Color-Modulation of Firefly Luciferin-Luciferase System Investigated by Theoretical Approach
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Color-Modulation of Firefly Luciferin-Luciferase System Investigated by Theoretical Approach Isabelle Navizet Ya-Jun Liu, Nicolas Ferré, Roland Lindh Multi-scale modelization and simulation laboratory MSME, UMR 8208 CNRS, East-Paris Marne-la-Vallée University, France. College of Chemistry, Beijing Normal University, China. navizet@univ-mlv.fr Lyon ISBC 19-23 April 2010
Lund, Beijing Normal Uppsala University Pr. R. Lindh Université Paris Est Marne la Vallée Université Aix-Marseille Dr. I. Navizet Dr. Y-J Liu, Prof.W-H Fang Xiao H.Y. Chen S.F. www.chimietheorique.fr Dr. N. Ferré
System: fireflies Oxyluciferase AMP Oxyluciferin
Mechanism of firefly bioluminescence: chemically initiated electron exchange luminescence CIEEL
Luciferin Color Modulation Fireflies, click beetles and railroad worms share the same substrate luciferin, but naturally emit light of different wavelengths. • Firefly green to yellow • Railroad worms green and red •Click beetles orange to green • Firefly’s luciferase mutants red Pictures by V. Viviani Nakatsu, Nature 2006,404,372 How is the color modulation controlled?
5 Hypothesis • Keto-enol • Twist angle of the keto anion form. • Polarization in the micro environment (keto, keto-1) • Resonance structure (keto-1,keto-1’) • Pocket size
Keto-enol mechanism Hypothesis: different emission spectra for enol and keto form (White, Bioorg. Chem. 1971,92) - - Keto-1 Enol-1 red yellow-green Experiment: multicolor luminescence require only keto (Branchini, JACS 2002 124,2112) Is tautomerization possible inside the protein ?
Twist angle of the keto anion form. Hypothesis: the emitted color depends of the twist angle of the keto anion form. (McCapra et al) Keto-1 twisted NO: Twisted structure is a TS state. (Goddard et al., Nakatsuji et al.)
Polarization in the micro environment (keto, keto-1) Tv values decrease as the polarization of the microenvironment increase. TD-B3LYP/6-31+G(d,p) Tv in eV (oscillator strength) 3.32(0.293) 3.27(0.336) 3.19(0.360) 2.54(0.645) polarization u.v. Red shift blue Liu, De Vico, Lindh, J.Photochem. Photobio. A, 2008, 194, 261 See Wednesday presentation O36
Resonance structure (keto-1,keto-1’) Color of emitted light is a function of the degree of resonance between two extreme electronic configurations of the keto-anion.(Branchini, Biochem 2004, 43,7255) - - Keto-1 Keto-1’ green red Bond C-C length single/double
Pocket size Japanese genji-botaru (Luciola cruciata) 539 residues Nakatsu et al. Nature 2006, 440, 372.
Pocket size Wild type: open->closed->open Tight pocket Hypothesis: No much relaxation of Oxyluciferin before emitting light Mutant: open->open->open Loose pocket Hypothesis: Relaxation of Oxyluciferin before emitting light (∆E smaller)
Theoretical studies • QM: quantum mechanic (only few atoms) • MM: molecular mechanic (big systems but no bond breaking, no electronic excitation) • QM/MM: combines the 2 methods.
MM (AMBER ff) Ebonds = ∑l 0 k (l bonds − l ) 2 Eangles = ∑θ k (θ anglesθ − θ 0 ) 2 E impr = k ω (ω − ω 0 ) 2 Vn ,φ Ediedrals = ∑ diedrals φ 2 [1 + cos(nφ + γ )²] qi q j Eelec = ∑ fijel i< j ε rij r* 12 6 rij* ELJ = ∑ fijLJ eij* ij − 2 i< j rij rij EMM = Ebonds + Eangles + Eimpr + Edied + Eelec + ELJ parameters
QM • Resolution of the Schrödinger equation (time- indep.): Hψ i = Ei ψ i • Goal: find Ei and ψi : – Density functional theory (DFT) – Post-HF: CASSCF, CASPT2…. • Approximation: ψ combination of antisymmetrized product of one-electron spin- orbitals, use of a finite basis set. • Basis set : 6-31G*, ANO-L-VTZP….
QM/MM E =< ψ H ψ >=< ψ H QM + H MM + H QM / MM ψ > MM subsyst : see charges and vdW of QM subsyst (Eelect, EvdW) QM subsyst : HQM take into account charges of MM. ESPF (Electrostatic Potential Fitted) E =< ψ H QM + H elect QM / MM ψ > +E nucl QM +EonMMnucl QM / MM + EMM MOLCAS + TINKER + Nicolas Ferré patch www.teokem.lu.se/molcas sites.univ-provence.fr/lcp-ct/ferre/nf_tinker_qmmm.html
Building models • Protein structure: PDB data bank Japanese genji-botaru (Luciola cruciata) Luciferase: 539 residues Open: PDB 2D1R (WT AMP oxyluciferin) Keto-1 “mutant-like, red” AMP Closed: PDB 2D1S (WT DLSA) “wild, yellow-green” DLSA
Six different structures studied of two types – so called “open” and “closed” structures. All deduced from X-ray structures and modeled with keto-1
Building models • Model 0: Initial corrections, standard protonations, missing water and atoms, box of water. • Model 1: Local MM and QM re-optimization • Model 2: Adding more waters to the cavity • Model 3: Structures completely relaxed with MD AMP AMP SER286 Open Ser286 Ile288 closed
QMMM calculation MOLCAS + TINKER + Nicolas Ferré patch • QM: Oxyluciferin keto-1, • MM: protein, water and AMP, AMBER FF99 parameters • ESPF (Electrostatic Potential Fitted) • Optimization: CASSCF 16-in-14 (all Π orbitals except the one centred on S7), 6-31G(d) basis set, no sym, charge -1, first excited state. • Electronic transition: CASPT2, 6-31G(d) or ANO-L-VTZP basis set, Imaginary shift of 0.05 if intruder state, 16-in-14 or 18-in-15 on the structure optimized in it first excited state.
Emission energy (eV) as a functions of structure in luciferase CASSCF(16-in-14) S1 opt, CASPT2, 6-31G(d) Navizet et al., JACS 2010, 132,706. Oxyluciferin: same structural Enzyme and water: different => Color modulation
Molecular orbitals Stabilization of HOMO : ∆E ↑ , λ ↓ , blue shift
Model-1-open: 2.05(2.03)eV The H-bonding water Model-1-closed: network: the 2.13(2.02)eV polarizing agent Model-2-open: 2.14(2.04)eV Not pocket effect
Keto/enol ? LUMO LUMO HOMO HOMO CASSCF (18 in 15) ANO-RCC-VDZP/CASPT2 (oscillator strength) Keto-1: 2.18 eV (0.81) enol-1: 2.20 eV (0.91) In vacuo, TDDFT : tautomerization TS keto-enol : 64 kcal/mol. In protein ?
Conclusion • Not a pocket effect • Effect of number of water in the pocket • Enol possible ?
Lund, Beijing Normal Uppsala University Pr. R. Lindh Université Paris Est Marne la Vallée Université Aix-Marseille THANKS FOR YOUR ATTENTION ! Dr. I. Navizet Dr. Y-J Liu, Prof.W-H Fang Johannesburg www.chimietheorique.fr Dr. N. Ferré Xiao H.Y. Chen S.F.
You can also read