61970-456 Steady State Hypothesis (SSH) Profile - CIM University Track II 18 June 2019 Svein Olsen Norwegian National Committee - NEK - CIMug
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
61970-456 Steady State Hypothesis (SSH) Profile CIM University Track II 18 June 2019 Svein Olsen Norwegian National Committee - NEK
Overview ▪ IEC 61970-456 ▪ Use Cases ▪ CIM Canonical Model and Profile ▪ Bus-branch & Node breaker Considerations ▪ UML of all SSH data
IEC 61970-456 Editions • Ed1 based on CIM14 • Ed4 based on CIM17 • Topology (TP) and State Variables (SV) • Unbalanced • Ed1Am1 based on CIM15 • Small but important documentation changes • Ed2 based on CIM16 • Steady State Hypothesis (SSH) profile added • Equipment injections • Regulation targets (voltage, flow…) and control settings • Limit values • Direct Current (DC) added to SSH, TP and SV • Ed3 based on CIM16 • PowerElectronics
Why Steady State Hypothesis • Initially Topology and State Variables used both for • Output • Input • Didn’t work, Power Flow solutions drifted • Need to remember starting conditions and target values • Steady State Hypothesis solved this and.. • It only depends on EQ so it works with • Bus-branch models • Node-breaker models
CIM Profiles Overview • Data with slow change rate • Equipment IEC 61970-452 / CGMES EQ • Diagram layout IEC 61970-453 / CGMES DL • Dynamics data IEC 61970-457 / CGMES DY • Geographical location CGMES GL • CGMES Extensions IEC 61970-600 / CGMES • Data with medium change rate • Topology and Switch statuses IEC 61970-456 / TP • Data with high change rate • Steady State Hypothesis IEC 61970-456 / SSH • Power flow solved state variables IEC 61970-456 / SV • Serialization format, CIMXML IEC 61970-552
CIM Profile Dependency Relationships 61970-456 61970-451 profiles profiles Steady State Discrete State Variables measurements Hypotesis (SV) (SSH) Topology Analog (TP) measurements 61970-452 Equipment profiles model (EQ) 61970-453 Display profiles layouts (DL)
CGMES Decomposition IEC 61970-457 IEC 61970-453 Dynamic Diagram Layout (Transient model) DL opt.ref DY IEC 61970-456 opt. ref ref ref IEC 61970- 452 Topology ref TP Network Equipment Short- Circuit ref and Connectivity EQ-SC EQ-CO Invariant State Variable SV Variant Operation opt. ref (Node- Breaker) EQ-OP Steady State Hypothesis ref SSH ref ref Boundary equipment opt. ref Geographical Location EQ-BD GL ref Boundary topology opt. ref TP-BD
Power Flow Inputs Diagram Layout EQ DL Datasets Described by Geo Locations Network As-Built - Equipment GL CIM Profiles Model Parts - Containment Physical Model - Connectivity Dynamics Select / Edit - Controls DY - SIPS - Equipment Rating Contingency List - Normal operations CL - Energy allocation Planned Construction Model Parts Projects TP SSH - TopologyNodes - Status - association to - Switch status conducting equipment - In Service Measurement Outage Device Status - Branch end Sources Schedules Initialization/Edit - Tap positions SV - Control settings - Voltage regulation - Flow regulation - Energized State Control Setting - SIPS Topology & - Island Topology External Energy Initialization/Edit - Monitoring - Operating limits Network Solution - BusVoltage Forecasts & - Bus Injections Sources - Other Algorithm - Terminal flows Schedules - Energy Injections - Controls Monitoring - Bulk generation - Violations - Solar Initialization/Edit - Wind - Storage - Traditional Load Energy Injection - DER Case Parts Operational Limits Repository Case Parts Initialization/Edit - value
Creation of IEC 61970-456 Data • IEC 61970-456 describes one point in time • Schedule and forecast time steps become 456 data • Mapping schedule and forecast entities to injections • Area load forecast to load points (e.g. EnergyConsumer) • Area production schedules to unit injections • Renewable production • Forecasted if not in a market • Scheduled if part in a market • May result in back feed if resource behind a load point
Production HVDC Load RES- Cross Border Availability Switch Schedule Schedules Schedules Forecast Flow Forecast Steady State Hypothesis (SSH) Power System Model
Two Levels of Detail in Modeling • Bus-branch has • Powerflow buses (cim:TopologicalNode) • Impedance branches and shunts • Retained switches possible • Node-breaker has • Nodes (cim:ConnectivityNode) • Switches (including non-retained) (cim:Switch and specializations) • Bus name markers (could be partially specified with Bus-branch model) • Schedule Data • Steady State Hypothesis works with both! • So do Measurements (if not on non-retained switch terminals)
Node-breaker State Estimator Use Case Analog 3 measurements SCADA Discrete 2 measurements External consumer Data Equipment 1 modeler model Steady state 6 State hypothesis estimator State 5 variables Network Topology Topology 4 Processor Schedule Schedule updater values
Node-Breaker Power Flow Use Case Data Equipment 1 model modeler External consumer 4 Case Network Steady state Power State Model Topology 5 builder hypothesis Builder Flow variables 6
Node-Breaker Power Flow Use Case Data Modeller/Engineering EQ TP Buses SV Power Islands Voltage, amplitude/angle SSH Flow Injection, active/reactive Injection, active/reactive Power flow, active/reactive Voltage set point Tap position Tap position Limits Out of service
Node-Breaker Power Flow Inputs and Outputs Data Modeller/Engineering EQ EQ SSH Network TP Switch Status Model Buses Out of service Builder SV Islands, Bus voltages Power amplitude/angle SSH Flow Terminal flows, Injections, active/reactive active/reactive Voltage set point Tap positions Tap position Limits Out of service
Study future Study future Case Building Data Model validation power flow models Power EQ System Projects Δ Δ Δ Δ Δ Equipment And And Δ Δ Δ Δ Parameters Audit trails Equipment Availability Availability SSH Operational Consumption Data Production - Forecasts Interchange - Schedules Limits, ratings - Patterns Voltage - Recordings Tap positions - Measurements Switch positions Time Now Scenarios
Model Part Headers
cl a ss St ea dy St a t el Hy pot hesi sP r of i l e IdentifiedObject «Description» C or e::P ow er Sy st emResour ce C ont r ol A r ea ::C ont r ol A r ea + netInterchange :ActivePower Steady State + pTolerance :ActivePower [0..1] W i r es::Ta pC ha nger «Description» «Description» W i r es::Regul a t i ngC ont r ol + controlEnabled :Boolean W i r es::Ra t i oTa pC ha nger + step :Simple_Float + discrete :Boolean + enabled :Boolean + targetDeadband :Simple_Float [0..1] Hypothesis Profile + targetValue :Simple_Float W i r es:: W i r es::P ha seTa pC ha nger NonLi nea r + targetValueUnitMultiplier :UnitMultiplier P ha seTa pC ha nger Note that «Description» «Description» «Description» RegulatingControl.targetDeadba W i r es:: W i r es:: W i r es:: nd is primarily used if the Ta pC ha nger C ont r ol P ha seTa pC ha nger Ta bul a r P ha seTa pC ha nger A sy mmet r i ca l RegulatingControl.discrete is set to "true". Tools should handle «Description» «Description» cases in which W i r es:: W i r es:: RegulatingControl.targetDeadba P ha seTa pC ha nger Li nea r P ha seTa pC ha nger Sy mmet r i ca l nd has a value if 1) SSH attributes on existing RegulatingControl.discrete is set RegulatingCondEq RegulatingCondEq to "false" or cases in which RegulatingControl.targetDeadba W i r es::Shunt C ompensa t or «Description» nd equals zero. W i r es::St a t i cV a r C ompensa t or + sections :Simple_Float + q :ReactivePower equipment + ConductingEquipment «Description» W i r es::Ener gy Sour ce activePower :ActivePower «Description» W i r es::Li nea r Shunt C ompensa t or «Description» W i r es:: Nonl i nea r Shunt C ompensa t or + reactivePower :ReactivePower «enumeration» RotatingMachine W i r es:: 2) No new SSH classes A sy nchr onousM a chi neK i nd «Description» EquivalentEquipment W i r es::A sy nchr onousM a chi ne generator «Description» motor + asynchronousMachineType :AsynchronousMachineKind Equi v a l ent s::Equi v a l ent I nject i on + regulationStatus :Boolean [0..1] «enumeration» RotatingMachine + regulationTarget :Voltage [0..1] + p :ActivePower W i r es:: «Description» (different from SV) + q :ReactivePower Sy nchr onousM a chi neO per a t i ngM ode W i r es::Sy nchr onousM a chi ne generator + operatingMode :SynchronousMachineOperatingMode condenser EquivalentInjection.regulationStatus and motor EquivalentInjection.regulationTarget are required attributes if the EquivalentInjection is connected to a non- RegulatingCondEq Boundary node. «Description» W i r es::Ext er na l Net w or k I nject i on + referencePriority :Integer + p :ActivePower + q :ReactivePower ConductingEquipment «Description» W i r es::P r ot ect edSw i t ch Equipment • The active power slack is specified by using the multiple generator slack participation W i r es::Sw i t ch «Description» factor in CIM. In case GeneratingUnit.normalPF is set to one and all other generating + open :Boolean Gener a t i on::Gener a t i ngU ni t units have a zero participation factor the GeneratingUnit which has normalPF equal to one will be the active power slack for the ControlArea to which it belongs. In case + normalPF :Simple_Float multiple generators all these GeneratingUnit(s) have non-zero normalPF, but there «Description» «Description» must be one GeneratingUnit per control area that have maximum participation factor W i r es:: W i r es::B r ea k er (GeneratingUnit.normalPF). «Operation,ShortCi... Loa dB r ea k Sw i t ch «Description» • In case of exchange of steady state hypothesis (non-solved model) or solved model W i r es:: «Description» W i r es:: normalPF can be non-zero only for generators which are in operation (participate in Gr oundDi sconnect or Gener a t i on:: Di sconnect or the load flow). Hy dr oGener a t i ngU ni t «Description» • In case of exchange of steady state hypothesis (non-solved model, i.e. SV profile is Gener a t i on:: not exchanged) the tools should assign the slack node. «Description» Sol a r Gener a t i ngU ni t «Entsoe» Gener a t i on:: St ea dy St a t eHy pot hesi sV er si on Ther ma l Gener a t i ngU ni t + baseUML :String = iec61970cim16v2... {readOnly} «Description» «Description» + baseURI :String = http://iec.ch/... {readOnly} Gener a t i on:: Gener a t i on:: + date :Date = 2014-05-26 {readOnly} W i ndGener a t i ngU ni t Nucl ea r Gener a t i ngU ni t + differenceModelURI :String = http://iec.ch/T... {readOnly} + entsoeUML :String = entsoe_v2.4.14 {readOnly} ConductingEquipment + entsoeURI :String = http://entsoe.e... {readOnly} + modelDescriptionURI :String = http://iec.ch/T... {readOnly} «Description» + namespaceRDF :String = http://www.w3.o... {readOnly} W i r es::Ener gy C onsumer + namespaceUML :String = http://iec.ch/T... {readOnly} + shortName :String = SSH {readOnly} + p :ActivePower + q :ReactivePower «Operation,... «Description» «Description» Loa dM odel :: Loa dM odel :: Loa dM odel :: St a t i onSuppl y NonC onf or mLoa d C onf or mLoa d
SSH Energy Generation
SSH Energy Consumption
SSH Switch
SSH Control
SSH Direct Current (DC)
Steady State Hypothesis Profile in CIMTool
SSH Profile - Topology detail in UML cl a ss C or e ConductingEquipment IdentifiedObject PowerSystemResource «Description» ACDCTer mi na l Equi pment W i r es::Sw i t ch + connected :Boolean + open :Boolean • ENTSO-E added inService.Equipment attribute • IEC 61970-456 does not contain inService.Equipment attribute yet
SSH Profile – Injections, Voltages, and Controls cl a ss W i r es PowerSystemResource ConductingEquipment Regul a t i ngC ondEq PowerSystemResource Ta pC ha nger «Description» Regul a t i ngC ont r ol + controlEnabled :Boolean + controlEnabled :Boolean + step :Simple_Float + discrete :Boolean + enabled :Boolean + targetDeadband :Simple_Float [0..1] «Description» + targetValue :Simple_Float Ext er na l Net w or k I nject i on + targetValueUnitMultiplier :UnitMultiplier Rot a t i ngM a chi ne + referencePriority :Integer + p :ActivePower + p :ActivePower + q :ReactivePower + q :ReactivePower «Description» «Description» Shunt C ompensa t or A sy nchr onousM a chi ne St a t i cV a r C ompensa t or + sections :Simple_Float + asynchronousMachineType :AsynchronousMachineKind + q :ReactivePower «enumeration» «enumeration» «Description» Sy nchr onousM a chi neO per a t i ngM ode A sy nchr onousM a chi neK i nd Sy nchr onousM a chi ne generator generator + operatingMode :SynchronousMachineOperatingMode condenser motor motor EquivalentEquipment ConductingEquipment ConductingEquipment «Description» Equi v a l ent s::Equi v a l ent I nject i on «Description» «Description» Ener gy C onsumer Ener gy Sour ce + regulationStatus :Boolean [0..1] + regulationTarget :Voltage [0..1] + p :ActivePower + activePower :ActivePower + p :ActivePower + q :ReactivePower + reactivePower :ReactivePower + q :ReactivePower
SSH Profile – Active power slack distribution cl a ss A ct i v e pow er Equipment PowerSystemResource «Description» «Description» C ont r ol A r ea ::C ont r ol A r ea Gener a t i ngU ni t + normalPF :Simple_Float + netInterchange :ActivePower + pTolerance :ActivePower [0..1]
cl a ss DC A CDCConv er t er SSH Profile – DC + + + p :ActivePower q :ReactivePower targetPpcc :ActivePower + targetUdc :Voltage • Two levels of detail: «Description» «Description» V sC onv er t er C sC onv er t er 1. Power flow injection + operatingMode :CsOperatingModeKind + droop :PU + droopCompensation :Resistance model + + pPccControl :CsPpccControlKind targetAlpha :AngleDegrees + pPccControl :VsPpccControlKind + qPccControl :VsQpccControlKind + targetGamma :AngleDegrees 2. Detailed converter + targetIdc :CurrentFlow + + qShare :PerCent targetQpcc :ReactivePower + targetUpcc :Voltage «enumeration» C sO per a t i ngM odeK i nd «enumeration» V sP pccC ont r ol K i nd inverter rectifier pPcc udc pPccAndUdcDroop pPccAndUdcDroopWithCompensation «enumeration» pPccAndUdcDroopPilot C sP pccC ont r ol K i nd «enumeration» activePower V sQ pccC ont r ol K i nd dcVoltage dcCurrent reactivePcc voltagePcc powerFactorPcc
SSH Profile – Operational Limits
Voltage/Reactive Power Control • Field device responsiveness • Fast: Synchronous Machines, SVC … • Slow: Tap changers, switched devices … • Control schemes • Slow devices on schedule • Move fast devices to optimal point using slow devices • Minimize excessive operation of slow devices • Balance reactive flow between parallel devices • Power flow algorithms • No CIM standard for control schemes • Power flow programs differ -> solutions differs
IEC 61970-456 Summary Points – Take Away • Enables modularized case construction • Operational planning • Long term and expansion planning • But ENTSO-E conformity process showed different interpretation possible • ENTSO-E and IEC standards converging on interpretation
Thanks!
You can also read