DTI and Speckle Tracking Current Application - Dr Pio Caso MD, FESC Non Invasive Cardiology,Naples,Italy
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
EUROECHO 2010 Teaching Course Specialized Technique Advanced Course DTI and Speckle Tracking Current Application Dr Pio Caso MD, FESC Non Invasive Cardiology,Naples,Italy Copenhagen Friday ,10 December 2010
Tissue Velocity Imaging from Doppler to Grey Scale PW-DMI 1989 2D-Color DMI 2001 Color M-Mode 2003 Strain/S-Rate 2005 Speckle tracking 2007 Speckle tracking
The First Paper on Velocity Motion “ Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall ” Mitral annulus Sample vol 10 mm Filter 100 Hz Gain - 4 dB Posterior wall Isaaz K et al, Am J Cardiol 1989; 64: 66-75
DMI :European Technique Out of Europes Gorcsan USA •Hatle Yu Hong-Kong •Sutherland Quinones,Garcia USA •Stoylen Marwick AustraliaWA •Sutherland Zoghbi USA Sogaard •Mc Dickens Trondheim Vannan USA •Palka Sutherland Hatle Sanderson Hong-Kong Fraser Edinburgh Brodin Fraser Bijnens Eriksonn Vinereau Vinereanu Cardiff D’hoodge Kukulski Von Bibra London Voight Sutherland LeuvenMertens Azevedo Herbots Strotman Pellerin Pinto Dambrauskaite Weidmann Nihoyannopoulos Eroglu Vogel Bijnens Rademekers Caso Lisbon Derumeaux Galderisi Mele Pellerin Di Salvo D ‘Andrea Ga rcia Fernandez Tonti Desco Trambaiolo Azevedo Citro
Hardware Modifications Doppler Myocardial Doppler Flow Setting Imaging Setting •To eliminate high pass filter •To reduce the range of velocity encoded •To reduce the overall gain MA Garcia-Fernandez 1998
PW DMI QUANTIFICATION Sm Am Em •Garcia-Fernandez MA Eur Heart J 1999 •Galderisi M Am J Cardiol 2002 •Tuchnitz J. J Am Soc Echo 1999 PCTm ATm RTm CTm
PW DMI CORRELATION REGIONAL INFORMATION GLOBAL INFORMATION MA Garcia-Fernandez et al Doppler Tissue Imaging Echocardiographic 1998
Higher Frame Rate with PW-DMI and M-Mode DMI Temporal Resolution 3-5 msec Q-S: 85 msec Q-PEAK: 140 msec ET: 287 msec IRT: 53 msec ICT: 67 msec DIAST: 590 msec C-O: 447 msec 7 msec 14 msec 28 msec 50 msec Sutherland Doppler Myocardial Imaging Book Sutherland Doppler Myocardial Imaging Book Hasselt Belgium 2006
Third Generation Machine All Information in one beat Septal Lateral Wall Mean Velocity Mon-Avi V ASE /EAE Consensus Statment for Quantitative Evaluation of Cardiac Mechanics in pRess in Textbook on Echocardiography. Ed . Oxford: Oxford University Press; 2010
ANGLE DEPENDENCY OF TDI • Doppler signal is analyzed only along the scanline • Measured velocities are understimated if us beam is not adequately aligned with the movement direction of the examined structure • Narrow sector single wall acquisition may help minimizing this problem • 3 components of myocardial motion can be interrogated by Doppler techniques Longitudinal Radial Cinrcumferential Velocity: traslocation ,rotation ,thetering Galiuto et al. EAE Textbook on Echocardiography. (in press) ed. Oxford: Oxford University Press; 2010
Strain Rate Imaging Strain Rate Velocidad regional v2 d SR v1 V 2 – V1 V cm/sec 1 Strain Rate = = = = d d cm sec (JUV-98)
Strain / Strain Rate - Timing Velocity Septum Strain Rate Strain 4- Diastasi chamber view s Early Late ICT Systole IVRT filling filling Sutherland J Am Soc Echo 2004;17:788-802
Definiciònes Regional La velocidad Strain Rate de deformaciòn integral dP/dt Regional Strain La % local deformaciòn Ejection Fraction (%) (Weidemann et al. Am J Physiol Heart Circ Physiol 2002)
Summary Normal Velocity and Strain-Strain Rate Limitations •pw/color • frame rate • angle • optimal image • roy • noise • reverberations • artifacts Sutherland J Am Soc Echo 2004;17:788-802
Clinical Applications Apex Regional Function Left Ventricular Function Intramural Function CRT LAA Right Function Ventricular function Left Atrial Global Function Strain Trambaiolo P Salustri A, JASE
Clinical Applications Subclinical Heart Failure Clinical Heart Disesase • Diastolic function •Amyloidosis • End diastolic pressure •Fabry Disease • Ischaemic Heart Disease •Diastolic Heart failure • Atrial Function •Thalassemia • Atrial Fibrillation •Heart Transplant • Right Ventricular function •Diabetes • CRT •Hypertension •Hypertrophic Card. •Valvulopathy •Cardiotoxicity
Patterns of Mitral Inflow and Mitral Annulus Velocity from Normal to Restrictive Physiology Sohn DW et al. JACC 1997;30:474-80
Relation Myocardial Velocities with Beta Adrenergic Normal Dysfuctional Receptor and Fibrosis beta - adrenoreceptors fibrosis Shan K et al. JACC 2000; 36:884-90
Difference in Early Diastolic Velocity in Pathological and Phisioloical Hypertrophy NORMAL ATHLET HCM HYPERTENSION D‟Andrea A. abs Italian Heart Journal 2000
Diastolic Heart Failure TDI Derived Myocardial Velocity Definition Signs or symptoms heart failure Left ventricular systolic function normal or mild reduced Evidence of abnormal LV relaxation, filling, and distensibility indices Cheuk-Man Yu.Circulation 2002;1195-1201
LV Systolic Dysfunction of the LV Muscular Pump in Heart Failure with Preserved EF Brutsaert et Al.Curr Opin Cardiol 21:240–248. 2006
Correlation:E flow/Em ratio and PCWP Nagheh SF et al. JACC 1997;30:1527-33 Relation Confirmed in: • Hypertrophic cardiomyopathy Nagueh Circulation1999 • Sinus tachicardia Nagueh Circulation 1998 • Atrial fibrilation Sohn J Am Soc Echo 1999 • Heart Transpl. Sundereswaran Am J Cardiol 1998
Estimation of left Ventricular Diastolic Pressure by Tissue Doppler Imaging
Estimation of left ventricular filling pressures with Tissue Doppler Imaging E Mitral Flow/ E‟ Septal Annulus Black Circles EF>50% ; White Circles EF< 50% Ommen SR Circulation 2000;102:1788-1794
B-Type natriuretic Peptide Comparative Accuracy of BNP and Tissue Doppler Echo in the Diagnosis of Congestive Heart Failure Relation Beetween BNP ed E/Ea Ratio BNP or Echocardiography for Monitoring Heart Failure ? Sanderson J E Eur Heart J 2004;25,1263-1264 (Dokainish H, Am J Cardiol 2004;93:1130–1135)
Clinical Applications Subclinical Heart Failure Clinical Heart Disesase • Diastolic function • End diastolic pressure •Amyloidosis • Ischaemic Heart Disease •Fabry Disease • Atrial Function •Diastolic Heart failure •Thalassemia • Atrial Fibrillation •Heart Transplant • Right Ventricular function •Diabetes • CRT •Hypertension •Hypertrophic Card. •Valvulopathy •Cardiotoxicity
PW-DMI Acute Ischemia S E A Normale Peak Velocities Ischemia
Strain Rate: Anterior Infarction PRE Septal Wall E A Lateral Apical delayed Wall Deformation S PSS
Sutherland J Am Soc Echo 2004;17:788-802
Clinical Applications Subclinical Heart Failure Clinical Heart Disesase • Diastolic function •Amyloidosis • End diastolic pressure •Fabry Disease • Ischaemic Heart Disease •Diastolic Heart failure • Atrial Function •Thalassemia • Atrial Fibrillation •Heart Transplant •Diabetes • Right Ventricular function •Hypertension • CRT •Hypertrophic Card. •Valvulopathy •Cardiotoxicity
Normal Atrial Strain The measurement of changes in atrial strain rate during passive atrial filling could provide an index of atrial compliance Sutherland. Doppler Myocardial Imaging 2004
SINUS RYTHMN Recurrence of Atrial Fibrillation LA STRAIN CURVES LV ATRIAL FIBRILLATION LA LV
Normals STRAIN % Atrial Fibrillation (n=40) (n=68) 79±16 26±21* 165±61 98±31 44±26* 26±18* *p
Strain < 22% has Sensibility 76.9% and Spec 85.7% in discovering PTS with Recurrence of Atrial Fibrillation MSR AFR MSR: Maintenance of Synus Rithm AFR: Atrial Fibrillation ROC CURVE Recurrence Di Salvo,Caso,D „Onofrio et al Circulation 2005;112:387-393
Clinical Applications Subclinical Heart Failure Clinical Heart Disesase •Amyloidosis •Fabry Disease • Ischaemic Heart Disease •Diastolic Heart failure • End diastolic pressure •Thalassemia • Atrial Function •Heart Transplant • Atrial Fibrillation •Diabetes • Right Ventricular function •Hypertension • CRT •Hypertrophic Card. •Valvulopathy •Cardiotoxicity
PW-TISSUE DOPPLER OF THE RIGHT VENTRICLE IN HEART FAILURE Università Federico II S m Em Am Sm < 11.5 cm/s is predictive of RV systolic dysfunction (RV EF < 45 %) Correlation between right ventricular ejection fraction (EF) and Sensitivity = 90 % the peak tricuspid annular systolicvelocity (Sa) Specificity = 85 % Meluzin J, Eur Heart J 2001;22:340
Mean Right Atrial Pressure using Tissue Doppler Imaging E/Ea ratio >6 for mean RAP10mmHg Nagueh et al Am J Cardiol 1999,84 :1448-50
Estimated Right Ventricular Filling Pressure Utsunomiya et al . J Am Soc Echocardiogr 2009;22:1368-74
CORREALION BETWEEN RIGHT VENTRICULAR SYSTOLIC PRESSURE AND PW DMI IVRT NORMAL Sm Am Em Em MILD PULMONARY PULMONARY HYPERTENSION HYPERTENSION Sm Sm Em Em Am Am RTm = 50 ms RTm = 136 ms Caso P et al. JASE 2001
Right Ventricular Dyslasia Herbots L Eur J Echo 2003;4:101-107
Clinical Applications Clinical Heart Disesase Subclinical Heart Failure • Ischaemic Heart •Amyloidosis Disease •Fabry Disease •Diastolic Heart failure • End diastolic pressure •Thalassemia • Atrial Function •Heart Transplant • Atrial Fibrillation •Diabetes • Right Ventricular •Hypertension function •Hypertrophic Card. • CRT •Valvulopathy •Cardiotoxicity
Babel tower rivisited: The Prospec Effect CRT Marwick Circulation 2008;117;2573-2576
INTER-VENTRICULAR DALAY in LBBB: 80 msec Q(ecg) Sist Wave Tricuspid 120 msec - Q(ecg) Sist wave in Inferior 200
Time to Peak and Standard Deviation of Time to Peak Time to Peak After CRT Before CRT Cheuk-Man Yu et al Circulation 2002;105:438-445
PITFALLS: “WHERE IS THE PEAK?” peak optimal cutoff value of 65 ms for LV dyssynchrony
Color-M-mode and PW-DTI Intraventricular 21 pts nonisch asynchrony QRS 120ms 10/21 CO Better LV Synchrony = CO :590 msec Improvement LV performance EA :270 msec Ansalone ICT:200 msec Am Heart J 2001;142:881-96 IRT:190 msec LBBB : Inf. Wall unsynchronised pattern II
PROSPECT :Sensitivity and Specificity of Echocardiographic Predictors to CRT PRE CRT POST CRT Chung et al. Circulation.2008; 117: 2608-2616
PROSPECT Chung et al. Circulation.2008; 117: 2608-2616 Gorcsan et al J Am Soc Echo 2008
“… a study of laboratory error rather than a test of a hypothesis 1) training DTI eco: one day (!!) 2) “Core” echo Lab selcted on numer of implanted PM and not in experience on DTI or un Papers on CRT( !) 3) Variability expression of low experience in measures on CRT. 4) Variability of EVS (14.5%), mesured only in 286/426 patients 5) Differents echo machine((GE 37%, Philips 50% , Siemens 12%) ! 6) EF of core lab 29% in local Lab 23% 7) 20% of Patients in core Lab had EF > 35%( out of Guidelines) ! 8) Not Used data by Speckle tracking and 3D JACC 2009 Vol.53,1960-64
Cardiac Mechanism “exceedling simple in principle but wonderfully complicated in detail” • Radial Contraction • Longitudinal Contraction • Circumferential Contraction • Rotation Apex Single • Rotation Base myocardial ventricular band • Torsion Francisco (Paco) Torrent-Guasp (1931-2005) (da Kocica ML. Eur J Cardio-Thorac Surg 2006; 29:221-40).
Speckle Tracking and Transmurality Chan J JACC 2006
Gray Scale Velocity Estimation by Speckle Tracking Speckle: many small elements, natural fingerprints acoustic markers
Difference between Myocardial Velocity by Doppler and by Speckle tracking • Higher frame rate • Great experience in many studies • Angle Dependence Doppler • Higher temporal resolution • No angle dependence • Possibility to analyze the apex • Better lateral resolution • More automated and applied 2D Speckle • More reproducible • Usable on previous exams stored(Grey scale)
What kind of informations does give us 2D Strain? •Strain •Strain Rate •Displacement •Rotational (Twist) •Rotational Rate
2D Strain Interventricular Device
C. Rost et al. Eur J Echocardiogr 2010: 11, 584-589
Limitations of 2D Speckle Tracking Hypertrophic Cardiomyopathy • The optimal frame rate for speckle tracking seems to be 50-70 frame per seconds which is lower compared to TDI(>180 frame).this could result in undersampling especially in patients with tachicardia • Rapid events during the cardiac cycle (ICT,IVRT) may disappear all together and peak SR and vel values may be reduced due to under sampling especially in isovolumic phases and in early diastole • Calculated parametres are averaged over the myocardial segment when using the result page of the software. Right Ventricular Dysplasia • Small regions of myocardial dysfunction such as early stages of hypertrophic cardiomyopathy or arrhythmogenic right ventricular dysplasia the averaging could result in normal deformation • Software programs designed for speckle tracking are new and are subjected to periodical improvment • Different tracking algorithms produce different results
Strain 2D -HCM
Speckle Tracking and HCM
2D Speckle Tracking to Calculate Bull’s eye plots generated Strain in Infarction by semiautomated strain analysis using 2- dimensional speckle tracking technique to calculate strain A : Normal Volunteer B: Antero-lateral infarction C: Infero-lateral Infarction D: non ischemic cardiomyopathy Abraham TP et al Circulation 2007; 116: 2597-2609
Global Strain:Acute Infarct 1° gg 2° gg 5° gg
Anterior Infarctus 24 h 48 h
Angio-Coro
ESORDIO 24h AFTER 48h
Presentation AFTER 24h Peak AFTER 48h Systolic strain
Presentation AFTER 24h AFTER 48h Time to Peak Longitudinal Strain
Presentation AFTER 24h AFTER 48h Post Systolic Index
LBBB
LBBB-HF
CMI-HF
Metodi Ecocardiografici per la Valutazione del Dissincronismo Speckle Tracking Echocardiography PRE CRT POST CRT
Combined Longitudinal and Radial Dyssynchrony Predicts Ventricular Response After Resynchronization Therapy Bax J J Am Coll Cardiol 2007 ;50:1476-1483
What kind of informations does give us Velocity Vectors Imaging? • Velocities • Strain Rate • Strain • Displacement • Twist and untwist • Volumes • Ejection fraction
We can Study: Asinchrony and Asinergy Sinchrony for repetitive events is a fixed time relationship to a corresponding instant in another event;\ Sinergy refers to the phenomenon in which two or more segments create an effect greater than the sum of the effects each
Velocity Vectors Imaging in patient with suspected sistemic amylodosis
Strain Normal subject Patient with amiloidosys
Tangential Displacement Normal subject Patient with amiloidosys
Normal Strain and Torsion P S L Contraction A Counter-clockwise Apical Contraction Basal Rotation as viewed Time from apex Clockwise Systole Diastole Notomi et al. Circulation March, 2005
TORSION
Torsion from 2D Echo Rotation Apex 8° 7° Rest Apical twist 18° 18° Exercise Apical twist Notomi et al. JACC or
Velocity Vectors Imaging and Twist Torsion VS= 21+10=31° divided for 8 cm (LV max lenght) Torsion =31/8= 3,9°/cm Base Apex Clockwise Counter-Clockwise Tor VS= Q apex-Q base Twist angle of the apex (Q apex°) – twist angle of the base (Qbase°)
PHYSIOLOGICAL VARIABLES INFLUENCING LEFT VENTRICULAR TWIST MECHANICS Sengupta PP JACC IMG 2008
Systole-Twist and Diastole-Untwist • MVC mitral valve closure • AVO aortic valve opening • AVC aortic valve closure • MVO mitral valve opening Late filling • PSTV peak systolic torsional velocity • PUV peak untwisting velocity • Red line: systole (2 peaks, early and late) • Blue line: diastole (peak untwist, peak early filling, peak of late filling) (modified from Borg AN et al. Heart 2007;10:1136.)
LEFT VENTRICULAR TWIST DYNAMICS IN DIFFERENT PATHOLOGIES Mor-Avi V, Lang RM, Badano L et al. Eur J of Echo (in press) 2010. EUROECHO CONGRESS - COPENHAGEN - TEACHING COURSE 2010
CIRCONFERENTIAL ROTATION STRAIN NORMAL IMA
NORMAL LBBB-HF BASE VELOCITY VECTOR IMAGING Sinchrony and Sinergy APEX
CIRCONFERENTIAN ROTATION STRAIN CMI
3D Displacement
3D - STRAIN
3D - STRAIN
Left Ventricular Strain by Speckle Tracking 3D and 2D
You can also read