Cellular Growth and Form - Course 4: Cellular scaling Thomas Lecuit chaire: Dynamiques du vivant - Collège de France
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Cell size is set by co-regulation of cell division and cell growth M Cell size G2 HeLa cell Cell cycle G1 3,000 Mitotic volume S Volume (μm3) overshoot 2,500 Short-timescale fluctuations 2,000 EXIT 1,500 0 5 10 15 Time (h) G1 S C.Cadart L. Venkova, P. Recho, M. C. Miriam B. Ginzberg et al. and M Kirschner. Science 348, (2015); Lagomarsino and M. Piel Nature Physics DOI: 10.1126/science.1245075 15: 993–1004 (2019) Thomas LECUIT 2020-2021 2
What do cells measure to control division? • Sizer: cells divide at target size Deterministic vs Stochastic sizer • Timer: cells divide after fixed duration Trends in Genetics • Adder: cells divide after fixed size increase Cell level vs population scale control Thomas LECUIT 2020-2021 3
Scaling: Do cells measure their size? Mechanisms that procure information about size • Ratio of two length scales: cell geometrical length and biochemical length scales — An inhibitor of cell division is inhibited from the poles. As cell size increases assembly of cytokinetic ring is possible beyond critical cell size. ex: MinCD in Bacteria Pom1 in S. pombe cell division • Indirect measure of cell volume: Production of a size-invariant negative regulator of cell cycle progression provides an indirect feedback information about size. Thomas LECUIT 2020-2021 4
Scaling in living organisms Scaling of body parts, internal (organs, skeleton) and external (limbs) in animals • Size range spans 6 orders of magnitude in land vertebrates 50 30 Blue whale 20 Sperm body length (L) whale length, l mass, m 10 1/3 Gray whale 5 White whale Bottle-nosed whale Killer whale Bottle-nosed dolphin La Plata river Pygmy sperm whale 2 dolphin Dall porpoise 1 10 20 50 100 200 500 1,000 2,000 5,000 10,000 50,000 100,000 body mass (M) isometry 10 White rhinoceros African elephant Black rhinoceros 5 Bear Julian S. Huxley Georges Teissier Camel Hippopotamus Zebra Spotted hyena Moose Indian 2 Bison rhinoceros Orangutan Ass Lynx leopard body length (L) Pygmy hippopotamus 1 Howler monkey scaling law: f(x) = b xĮ Man • Hare Macaque scaling invariance: f(cx) Ӗf(x) 0.5 Baboon Giant rat Gibbon Wild rabbit Giant squirrel Lemur Beaver 0.2 allometry: Į > l or
Cellular scaling between species… Cell internal organisation: size of organelles 1875: G. Gulliver’s observation of red blood cells in different vertebrate species revealed approximate scaling of nuclei to cell size …and within species This was later further documented within a given species: 1900’: • Richard Hertwig (1850-1937): sea urchins and protists. Kern-plasma relation: ratio between nuclear and plasma (cytoplasm) volumes (1903) Uber Korrelation von Zell- und Kerngrosse und R. Hertwig ihre Bedeutung für die geschlechtliche Differenzierung und die Teilung der Zelle. Biol. Centralb., Bd. 22. • Theodor Boveri (1862-1915): sea urchins (1905) Zellenstudien V. Uber die Abhangigkeit der Kerngrosse u. Zellenzahl der Ausgangszellen. Jena. • Edwin Conklin (1863-1952): Crepidula plana Gulliver, G. (1875). On the size and shape of red corpuscles of the blood of (1912) Conklin, E. J. Exp. Embryol. 12, 1–98. vertebrates. Proc. Zool. Soc. Lond. 474–495. T. Boveri Thomas LECUIT 2020-2021 8
Cellular scaling within species Cell internal organisation — Cell shape and external organisation Primary D L3 Secondary (A) (B) (C) A P Tertiary Quaternary V 2 μm 10 μm 20 μm L2 (D) (E) (F) E17 L1 20 μm 40 μm 50 μm (G) (H) (I) (J) 19hrsAEL±2 24hrsAEL±3 48hrsAEL±3 72hrsAEL±3 10μm 19h 24h 48h 72h 80 μm 100 μm 200 μm Wallace Marshall late larva L1 larva L2 larva L3 embryo Ciliates and other Protists: large cells E17 with complex morphologies (see Lecture 1 — 2020) 5 mm Number of branches at each order of complexity C Relative distance between secondary branches 35 ns Primary 30 E17 0.4 Number of branches L1 Secondary 25 ns ** L2 Relative length L3 Tertiary ns 0.3 20 Quaternary 15 *** 0.2 10 * 0.1 ns 5 ns 0 0 Secondary Tertiary Quaternary E17 L1 L2 L3 A. Palavalli, N. Tizon-Escamilla, J-F. Rupprecht, T. Lecuit, Current Biology (2020), https://doi.org/10.1016/j.cub.2020.10.054 Green alga — Micrasterias rotata Thomas LECUIT 2020-2021 9
Cell size change during embryonic cleavage Cells decrease exponentially their size (volume) during early steps of animal development First 10 hours of amphibian embryogenesis, cell diameter decreases around 100-fold, from a 1.2 mm egg to 12 μm diameter blastomeres The cell in development and inheritance The Embryology of Crepidula (Conklin 1897) EB Wilson (1897) Thomas LECUIT 2020-2021 10
Cell size change during embryonic cleavage Cells decrease exponentially their size (volume) during early steps of animal development tissuee tissue Marine Mollusk Gasteropod Thomas LECUIT 2020-2021 11
Cell size change during embryonic cleavage Cells decrease exponentially their size (volume) during early steps of animal development Strongylocentrotus droebachiensis —Green urchin Sarsia sp. — Jellyfish Georges von Dassow http://www.gvondassow.com/ Thomas LECUIT 2020-2021 12
Cell size change during embryonic cleavage Cells decrease exponentially their size (volume) during early steps of animal development Echinoderm Amphioxus Cephalopods Annelids Molluscs Fish, Reptiles, Birds Tunicates Insects Mammals Arthropods www.shutterstock.com ID1459533926 Nematodes Amphibians www.shutterstock.com ID1459533440 Thomas LECUIT 2020-2021 13
Cell size — scaling Statement of the problem: • Cell size is tightly regulated but varies strongly during embryonic cleavage (by a factor of 2N for N divisions) • Cells grow 2-fold before they divide or may grow while they increase their ploidy • As cells change their volume do internal organelles scale? What are the mechanisms of scaling? • When cells display symmetric structures (eg. flagella or cilia) how is the size of these structures controlled Q: Do internal cell structures and organelles scale with cell size? Thomas LECUIT 2020-2021 14
Cell size change during embryonic cleavage Q: Do internal cell structures and organelles scale with cell size? Cerebratulus marginatus Georges von Dassow http://www.gvondassow.com/ Thomas LECUIT 2020-2021 15
Internal cell organisation Organelles Cytoskeletal structures Cell Biology by the numbers. Ron Milo, Rob Phillips, illustrated by Nigel Orme. Garland Science 2012 Thomas LECUIT 2020-2021 16
Internal cell organisation Cytoskeletal structures Microtubules (green) Letort G, Ennomani H, Gressin L et al. Actin filaments (blue) https://doi.org/10.12688/f1000research.6374.1 Intermediate filaments (red) Thomas LECUIT 2020-2021 17
External cell organisation Appendages — eg. Flagella • Protists: unicellular organisms, autotrophic or heterotrophic (neither animals nor plants) • Flagellates A , Pharyngomonas kirbyi ; B , Percolomonas cosmopolitus ; C , Percolomonas descissus ; D , Psalteriomonas lanterna ; E , Heteramoeba clara ; F , Pleurostomum flabellatum ; G , Trimastigamoeba philippinensis ; H , Naegleria gruberi I ,. Stephanopogon minuta . Cf – cytopharynx; Cl – collar; CV – contractile vacuole; Gl – globule of hydrogenosomes; Ro – rostrum. Scale bars = 10 μm. After Broers et al., 1990; Bovee, 1959; Brugerolle & Simpson, 2004; Droop, 1962; Fenchel & Patterson, 1986; Page, 1967, 1988; Park et al., 2007; Park & Simpson, 2011; Yubuki & Leander, 2008. Thomas LECUIT 2020-2021 18
Within- and between-species scaling Example: mitotic spindle • Spindle size (and shape) vary among different species and cell types to ensure chromosome segregation fidelity, and proper spindle positioning • In nematodes, embryo size, and thus cell size, is subject to stabilising selection • Stabilising selection on embryo size quantitatively predicts within-species and between-species variation of spindle traits (eg. length) Pole-to-pole distance (μm) Pole-to-pole distance (μm) Pole-to-pole distance (μm) Pole-to-pole distance (μm) C. castelli (n=10) C. angaria C C. angaria (n=22) 35 C. sp. 8 (n=10) 30 C. virilis (n=24) 25 Final spindle length (μm) C. drosophila (n=10) 30 individual embryo C. sp. 2 (n=11) 20 C. portoensis (n=21) natural isolate C. guadeloupensis (n=10) 15 C. afra (n=33) 10 C. imperialis (n=21) 0 100 200 300 400 500 C. yunquensis (n=10) Time (s) 26 C. nouraguensis (n=20) C. macrosperma (n=30) 35 C. japonica C. japonica (n=10) 30 50 C. kamaaina (n=10) 25 C. doughertyi (n=25) C. brenneri (n=157) 20 species average 37 22 Spindle final length (μm) C. tropicalis (n=39) C. wallacei (n=31) 15 predicted 45 C. nigoni (n=31) 10 measured C. briggsae (n=233) 0 100 200 300 400 500 31 C. sp. 5 (n=51) Time (s) C. sp. 5 45 50 55 60 Centrosome size (μm2) C. remanei (n=150) 35 C. elegans (n=2597) 25 40 Embryo size (μm) C. plicata (n=10) C. sp. 1 (n=21) 30 25 Diploscapter sp. (n=10) 20 Rhabditis sp. (n=19) 19 R. axei (n=11) 15 35 P. typica (n=12) O. tipulae (n=11) 10 O. dolichura (n=10) 0 100 200 300 400 500 13 C. cristata (n=12) P. maupasi Time (s) 35 45 55 65 75 35 P. pacificus (n=10) Embryo size (μm) 30 P. entomophagus (n=10) 30 P. maupasi (n=10) P. strongyloides (n=33) 25 P. teres (n=20) 20 R. regina (n=12) 25 M. longespiculosa (n=10) 15 MY23 ED3005 JU258 PS2025 CB4857 JU751 MY18 CX11315 ED3040 MY16 JU847 JU830 JU1896 CB4856 ED3077 ED3052 JU323 JU360 JU1580 JU406 MY1 JU1568 JU1350 EG4349 DL238 LKC34 JU1246 CX11264 JU1561 JU1212 JU1581 JU363 QX1233 DL226 CX11314 CB4858 JU1652 CX11292 CX11307 JU1213 CB4932 JU394 CX11285 JU1172 CX11262 JU775 EG4724 ED3048 JU561 JU346 CB4854 N2 CB4853 JU440 JU1491 KR314 EG4725 JU1440 JU397 AB4 PB306 PX179 JU792 JU1409 JU311 JU1586 EG4946 CB4852 JU462 LSJ1 JU642 JU367 ED3011 WN2002 JT11398 JU1400 ED3017 CX11276 JU310 RC301 JU1200 CX11271 ED3073 JU1242 JU1088 MY10 JU778 DL200 AB1 ED3046 EG4347 JU774 ED3049 PB303 ED3012 JU393 JU398 T. palmarum (n=10) 10 0.1 substitutions/site 0 100 200 300 400 500 C. elegans natural isolates (97 strains) Time (s) D Within-species analysis Between-species analysis Farhadifar et al., and Marie Delattre and Dan. J Needleman. Current Biology 25, 732–740 (2015) Thomas LECUIT 2020-2021 19
Cellular scaling Between species Between cell types within species 100 µm 50 µm Pancreatic Hepatocytes Keratinocytes Fibroblasts Adipocytes beta cells Within cell type within species • Organelles must scale with cell volume: exponential? • Yet the genome is not scaling with cell size Thomas LECUIT 2020-2021 20
Cellular scaling • Biochemical composition of cell: Potential role of genes and gene regulation between species and cell types X. laevis X. tropicalis Katanin: Microtubule severing protein reduces spindle size Science 328, 633-636 Xenopus tropicalis Xenopus laevis In X. laevis, Katanin p60 is phosphorylated by Aurora kinase B and inactivated A single amino acid change renders X. tropicalis refractory to AuroraB inactivation R. Loughlin et al. F. Nédélec and R. Heald. Cell 147, 1397–1407 (2011) Thomas LECUIT 2020-2021 21
Cellular scaling • Non genetic/biochemical adaptation to size: — geometric cues, size of pool of constituents? — how does biochemistry respond to geometry? First 12 cleavage cell divisions. The cell radius decreases 16-fold with little change in biochemistry T. Mitchison et al. Cold Spring Harb Perspect Biol 2015;7:a019182 (2015) Thomas LECUIT 2020-2021 22
Cellular scaling • Number of organelles/subcellular structures — mitochondria, Golgi, endosomes etc. — fixed size • Size of organelles/subcellular structures — nucleus, endoplasmic reticulum, centrosomes, spindles, cilia etc. — adaptation of size Thomas LECUIT 2020-2021 23
Scaling to cytoplasmic volume not cell dimension • Centrifugation experiments: centrosome • Observation of Crepidula cleavage divisions cytoplasm nucleus yolk nucleus: 24μm 14μm spindle • Due to centrifugation along the indicated axis (arrows) during cleavage, cell size and the amount of cytoplasm (dotted) and yolk (brown) are not proportional in the two blastomeres. • The size of organelles (nucleus, spindle and centrosome) scales with cytoplasm volume but NOT cell size stricto sensu. Conklin, E. (1912). J. Exp. Embryol. 12, 1–98. N. Goehring and A. Hyman Current Biology 22, R330–R339 (2012) Thomas LECUIT 2020-2021 24
Scaling to cytoplasmic volume not cell dimension C Size Scaling In Vitro D Size Scaling In Vivo (Embryo) 45 Compostional Spindle Size • Reg. ONLY 55 Encapsulation of Xenopus laevis extracts into 55 Spindle Length (μm) Spindle Length (μm) 40 Spindle Length (μm) droplets reveals 2 phases: linear size scaling of Reg. By Cell Size 45 Max 45 spindles and «saturation» where the maximum 35 Droplet Size 35 35 size is set by extract composition (eg. 30 Linear developmental stage, or species) 25 Min Scaling 25 Stages 1-8 25 15 15 B 0 100 200 300 0 100 200 300 Cell-like Compartment 20 Droplet Diameter (μm) Cell Diameter (μm) 20 40 60 80 Boundary Cytoplasmic Extract Droplet Diameter (μm) Uncompressed PREDICTIONS - Compressed Drops Droplets Spindle Spindle Same Size Elongates Oil PEG30 -PHS Tracks Tracks Droplet Volume Droplet Diameter • Disentangling the role of physical constraints Uncompressed Uncompressed (spatial extent of droplet) from the role of Compressed Compressed cytoplasmic volume. 50 50 Spindle Length (μm) Spindle Length (μm) • Compression alters the droplet geometry but not 40 40 its volume. • 30 30 Spindle length scales with droplet volume, not -14 p = 0.44 p < 10 geometry 20 20 10 -5 10 -4 10 -3 20 60 100 140 180 Droplet Volume (μl) Imaged Droplet Diameter (μm) Matthew C. Good, et al and Rebecca Heald. Science 342, 856-860. (2013) DOI: 10.1126/science.1243147 Thomas LECUIT 2020-2021 see also: J. Hazel et al. Science 342, 853-856. (2013) 25 DOI: 10.1126/science.1243110
Size control mechanism of organelles • The rate of biochemical reaction is typically a function of substrate concentration • The assembly kinetics of organelles is proportional to the cytoplasmic concentration of constituents. Timer Constraint Balance A B C assembly rate Max disassembly rate Rate Size Size t0 t1 Time Time Organelle size target size High concentration Low concentration • Size could be set by the • Size could be limited by a • Size could be limited by the duration of assembly. physical constraint such that balance between assembly • Different concentrations despite different assembly and disassembly. would yield different size of kinetics the maximum size is • Negative feedback between size internal structures set and assembly rate: N. Goehring and A. Hyman Current Biology 22, R330–R339 (2012) Thomas LECUIT 2020-2021 26
Limiting pool mechanism Scaling without need to measure the size of the cell D E F assembly f([monomer]) Rate Rate Rate disassembly Organelle size Organelle size Organelle size • If the monomers form a finite, • If the monomer concentration is • Competition for monomer in a size-independent (ie. synthesis of common pool, and rapid diffusion limiting pool, then assembly of the monomer is proportional to cell has two consequences: organelle consumes monomers and monomer concentration size), then a smaller cell decreases • increasing the number N of the concentration of monomer organelles decreases their size as decreases faster than a larger cell because 1/N • A s a re s u l t , a s s e m b ly r a t e the amount of monomer is lower. • The N different organelles have decreases as the organelle size the same size unless additional increases up to a steady state • A s a re s u l t , a s s e m b ly r a t e mechanisms are considered (in fact decreases faster as organelle size not really, see later) Ntot = Nmonomer + Norganelle increases and the target size is smaller in smaller cell, hence scaling N. Goehring and A. Hyman Current Biology 22, R330–R339 (2012) Thomas LECUIT 2020-2021 27
Limiting pool mechanism Centrosome scaling - Spindle scaling • The centrosome nucleate microtubules • The size of centrosome determines the size of the mitotic spindle A C D • 9 9 9 The size of centrosomes and P0 Wild-Type sas-4(RNAi) large Half Spindle Length (μm) sas-4(RNAi) small Half Spindle Length (μm) Half Spindle Length (μm) 8 P1 AB spd-2(RNAi) 8 P2 ABa 8 mitotic spindles are correlated 7 6 7 7 between cells and within cells 5 6 6 (asymmetric spindles) 4 3 5 5 4 4 2 1 3 slope = 4.48 ± 0.4 3 slope = 4.51 ± 0.5 0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 Centrosome Diameter (μm) Centrosome Diameter (μm) • TPXL-1 targets Aurora kinase to MTs and controls spindle length. E • TPXL1 concentration at A 2000 C 4.0 TPXL-1 TPXL-1 Fluorescence Intensity (A.U.) centrosomes correlates with TPXL-1::GFP Tubulin::mCh Merge Wild-Type 3.5 tpxl-1(RNAi) 1600 spindle size 3.0 • 1200 λ (μm) 2.5 Centrosomes control spindle size 800 2.0 by regulating the length scale of a Tubulin::mCh 1.5 slope = 0.366 ± 0.04 400 gradient of TPXL-1 on TPXL-1::GFP 1.0 0 0.5 microtubules -15 -10 -5 0 5 Distance relative to Chromatin (μm) 10 15 2 3 4 5 Half Spindle Length (μm) 6 7 8 B D Greenan, G., Brangwynne, C.P., Jaensch, S., Gharakhani, J., Jülicher, F., and Hyman, A.A. (2010). Curr. Biol. 20, 353–358. TPX2, Aurora Kinase and spindle length: Bird, A.W., and Hyman, A.A. (2008). J. Cell Biol. 182, 289–300. Thomas LECUIT 2020-2021 28
Limiting pool mechanism C Fixed subunit pool Centrosome scaling loaded into embryos by the mother Subunit pool supports two large centrosomes and a long spindle • The centrosome nucleate microtubules Disassembled • subunits partitioned at Centrosome size is governed by a limiting pool mechanism cytokinesis of centrosomal components that scale with cell size Centrosomes and spindle scale with inherited fraction of subunit pool A 10 P0 1-cell • Centrosome volume scales with 8 cell size, and is independent of Centrosome Volume (μm³) AB P1 2-cell 6 cell fate. 4 4-cell ABp ABa P2 EMS 8-cell 2 16-cell 0 -450 -300 -150 0 150 Time (sec) • The total volume of centrosome remains constant over time as cells divide • Increasing the number of centrosomes reduces the size of individual centrosomes but the total volume of centrosomes remains invariant • The size of centrosomes is sensitive to total SPD2 in a cell. • This is consistent with a limiting pool of maternally inherited SPD-2 governing centrosome size and scaling Decker, M., et al., and Hyman, A.A. (2011). Curr. Biol. 21, 1259–1267. Thomas LECUIT 2020-2021 29
Limiting pool mechanism • Scaling of centrosome size by limiting pool of centrosomal components • Scaling of mitotic spindles with centrosomes A D E F assembly disassembly Rate Rate Rate Organelle size Organelle size Organelle size N. Goehring and A. Hyman Current Biology 22, R330–R339 (2012) Thomas LECUIT 2020-2021 30
Limiting pool mechanism Microtubule Dynamics Scale with Cell Size to Set Spindle Length Scaling of MT dynamics with cell volume can be explained by existence of a limiting pool of a regulator of MT dynamics Lacroix et al., F. Nedelec and J. Dumont. 2018, Developmental Cell 45, 496–511 Thomas LECUIT 2020-2021 31
Limiting pool mechanism Microtubule Dynamics Scale with Cell Size to Set Spindle Length 1-cell stage 2-cell stage 4-cell stage 8-cell stage 16-cell stage Growth rate GFP-tubulin 0.8 Growth rate (μm/s) Caenorhabditis elegans 0.6 Nematode 1-cell 2-cell 4-cell 8-cell 16-cell 0.4 ABp 0.2 P2 ABxx P1xx P0 AB P1 ABa EMS 0.0 1-cell 2-cell 4-cell 8-cell 16-cell GFP-PH Spindle MT growth rate ** • n.s. Microtubule average length depends on 2 kinetic parameters, growth and shrinkage rates, and 0.8 ** ** Growth rate (μm/s) 2 switch probabilities (catastrophe and rescue) 0.6 • Growth rate is reduced over time while other parameters are unchanged 0.4 • The reduction in growth rate is due to a reduction in cell volume but not to change in cell 0.2 0.31 0.28 0.26 0.32 0.38 composition (fate) 0.0 ±0.07 ±0.06 ±0.05 ±0.06 ±0.08 ) ) AB P0 P1 Ai (ts N 27 k-1 R • 2-cell 1( Spindle length scales with and is tuned by spindle microtubule growth rate. cy 9. D Control C Spindle length vs Spindle length vs A growth rate shrinkage rate GFP-tubulin 25 r =0.81 2 25 no corr. Spindle length (μm) 1-cell control 2-cell control 20 20 4-cell control 15 15 8-cell control 10 10 Control C27D9.1(RNAi) cls-2(RNAi) 16-cell control 1-cell C27D9.1(RNAi) 5 5 1-cell cls-2(RNAi) 0 0 0.1 0.2 0.3 0.4 0.5 0.0 0.5 1.0 1.5 Growth rate (μm/s) Shrinkage rate (μm/s) cyk-1(ts) Thomas LECUIT 2020-2021 32 Lacroix et al., F. Nedelec and J. Dumont. 2018, Developmental Cell 45, 496–511
Limiting pool mechanism Microtubule Dynamics Scale with Cell Size to Set Spindle Length A Early divisions in the sea urchin Paracentrotus lividus 1-cell 2-cell 4-cell 8-cell 16-cell 16-cell 32-cell >44-64-cell Paracentrotus lividus (micromeres,μ) Echinoderm ATTO 565-tubulin Spindle MT growth rate vs cell volume 1-cell Spindle length vs spindle MT growth rate 0.5 Growth rate 0.3 2-cell r2 = 0.93 Spindle length (μm) 24 Growth rate (μm/s) Growth rate (μm/s) 0.4 4-cell 8-cell 20 0.3 0.2 16-cell 0.2 16 16-cell (μ) 0.1 0.1 32-cell 12 0.0 > 44-64-cell 8 ll 500 400 300 200 100 0 0.28 0.24 0.20 0.16 0.12 0.08 -c ell -6 l ce 32 ) 2- l 4- l 8- l 16 ll 44 el l l l μ ce ce ce ce l( 16 -c -c 4- 1- el Cell volume (pL) Growth rate (μm/s) > Lacroix et al., F. Nedelec and J. Dumont. 2018, Developmental Cell 45, 496–511 Thomas LECUIT 2020-2021 33
Limiting pool mechanism Microtubule Dynamics Scale with Cell Size to Set Spindle Length A Spindle MT growth rate during P. lividus and C. elegans 0.8 P. lividus C. elegans embryo cleavage 1-cell 1-cell Growth rate (μm/s) • C.elegans embryos are about 20 times smaller than 0.6 2-cell 4-cell 2-cell 4-cell P. lividus embryos. 0.4 8-cell 8-cell • 16-cell 16-cell Though spindle microtubule growth rate 0.2 16-cell (μ) determines spindle size and scales with cell volume 0.0 32-cell > 44-64-cell in each species c l 1- cel el ll 4- l l 2- ell 4- ell 8- ell 16 16 ell 2- ell 4- ell 8- ell -c l > 32 (μ) -6 el el 16 cel -c -ce 44 -c c c c c c c 1- l • MT growth rate is not an absolute predictor of B C spindle size: growth rate is different in cells of 0.4 Growth rate vs spindle length in P. lividus and C. elegans 0.4 Growth rate vs cell volume in P. lividus and C. elegans different volume across species. Growth rate (μm/s) Growth rate (μm/s) 0.3 0.3 0.2 0.2 0.1 0.1 • However, cells of similar size across species have similar 0.0 20 15 10 5 0.0 500 400 300 200 100 0 average microtubule length and spindle length Spindle length (μm) Cell volume (pL) • So the dynamic parameters of MT polymerisation scale of spindle MTs vs cell volume in P. lividus and C. elegans with cell volume Spindle length vs cell volume in 6 of spindle MTs (μm) 32 P. lividus and C. elegans Spindle length (μm) 4 16 8 2 log2-log2 Small cells (Vol.
Limiting pool mechanism Microtubule Dynamics Scale with Cell Size to Set Spindle Length • The dynamic parameters of MT polymerisation scale with cell volume • This can be explained by Limiting pool model • Tubulin is unlikely to be limiting and evidence indicate that it is not in many instances • However, MT associated proteins, MAPs, could be limiting • MAPs affect MT dynamics, in particular growth rate: CLS-2 (CLASP) • CLS-2 titration reduces spindle length E Normalized CLS-2 level vs Spindle length vs duration of RNAi treatment Spindle length vs normalized CLS-2 level 12 duration of RNAi treatment 16 Normalized CLS-2 level (A.U.) 16 6hr control Spindle length (μm) Spindle length (μm) 14 14 8 9hr 17hr 12 12 12hr 20hr 4 15hr 10 10 24hr 0 8 8 0 4 8 12 16 20 24 control 6hr 9hr 12hr 15hr 17hr 20hr 24hr 10 8 6 4 2 0 Duration of RNAi treatment (hr) Duration of RNAi treatment (hr) Normalized CLS-2 level (A.U.) G Cell volume Regulator of MT growth Number Microtubules Microtubule (MT) Regulator of MT growth Chromosome Cell volume decrease Lacroix et al., F. Nedelec and J. Dumont. 2018, Developmental Cell 45, 496–511 Thomas LECUIT 2020-2021 35
Limiting pool mechanism —Nuclear scaling Nuclei scale to cell size: Kern-plasma relation from Hertwig • Yeast • Shoot apical meristem 50 μm 1 Arabidopsis thaliana, 2 Lobularia maritime (Sweet Alison), 3 Hypericum P. Jorgensen et al., Molecular Biology of the Cell, 18:3523, 2007 virginicum (Marsh St. John’s wort), 4 Cicer arietinum (chickpea), 5 Nelumbo lutea, 6 Spinacia oleracea (spinach), 7 Cyanotis pilosa, 8 Anemone pulsatilla Cell Biology by the numbers. Ron Milo, Rob Phillips, illustrated by Nigel Orme. Garland Science 2012 (Meadow Anemone), 9 Tradescania navicularis (day flower), 10 Convallaria majalis (Lily of the valley), 11 Fritillaria laneeolata (chocolate lily), 12 Fritillaria camtschatcensis, 13 Lilium longiflorum (Easter lily)(4 x ), 14 Sprekelia formosissima (Aztec lily). (Adapted from H. J. Price et al., Thomas LECUIT 2020-2021 Experientia, 29:1028, 1973.) 36
Limiting pool mechanism —Nuclear scaling Nuclei scale to cell size: nuclei grow to scale with cell size • Injection of small nuclei into larger cells (Hela cells) cause nuclear growth nucleus of hen nucleus erythrocyte Harris, H. (1967). The reactivation of the red cell nucleus. J. Cell Sci. 2, 23–32. HeLa cell B • Injection of Hela cells nuclei into large Xenopus oocytes causes nucleus enlargement. Enlargement is reduced as the number of injected nuclei increases. • This is consistent with nuclei competing for a limited component released by the germinal vesicle. Competition between nuclei reduces nuclear growth Gurdon, J.B. (1976). Injected nuclei in frog oocytes: fate, enlargement, and chromatin dispersal. J. Embryol. Exp. Morphol. 36, 523–540. Thomas LECUIT 2020-2021 37
Limiting pool mechanism —Nuclear scaling Nuclei scale to cell size: nuclei grow to scale with cell size A model of limiting pool of component of nuclear envelope growth is consistent with experimental observations D E Time N. Goehring and A. Hyman Current Biology 22, R330–R339 (2012) Thomas LECUIT 2020-2021 38
A variant: Phase transition based scaling • Proteins and RNAs in cells form liquid mixtures and so-called membrane-less organelles: centrosomes, centrioles, P granules etc • Proteins and RNA mixtures phase separate above a critical concentration. phase dilute condensed phase Nucleoli (and other RNP droplets) in — A solution of proteins/RNAs forms a homogeneous nucleus of X. laevis oocyte mixture when solutes don’t interact. Solutes distribute evenly on average to maximise the entropy of the system. — When proteins/RNAs interact, the free energy is multimodal and the system can exist in 2 configurations where the concentration is different but the chemical potential is the same. At equilibrium there is no net flux between the two phases despite rapid exchanges. Phase separation occurs at the concentration of proteins/ RNAs where the solute-solute interactions overcome the entropic tendency of the system to remain homogenous. Brangwynne. J. Cell Biol. 203:875–881 (2013) Banani, Lee, Hyman and Rosen. Nat Rev Mol Cell Biol 18(5):285-298. (2017) Hyman, Weber, Jülicher. Annu. Rev. Cell Dev. Biol. 30:39–58 (2014) Thomas LECUIT 2020-2021 39
A variant: Phase transition based scaling • Scaling of liquid-liquid de-mixing phases Scaling of nucleoli, nuclei and cells in dorsal root • Proteins and RNA mixtures phase separate ganglia neurons above a critical concentration. Berciano et al. J. Struct. Biol. 158:410–420. (2007) 20μm • As a cell grows, if the protein/RNA synthesis does not • If concentration is kept constant (scaling of synthesis to volume as commonly observed, see scale with cell size, the concentration of solutes Lecture 2, «What sets cell volume?»), then decreases, and liquid condensates dissolve when the scaling occurs concentration goes below the critical concentration • This results in the absence of scaling with cell size • the size of the condensate is set by the size of the pool of solutes if it is limiting. When concentration will drop below the critical concentration, growth of the condensates ceases Brangwynne. J. Cell Biol. 203:875–881 (2013) Thomas LECUIT 2020-2021 40
A variant: Phase transition based scaling —Nucleolus scaling is highly relevant to cell growth • Nucleoli are the site of ribosome biogenesis • Ribosome synthesis and assembly is limiting for cell growth due to limits on the synthesis of rRNAs (See Lecture 2: «What sets cell volume?») • Nucleolar size scales directly with cell size during development (in C. elegans) and in dorsal root ganglia neurons A C • However, comparison of 8-cell stage cells of different size (using RNAi conditions), shows that smaller cells have brighter nucleoli, indicating inverse scaling. • In each condition however, nucleoli scale directly with cell size during development…! A A B Thomas LECUIT 2020-2021 Weber & Brangwynne, 2015, Current Biology 25, 641–646 41
A variant: Phase transition based scaling —Nucleolus scaling is highly relevant to cell growth • Nucleoli assembly depends on the concentration of components • This concentration is higher in smaller embryos (and smaller cells) • Components are loaded maternally in oocytes independent of the size of oocytes • As a result, smaller embryos inherit a higher concentration of nucleolar components • A phase separation based model explains quantitatively both: —Direct size scaling during development —Inverse scaling across embryo size Weber & Brangwynne, 2015, Current Biology 25, 641–646 Thomas LECUIT 2020-2021 42
Scaling by surface to volume ratio sensor Nuclear size Is regulated by Importin α and Ntf2 in Xenopus • Xenopus laevis and tropicalis have different size. • X. laevis is tetraploid while X. tropicalis is diploid Science 328, 633-636 A B • Difference in nuclear size in 2 species Different kinetics of growth of the nuclear envelope (NE) are observed in extracts. • Mixed extracts indicate that titratable cytoplasmic factors are responsible for C D determining nuclear size C • Compositional differences in extracts: Importinα2 and Ntf2 levels are different in 2 species (Importin α2 promotes nuclear import of NLS- containing proteins such as Lamins which are required for nuclear growth) fold change in NE area • Functional tests: • Adding Importin α2 to X. tropicalis extracts that formed nuclei increases nuclear size Thomas LECUIT 2020-2021 43 D. Levy and R. Heald. Cell 143, 288–298 (2010)
Scaling by surface to volume ratio sensor Nuclear scaling is regulated by Importin α and Ntf2 in Xenopus Xenopus embryonic cleavage A • Nuclear scaling: • The nuclei reduce their size during progressive embryonic cleavage, together with cell size • This correlates with a reduction in the concentration of Importin α2 and Nft2 in nuclei • Injection of Importing α2 increases nuclear size during developmental cleavage and scaling Thomas LECUIT 2020-2021 44 D. Levy and R. Heald. Cell 143, 288–298 (2010)
Scaling by surface to volume ratio sensor —Nuclear scaling Importin α partitioning to the plasma membrane regulates intracellular scaling Question: how to couple change in biochemical composition and change in size? • Change in surface to volume ratio couples cell size to cytoplasmic Importin α • Smaller cells titrate cytoplasmic Importin α to the plasma membrane, thereby reducing nuclear size • Importin α is a surface area-to-volume sensor that scales intracellular structures to cell size. (NB: this model cannot apply to cells with very different geometry than sphere) Į cytoplasmic Surface/Volume ∝1/R Importin-a cell size nucleus C. Brownlee and R. Heald. Cell 176, 805–815 (2019) Thomas LECUIT 2020-2021 45
Scaling by surface to volume ratio sensor —Nuclear scaling Importinα partitioning to the plasma membrane regulates intracellular scaling Imp α WT Imp α WT Imp α NP palmostatin palmostatin • Importin a is palmitoylated and partitions to the plasma membrane • Palmitoylation of Importin a reduces nuclear size ȝ • And reduces nuclear recruitment of LaminB3 (an NLS containing protein) Lamin B3 intensity Imp αWT Imp α NP Imp αWT Imp α NP + palmostatin $ $)$( )+* Imp α WT Imp α NP Imp αWT Imp α NP + palmostatin C. Brownlee and R. Heald. Cell 176, 805–815 (2019) Thomas LECUIT 2020-2021 46
Scaling by surface to volume ratio sensor Importin a partitioning to the plasma membrane regulates intracellular scaling A *-,.0(+Į *-,.0(+ Į#30,-)!/*(##,+%+0.!0(,+ ** ** #,+#%+0.!0(,+ *-,.0(+Į#30,-)!/*(##,+#%+0.!0(,+ • Model of membrane versus cytoplasmic .%!,##1-(%$"3 (*-,.0(+Į +* partitioning of Importin a as a function of cell size. * • Non linear decrease of Importin a. * '' 0!'% 0!'% %&0,2%. #30,-)!/*(# (*-,.0(+Į %$1#0(,+(+ #30,-)!/*(# (*-,.0(+Į %))$(!*%0%. palmitoylation B inhibitor C • Scaling of nuclear size to cell size is lost when !)*,/0!0(+ +0 1#)%!.$(!*%0%. * palmitoylation is inhibited in embryos. %))%$'%#30,-)!/* +0%+/(03!0(, *-,.0(+Į !)* +0 stage 7 embryo !)*,/0!0(+ +0 %))$(!*%0%.* C. Brownlee and R. Heald. Cell 176, 805–815 (2019) Thomas LECUIT 2020-2021 47
Scaling by surface to volume ratio sensor Importin a partitioning to the plasma membrane regulates spindle size Cell-like Compartment Boundary Cytoplasmic • Importin-a binds the kinesin Kif2 which reduces spindle size. Extract A Į Į • Membrane recruitment of Importin-a increases Kif2 binding to spindles. • Hence in smaller cells, where cytoplasmic Importin a is lowest, Kif2 reduces spindle size Oil PEG30 -PHS Į Į B spindle !#! %"! # !% Į cytoplasmic Surface/Volume ∝1/R Importin-a ! #!#! cell size A nucleus Į Į Į Thomas LECUIT 2020-2021 C. Brownlee and R. Heald. Cell 176, 805–815 (2019) 48
Scaling by surface to volume ratio sensor Importin a partitioning to the plasma membrane regulates spindle size • The kinesin Kif2 is an NLS-containing protein which binds mitotic spindles in stage 8 but not in stage 3 embryos • Importin-a binds and inhibits Kif2 microtubule depolymerising activity • Importin a antagonises Kif2 dependent reduction of spindle size • Hence in smaller cells, where cytoplasmic Importin a is lowest, Kif2 reduces spindle size B A B Thomas LECUIT 2020-2021 Wilbur and Heald. eLife;2:e00290. DOI: 10.7554/eLife.00290 (2013) 49
Scaling mechanisms — Summary • Limiting pool mechanism • Sensor of surface to volume ratio: tunes the effective cytoplasmic concentration of regulator of organelle size These mechanisms rely on non local sensing: geometry of environment • Let’s consider local size sensing mechanisms Thomas LECUIT 2020-2021 50
Limits of « Limiting pool mechanism » Controlling the size of multiple organelles - Cilia αβ tubulin dimer C G H%TQUUUGEVKQPQHCOQVKNGEKNKWO ȯCIGNNWO %GPVTCNRCKT 4CFKCNURQMG +PPGT UJGCVJ D +PPGTF[PGKPCTO 0GZKPNKPM 1WVGTF[PGKPCTO I%TQUUUGEVKQPQHCRTKOCT[EKNKWO #ZQPGOG 1WVGTOKETQVWDWNG FQWDNGV #VWDWNG E $VWDWNG %KNKWO %KNKCT[OGODTCPG F 10μm https://www.sciencesource.com/archive/Chlamydomonas--SEM--SS2526322.html 2NCUOCOGODTCPG Chlamydomonas reinhardtii %KNKCT[RQEMGV Green algae 6TCPUKVKQP\QPG 6TCPUKVKQPȮDTG $CUCNDQF[ cilium microtubule H Ishikawa and WF Marshall Nature Reviews Mol Cell Biol 12: 222-234 (2011) Thomas LECUIT 2020-2021 51
Limits of « Limiting pool mechanism » Controlling the size of multiple organelles - Cilia Pharyngomonas kirbyi Protist, 162, 691–709 (2011) A , Pharyngomonas kirbyi ; B , Percolomonas cosmopolitus ; C , Percolomonas descissus ; D , Psalteriomonas lanterna ; E , Heteramoeba clara ; F , Pleurostomum flabellatum ; G , Trimastigamoeba philippinensis ; H , Naegleria gruberi I ,. Stephanopogon minuta . Cf – cytopharynx; Cl – collar; CV – contractile vacuole; Gl – globule of hydrogenosomes; Ro – rostrum. Scale bars = 10 μm. After Broers et al., 1990; Bovee, 1959; Brugerolle & Simpson, 2004; Droop, 1962; Fenchel & Patterson, 1986; Page, 1967, 1988; Park et al., 2007; Park & Simpson, 2011; Yubuki & Leander, 2008. Thomas LECUIT 2020-2021 52
Limits of « Limiting pool mechanism » Controlling the size of multiple organelles - Cilia C retinal pigment epithelial (RPE1) cells D inner medullary collecting duct (IMCD 3) cells. E % mouse nodal cilia F hair cells inner ear David Furness mouse tracheal motile cilia H Ishikawa and WF Marshall Nature Reviews Mol Cell Biol 12: 222-234 (2011) Thomas LECUIT 2020-2021 53
Limits of « Limiting pool mechanism » Controlling the growth of multiple organelles • The limiting-pool mechanism of size control successfully assembles one structure of a well defined size • Multiple structures assembled from a common limiting pool exhibit large size fluctuations • Assembly of multiple structures exhibits three characteristic timescales Mohapatra et al. and Jane Kondev, Cell Systems 4, 559–567 (2017) Thomas LECUIT 2020-2021 54
Limits of « Limiting pool mechanism » Controlling the growth of multiple organelles A B • Single nucleating center d pðl; tÞ 0 = k + ðN l + 1Þpðl 1; tÞ + k pðl + 1; tÞ dt (Equation 1) 0 k + ðN lÞpðl; tÞ k pðl; tÞ: —determine p(l,t) at steady state given detailed balance: pðlÞk + ðN lÞ = pðl + 1Þk 0 C D • Two nucleating center d pðl1 ; l2 ; tÞ 0 = k + ðN l1 l2 + 1Þðp ðl1 1; l2 ; tÞ dt + p ðl1 ; l2 1; tÞÞ + k pðl1 + 1; l2 ; tÞ 0 + k pðl1 ; l2 + 1; tÞ 2 k + ðN l1 l2 Þ + k pðl1 ; l2 ; tÞ: (Equation 2) • So the growth of multiple cilia of same length is evidence that other mechanisms than limiting pool mechanism are involved Mohapatra et al. and Jane Kondev, Cell Systems 4, 559–567 (2017) Thomas LECUIT 2020-2021 55
« Antenna » model of length control 1D length control: how filaments control their length Feedback of length on local dynamics • Short microtubules grow fast Actin filament Microtubule • Long microtubules grow slowly • Above critical length growth is arrested r _ +r + – γ Idealized filament γ depolymerisation rate r + γ +1 Length-change kinetics polymerisation rate S. cerevisiae S. pombe Interphase filament length steady state length polymerisation rate Mitosis depolymerisation rate filament length F-actin cable or filament Actin patch Actomyosin ring Spindle pole body Spindle Thomas LECUIT 2020-2021 Mishra et al FEMS Microbiol Rev 38 (2014) 213–227 56
« Antenna » model of length control Feedback of length on dynamics [Kip3p] (1) the total rate at which Kip3p molecules land on a microtubule is proportional to the microtubule’s length (2) Kip3p is a highly processive motor over a wide range of Kip3p densities on the microtubule lattice (3) new Kip3p arriving at the + end of MT induces dissociation of stalled Kip3p (4) each dissociation of Kip3 removes 1-2 tubulin dimers (5) the rate of depolymerization is proportional to the flux of Kip3p molecules to the microtubule end • The antenna model predicts well the length dependent depolymerisation rate • Negative feedback of length on MT depolymerisation. • Energetic cost: few 1000 ATPs for dissociation of 1-2 dimers!! energy used to collectively «compute» MT length and control depolymerisation rate Varga, V., Leduc, C., Bormuth, V., Diez, S., and Howard, J. (2009). Cell 138, 1174–1183. Thomas LECUIT 2020-2021 57
« Antenna » model of length control Antenna Mechanism of Length Control of Actin Cables. • «Antenna mechanism” involves three key proteins: —Formins, polymerize actin, Formin —Smy1 proteins, bind formins and inhibit actin polymerization, —Myosin motors, deliver Smy1 to formins, Actin patch • This leads to a length-dependent actin polymerization rate. Actin cable Lee. Nature Cell Biology 4: E29–E30(2002) Smy1 binding affinity to formins Smy1 concentration • Steady state cable length distributions depend on Smy1 concentration and binding affinity of Smy1 to formins kon(l) = wl w :: Smy1 concentration Thomas LECUIT 2020-2021 Mohapatra L, Goode BL, Kondev J (2015) 58 PLoS Comput Biol 11(6): e1004160. doi:10.1371/journal.pcbi.1004160
Design principles of length control of cytoskeletal structures • Size invariant assembly and disassembly: no characteristic length scale a Length-independent rates Disassembly r + γ Rate +1 Assembly • stochastic dynamics of filaments • What are the principles of length control? Length Actin filament Microtubule • Size dependent assembly and disassembly: characteristic length at steady state r + – γ _ +r • Negative feedback: increased polymerisation in shorter filaments and/or Idealized filament γ increased disassembly in longer filaments r + γ +1 b Length-dependent rates Length-change kinetics Assembly r( ) + γ( ) Rate +1 Disassembly * Length L. Mohapatra, B. Goode, P. Jelenkovic, R. Phillips and Jane Kondev. Annu. Rev. Biophys. 45:85–116 (2016) doi: 10.1146/annurev-biophys-070915-094206 Thomas LECUIT 2020-2021 59
Design principles of length control of cytoskeletal structures a b Transitions Probability 1 r + rΔt Filament 1 –1 Probability γ + γΔt 2 +1 Filament 2 γ + γΔt –1 r + rΔt N Length of a filament +1 (monomers) Filament N P (l, t) : probability that filament c r γ r γ is of length l at time t Probability ℓ–1 ℓ ℓ+1 ℓ–1 ℓ ℓ+1 ℓ–1 ℓ ℓ+1 ℓ–1 ℓ ℓ+1 Length of a filament Length of a filament Length of a filament Length of a filament (monomers) (monomers) (monomers) (monomers) dP(ℓ,t) dP(ℓ,t) dP(ℓ,t) dP(ℓ,t) 0 0 dt dt dt dt dP(l, t) = r P(l − 1, t) − r P(l, t) + γ P(l + 1, t) − γ P(l, t). dt Calculate steady state distribution with detailed balance: r(l)P(l) = γ (l + 1)P(l + 1) • The rates of growth r and shrinkage γ need not be constant • In fact, their dependency on length l will give rise to interesting properties P (l) = f (r(l), r(l − 1), . . . r(0), γ (l), γ (l − 1), . . . γ (0))P (0). L. Mohapatra, B. Goode, P. Jelenkovic, R. Phillips and Jane Kondev. Annu. Rev. Biophys. 45:85–116 (2016) Thomas LECUIT 2020-2021 doi: 10.1146/annurev-biophys-070915-094206 60
Design principles of length control of cytoskeletal structures Length control by assembly • Finite/limiting pool model a Finite subunit pool b Assembly Rate (monomer/s) 80 Probability distribution Disassembly l γ 40 r N t! r P(l) = P(0) γ (N t − l)! 0 0 50 ℓ* 150 Length (monomers) r = r′Nt c 0.04 Mean length: l = N t − rγ Probability 0.02 h Limited by Nt : length l with size of pool (Nt) increases Higher dissociation reduces size γ 0.00 0 50 100 150 Variance r Length (monomers) L. Mohapatra, B. Goode, P. Jelenkovic, R. Phillips and Jane Kondev. Annu. Rev. Biophys. 45:85–116 (2016) doi: 10.1146/annurev-biophys-070915-094206 Thomas LECUIT 2020-2021 61
Design principles of length control of cytoskeletal structures Length control by assembly • Antenna model: negative feedback by length dependent recruitment of assembly inhibitor a Transported dampers b 0.8 a Possible transitions b Diffusing damper Assembly Rate (μm/s) 0.6 0.4 r ON γ 0.2 Disassembly ℓ ℓ+1 ℓ 0 0 2 4 ℓ* 6 8 koff kon koff kon Length (μm) ℓ c Transported damper c OFF 0.0012 γ Probability ℓ ℓ+1 0.0008 ℓ 0.0004 0.0 0 2 4 6 8 Length (μm) koff r Mean length: l = −1 w γ Increases as affinity of damper decreases (increased dissociation koff) Increases as concentration of damper decreases L. Mohapatra, B. Goode, P. Jelenkovic, R. Phillips and Jane Kondev. Annu. Rev. Biophys. 45:85–116 (2016) doi: 10.1146/annurev-biophys-070915-094206 Thomas LECUIT 2020-2021 62
Design principles of length control of cytoskeletal structures Length control by assembly • Antenna model: negative feedback by active transport of monomer • microtubules grow at the tip of cilia a Active transport of monomers b • diffusion of monomers is slow (10s to reach tip of 10μm long cilila) Assembly Rate (monomer/s) 4 • active transport of monomers to the tip controls the Cilia vr r flow of monomers: 10s of monomers every second – + 2 • The number of IFT molecules that link monomer to va ℓ γ Disassembly motor is fixed and independent of cilia length. • IFT 0 time of transport of monomers increases with length kinesin 1 200 400 ℓ * 600 Length (monomers) of filament Cell body dynein • the assembly rate decreases with filament length c • longer filaments grow slowly and shorter grow faster Probability 0.01 0.00 • mean length l = r γ +1 1 200 400 Length (monomers) 600 r = αN v Increases with the number of transporters (IFT) htt // i / 10 hi / Chlamydomonas reinhardtii L. Mohapatra, B. Goode, P. Jelenkovic, R. Phillips and Jane Kondev. Annu. Rev. Biophys. 45:85–116 (2016) doi: 10.1146/annurev-biophys-070915-094206 Thomas LECUIT 2020-2021 63
Design principles of length control of cytoskeletal structures • Statistical features of different models • Condition for scaling a Mechanism Finite subunit pool Probability distribution Mean Variance with cell size Probability r γ monomer pool scales with cell size Length [Free monomers] [Free monomers] b Diffusing dampers kon Probability • Length control by assembly r γ Length [Damper] [Damper] c Transported dampers Probability v kon 0 r γ Length Elongator-damper Elongator-damper binding strength binding strength d Active transport of monomers transporter number scales with Probability v r – + γ cell size Length [Transporters] [Transporters] e Depolymerizers Probability kon v r • γ Length control by disassembly Length [Depolymerizer] [Depolymerizer] f Severing s Probability r Length [Severing protein] [Severing protein] L. Mohapatra, B. Goode, P. Jelenkovic, R. Phillips and Jane Kondev. Annu. Rev. Biophys. 45:85–116 (2016) Thomas LECUIT 2020-2021 doi: 10.1146/annurev-biophys-070915-094206 64
Cellular scaling and cell size control Article Cellular Allometry of Mitochondrial Functionality Establishes the Optimal Cell Size Graphical Abstract Authors Teemu P. Miettinen, Mikael Björklund Correspondence mikael.bjorklund.lab@gmail.com In Brief Highlights Organelle content scales linearly with cell d Mitochondrial functionality is highest in intermediate-sized size. Miettinen and Björklund investigate cells in a population how this relates to organelle function and d Mitochondrial membrane potential changes with cell size, not show that mitochondrial functionality and cell cycle cellular fitness are highest at intermediate d Evidence for an optimal cell size, whereby functionality and cell sizes, suggesting the existence of an fitness are maximized mitochondrial membrane potential optimal cell size. The mevalonate d Mitochondrial dynamics and mevalonate pathway required pathway contributes to cell size scaling of for the optimal cell size mitochondrial function. Miettinen & Björklund, 2016, Developmental Cell 39, 370–382 Thomas LECUIT 2020-2021 65
Conclusion How is biological size encoded? Coupling scales: development arrest of growth tissue homeostasis Tissue/organism scale Cellular scale 2019 2020 Thomas LECUIT 2020-2021 66
• Motor, Constraints and Regulation of Growth Cell growth Sizer Feedback Adder Energy Metabolism Cell division supply carbohydrates amino-acids Synthesis: ATP, mRNAs, proteins, ribosomes ions etc lipids, carbohydrates y Feedback Osmotic flow: ions, H2O kidney cell Energy Kidney, y liver Feedback #3 uptakee coordination Cell growth Energy Metabolism Organ growth Energgy Energy Celldivision Sizer delivery deliver ry Gut, muscle, bones, bones … Feedbacks: #1 Patterning, #2 Mechanics Thomas LECUIT 2020-2021 67
44!%+ &%+)"%+*+'#*+""+4,&,)*,4-#&''$%++#84-&#,+"&% Constraints and plasticity in Development and Evolution -%"*,&,#!")2-&#,+"&%* 4%&$*+4-#&''$%+ 3-4 Juin 2021 — 9h-18h "1.%$4""/"%44$*37/6 $98$" %"4'# Detlev Arendt (EMBL Heidelberg) Virginie Courtier-Orgogozo (Paris) Stanislas Dehaene (Collège de France) Claude Desplan (NYU) Organisateurs: Caroline Dean (John Innes Center) Denis Duboule (chaire: Evolution des Liam Dolan (Oxford) Hopi Hoekstra (Harvard) génomes et développement) Laurent Keller (Univ. Lausanne) Thomas Lecuit (chaire: Dynamiques du Natacha Kurpios (Cornell Ithaca) vivant) Shigeru Kuratani (Kobe) L. Mahadevan (Harvard) Marie Manceau (Collège de France) Nipam Patel (Woods Hole) Olivier Pourquié (Harvard) Luis Quitana-Murci (Pasteur & Collège de France) Eric Siggia (Rockefeller University) Vikas Tervidi (EMBL Barcelona) Elly Tanaka (IMP Vienna) Günter Wagner (Yale Univ.) 68
You can also read