Micromechanics of crystalline interfaces - TAM 524: Micromechanics of Materials Spring 2021 Ahmed Sameer Khan Mohammed (Sameer) 5th year graduate ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Micromechanics of crystalline interfaces TAM 524: Micromechanics of Materials Spring 2021 Ahmed Sameer Khan Mohammed (Sameer) 5th year graduate student (MechSE) Research: Interfaces in phase-transforming materials, carbon-composites
Topics I. Frank-Bilby equation II. Topological Modeling – Relevant to current research in our group (Mohammed and Sehitoglu, 2020) III. A glimpse of “Evolving Interface Theory” – Current research in our group (Mohammed and Sehitoglu, 2021)
Nature of Interfaces Criterion of classification: Atomic-structure/bonding across the interface (Olson-Cohen-Bonnet approach) “…one for which corresponding lattice planes and lines are continuous across the interface”) Incoherent Coherent Semi-coherent (Olson an Cohen, 1979) *Olson, G. B., and Morris Cohen. "Interphase-boundary dislocations and the concept of coherency." Acta Metallurgica 27, no. 12 (1979): 1907-1918
Nature of Interfaces: Real examples Criterion of classification: Atomic-structure/bonding across the interface (Olson-Cohen-Bonnet approach) Incoherent Coherent Semi-coherent T Nb on Al2O3 (mismatch 2%) Gutekunst et al. 1997) Nb on Al2O3 (mismatch 12 %) (Xu et al. 2020) Gutekunst et al. 1997) Study on Sm-doped Cerium-oxide (focus Gutekunst, G., J. Mayer, V. Vitek, and M. Rühle, Philosophical Magazine A, (1997) Gutekunst, G., J. Mayer, V. Vitek, and M. Rühle, Philosophical Magazine A, (1997) on conductivity across the GB) Xu, Xin, Yuzi Liu, Jie Wang, Dieter Isheim, Vinayak P. Dravid, Charudatta Phatak, and Sossina M. Haile, Nature materials (2020)
Nature of Interfaces: Misfit strain Relaxed state Coherent state dl l lc dc dc - dl el = dc Misfit strains in individual phases d µ - dc eµ = dc µ dµ µc dc d µ - dl (if l is taken as reference) Often, one of the phases is taken as reference: e= dl (Total misfit strain)
Relieving Misfit strains Coherent Interface Semi-coherent Interface Self-equilibriating field relieves the misfit strain Interface dislocations relieves the coherence/misfit strain Also called misfit dislocations Ma, Xiao, PhD thesis, 2008
I:Frank-Bilby equation Calculate the interface defect density required to relieve misfit strains, the spacing of misfit dislocations Relaxed/Free state of both phases Coherent state of both phases -1 µD r -1 lD r µ Dr l Dr B= - ( l Dr-1 - µ Dr-1 ) v r Burgers vector density (Determined in reference frame of µ) Ma, Xiao, PhD thesis, 2008
Frank-Bilby equation: Example (Sutton & Ballufi, 1994) 3 NiO NiO ( 001) NiO 1 2 Pt Pt ( 001)Pt Epitaxial thin films (Reference state: Pt) Deposited at high temperature At 1200 C ( 001)Pt ( 001) NiO aNiO = 0.424 nm [010] aPt = 0.397 nm [100] aNiO - aPt e11 = e 22 = e = » 0.07 éë 110 ùû [110] aPt aPt aPt aNiO Uniform Biaxial strain aNiO Will be the same with any in-plane rotation (Sutton, A. P., & Ballufi, R. W., Interfaces in Crystalline Materials, 1994)
NiO Frank-Bilby equation: Example (Sutton & Ballufi, 1994) ! 1 ! 1 3 Pt b1 = [110]; b2 = éë1 10 ùû 2 2 1 (Lattice dislocations of Pt) 2 æ 1 ö ç 1+ e 0 0÷ [001] ç ÷ æ1 + e 0 0ö ç 0 1 0÷ ç 1+ e 0 ÷÷ eˆ1 = [110] NiO D Pt = ç 0 -1 NiO D Pt = eˆ2 = éë1 10 ùû ç 1+ e ÷ ç 0 0 1÷ ç 0 0 1 ÷ø çç ÷÷ è è ø æ1 - e 0 0ö Pt D Pt = I d2 d1 » çç 0 1 - e 0 ÷÷ ! ! ç 0 1 ÷ø è 0 NiO ( I - NiO DPt-1 ) eˆ1 = B1 = db1 e= b1 D =I-1 1 d1 Pt Pt ! d1 = d 2 = 4.3 nm ! Pt ( I - NiO DPt-1 ) eˆ2 = B2 = db2 b2 2 e= d2 (Reference state: Pt) (Sutton, A. P., & Ballufi, R. W., Interfaces in Crystalline Materials, 1994)
Interfacial dislocations: Disconnections Semi-coherent Interface T Interfacial dislocations in-plane No step-character Interfacial dislocations with step character Disconnections Relevant in Twinning and Phase-Transformations
Interfacial dislocations: Disconnections {111} T {111} T T {r 1 1} r – An irrational number
Example 2: A semi-coherent twin boundary • Twin boundary: Homo-phase interface, why would there be a mismatch?? • Common-perception of twins B19¢ NiTi (martensite) [001] Ti [010] Ti Ni TB (Liu and Xie 2003) [100] (Knowles and Smith 1982) (Liu and Xie 2003, 2004) • 011 Type II TB “…composed of rational {111} FCC e.g. Cu (1 1 1) ledges…” TB structure was unclear! • Completely coherent (Mohammed and Sehitoglu, 2020) Proposed a semi-coherent boundary as the solution (Current research) 12 ASK Mohammed, H Sehitoglu, Acta Materialia, 2020
{111} Terrace Coherence: Misfit Strains B19¢ Unit n cell (lattice constants) ( 1 11) A [21 1]A [2 11]B DA [21 1]A b ¹ 900 n( 1 11)A [21 1] A [1 11]A c = 4.606 A o ~1$ M A ( B19¢) Coherence Strain [001] b = 93.41o g A = -g B » 0.96% [011] [011] [011] n(11 1 )B [010] [100 n(11 1 ) B] o Cause: Distorted Martensitic M B ( B19¢) [11 1]B [11 1] o a = 2.699 [2 A 11]B [2 11]B b = 4.386 AB Unit cell Non-Cubic and b ¹ 900 [011] [011] DB ææ11 g0A 00öö v D ¹ 0 ) == ççç00 DAA ( g AA = 1 00÷÷÷ M A ( B19¢) Frank-Bilby Equation ç ÷ çç00 èè 0 11÷ø÷ø B=b b d B = -(D-1A - D-1B )v Coherent strains are “relieved” away from d interface by an interface dislocation array {"""} Linear M B ( B19¢) density of Probe vector Defects 011 211 13
Semi-coherent twin boundary • Need a “admissible” interface dislocation {"""} • A “crystallographically” admissible Burgers vector 011 211 M A ( B19¢) MA Twinning Partial! MB Twin Twin M B ( B19¢) T Parent Matrix b Plays a role in Twin growth or • Twin partial is a screw dislocation Twin Boundary Propagation • Relieves the interface shear strain away • 011 Type II Twin in NiTi from the interface 1 • Twin variants “recover” from strain farther b = [ 011] 9 from interface (Ezaz and Sehitoglu 2011)
II: Topological Modeling æ 0 -0.0192 -0.0011ö æ 0 -0.0192 0 ö -(D - D ) = çç 0 -1 -1 0 0 ÷÷ -(D A - DB ) = çç 0 -1 -1 0 0 ÷÷ A B ç0 0 ÷ø v ç0 è 0 0 ÷ø è 0 % 111 ! % {"""} {111}111 ! d0 {"""} d1 K1 [011] 211 211 [011] 0 d ( A) K1 36.798 (1 1 1) B 36.858 (0.8619 1.0229 1.0269) B 36.858 (0.8619 1.0229 1.0269) B Predicted Irrational Indices, matching experiment ASK Mohammed, H Sehitoglu, Acta Materialia, 2020 (section 2.5) 15
III: Evolving Interface Theory • Is there an influence of external strain?? • Any dependence on volume fraction? • Does the dislocation-spacing change with external strain? Topological Modeling can predict this! æhö q = tan -1 ç ÷ è ød (Mohammed and Sehitoglu, Acta Materialia, 2021)
III: Evolving Interface Theory (Mohammed and Sehitoglu, Acta Materialia, 2021) External Stimuli Strain γ(%) Volume Fractions Terrace Coherence (Displacement gradient jump) Evolving f Î [ 0,1] Entities Dislocation- Dislocation- Density Traction Continuity on Terrace Plane Spacing d r ! 1d TB Identity ( hkl ) Average Microstructural Strain Energy Minimization
Topics I. Frank-Bilby equation II. Topological Modeling – Relevant to current research in our group (Mohammed and Sehitoglu, 2020) III. A glimpse of “Evolving Interface Theory” – Current research in our group (Mohammed and Sehitoglu, 2021)
At the end of this lecture, • Remember 2 methods to analyze interfaces from a mechanics standpoint • Understand underlying principles – crystallographic / stress / strain (mechanics) – on which these methods are built • Be able to apply them to crystalline interfaces: To what scope? o Communication - ask relevant questions to define the problem: What is the nature of the interface? What is the need for mechanics? o Analysis – Formulate how you would apply any of these methods for the defined problem The Bloom’s taxonomy of learning! https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/#:~:text=Familiarly%20known%20as%20Bloom's%20Taxonomy,Analysis%2C%20Synthesis%2C%20and%20Evaluation.
References • Mohammed, Ahmed Sameer Khan, and Huseyin Sehitoglu. "Modeling the interface structure of type II twin boundary in B19′ NiTi from an atomistic and topological standpoint." Acta Materialia 183 (2020): 93-109. • Mohammed, Ahmed Sameer Khan, and Huseyin Sehitoglu. "Strain-sensitive topological evolution of twin interfaces." Acta Materialia 208 (2021): 116716. • Ezaz, Tawhid, and Huseyin Sehitoglu. "Type II detwinning in NiTi." Applied Physics Letters 98, no. 14 (2011): 141906. • Sutton, Adrian P., Ballufi, R. W., "Interfaces in crystalline materials." Monographs on the Physice and Chemistry of Materials (1995): 414-423. • Gutekunst, G., J. Mayer, and M. Rühle. "Atomic structure of epitaxial Nb-Al2O3 interfaces I. Coherent regions." Philosophical magazine A 75, no. 5 (1997): 1329-1355. • Gutekunst, G., J. Mayer, V. Vitek, and M. Rühle. "Atomic structure of epitaxial Nb-Al2O3 interfaces II. Misfit dislocations." Philosophical Magazine A 75, no. 5 (1997): 1357-1382. • Xu, Xin, Yuzi Liu, Jie Wang, Dieter Isheim, Vinayak P. Dravid, Charudatta Phatak, and Sossina M. Haile. "Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography." Nature materials 19, no. 8 (2020): 887- 893. • Olson, G. B., and Morris Cohen. "Interphase-boundary dislocations and the concept of coherency." Acta Metallurgica 27, no. 12 (1979): 1907-1918 • Ma, Xiao, “Topological Modelling of Martensitic Transformations in Crystalline Materials”, PhD thesis, University of Liverpool, 2008
Thank you!
You can also read