la extracción de patrones y CE03 conocimiento a partir de datos médicos. Diseñar sistemas de gestión de información hospitalarios, incluyendo soluciones de CE04 eHealth y de mHealth, conociendo los estándares que permiten la interoperabilidad de dichos sistemas. Comprender los requerimientos legales aplicados al almacenamiento y al tratamiento CE07 de datos biomédicos. 2.- LEARNING OUTCOMES: Code Learning outcomes RA-1 Collect, integrate and biomedical data preprocessing for building a data warehouse. RA-2 Ability to graph data and to preprocess data. RA-3 Discover, interpret and evaluate patterns (knowledge) using data mining techniques. RA-4 Knowing, understanding the ethical and legal implications of Data mining. 3
Advanced Pattern Recognition Techniques / 2020-2021 5. LEARNING ACTIVITIES 1.- DISTRIBUTION OF STUDENTS` ASSIGNMENT: Total hours of the course 150 DESCRIPTION OF LEARNING ACTIVITIES: Code Name On-campus hours AF1 Lecture 25 AF2 Seminar of exercises-problems 10 AF3 Practice 15 TOTAL Presence Hours 50 Code Name Not on- campus hours AF5 Self student work 100 2.- DESCRIPTION OF LEARNING ACTIVITIES: Activity Definition AF1 Lecture Learning activity oriented preferably to the competence of acquisition of knowledge and representative of more theoretical subjects. This activity gives priority to the transmission of knowledge by the professor, with the previous preparation or later study from the student. AF2 Seminar of exercises-problems Learning activity oriented preferably to the competence of application of knowledge (competence 2 MECES) and representative of subjects or practical activities (labs, radio studies, TV studies and/or any other proper space). AF3 Practice Training activity involving appropriate laboratory material and, under the guidance of the teacher-tutor, fosters autonomous and / or cooperative learning of the student through the technical realization of practices or projects. AF5 Self student work Training activity which consists on the autonomous student learning outside the class environment. 6. ASSESMENT OF LEARNING 1.- CLASS ATTENDANCE: Class attendance is recorded on the student portal but is not evaluated. Justifications of absence will not be accepted. 4
Advanced Pattern Recognition Techniques / 2020-2021 2.- ASSESMENT SYSTEM AND CRITERIA: ORDINARY EXAMINATION (continuous assessment) Percentage Partial test (S1) 15% Mid term project (S2) 25% Final course project (S2) 35% Final test (S1) 25% Test Description of the test Approximate weight SE-1: Written test Written tests. 40% SE-2: Portfolio Set of physical or digital deliverables 60% results or parts of a project. RE-TAKE EXAM/EXTRAORDINARY EXAMINATION Name Percentage Final exam 100% 7. COURSE PROGRAMME 1.- COURSE PROGRAMME: 1. Introduction to Pattern Recognition 2. Data warehouses 3. Data preparation 4. Clustering 5. Classifiers 6. Model Evaluation 7. Ethical considerations of data mining in medicine Practical projects: 1. Analysis of a database using supervised pattern recognition techniques (for example, decision trees, neural networks, Bayesian networks ...) of data mining, including cleaning, pre-processing, visualization, model training and validation of the models learned. 2. Analysis of a database using unsupervised pattern recognition techniques (for example, association rules, clustering, correlation search ...). 8. RECOMMENDED READING 1.- ESSENTIAL BIBLIOGRAPHY: Data Mining: The Textbook (2015) de Charu C. Aggarwal 978-3-319-141 Data Mining for the Masses, Second Edition: with implementations in RapidMiner and R r. Matthew North (Autor), Nivedita Bijlani (Redactor), Erica Brauer 0615684378 5
Advanced Pattern Recognition Techniques / 2020-2021 9. ATTITUDE IN THE CLASSROOM 1.- REGULATIONS Any irregular act of academic integrity (no reference to cited sources, plagiarism of work or inappropriate use of prohibited information during examinations) or signing the attendance sheet for fellow students not present in class will result in the student not being eligible for continuous assessment and possibly being penalized according to the University regulations. 10. EXCEPTIONAL MEASURES Should an exceptional situation occur which prevents continuing with face-to-face teaching under the conditions previously established to this end, the University will take appropriate decisions and adopt the necessary measures to guarantee the acquisition of skills and attainment of learning outcomes as established in this Course Unit Guide. This will be done in accordance with the teaching coordination mechanisms included in the Internal Quality Assurance System of each degree. 6
You can also read