CAMS Atelier virtuel pour les utilisateurs (France) - Séance 1-2 (10:00 - 10:55) CAMS product portfolio, updates / radiation and CO2
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
CAMS Atelier virtuel pour les utilisateurs (France) Séance 1-2 (10:00 – 10:55) CAMS product portfolio, updates / radiation and CO2 Atmosphere Monitoring Chair: V.-H. Peuch (ECMWF) Co-Chair: M. Domergue (Ministry for the Ecological Transition)
Mise à jour du portefeuille produits CAMS Stijn Vermoote, ECMWF Acknowledgements: V.-H. Peuch, R. Engelen and other colleagues and service providers of CAMS team Atmosphere Monitoring
C A M S I N F O R M AT I O N F L O W Atmosphere Monitoring CAMS users 40km Globe (twice daily, d+5) CAMS main operational data assimilation and modelling systems Earth Observation from satellite (>75 instruments) and in- situ (regulatory and research) 10km Europe (daily, d+4)
http://atmosphere.copernicus.eu Atmosphere Monitoring CAMS provides operational information products based on Earth Observation about: • past, current and near- future (forecasts) global atmospheric composition; • the ozone layer; • European air quality; • emissions and surface fluxes of key pollutants and greenhouse gases; • solar radiation; • climate radiative forcing.
PRODUCTS: Past global atmospheric composition Atmosphere The CAMS global reanalysis covers the period 2003 to end 2019. It is a marked improvement over our previous datasets Monitoring (MACC reanalysis and CAMS interim reanalysis). CAMSRA (2003-2016) Evaluation of total column CO bias 4.49 ± 5.04 2.99 ± 3.02 -0.54 ± 2.95 Evaluation of Aerosol Optical Depth CIRA (2003-2016) bias 4.55 ± 4.50 7.30 ± 4.42 1.96 ± 5.06 MACCRA (2003-2012)
PRODUCTS: Ozone layer Atmosphere Monitoring The anomalous 2019 ozone hole has closed. It has been the smallest since the early 80s. This possibility was mentioned by CAMS to the press in mid-September already.
PRODUCTS: Emissions inventories Atmosphere Monitoring Emissions are both an input to CAMS global and regional systems and a popular product. Entirely new datasets have been released covering 2003 to 2020 (extrapolation). Example: CO2 emissions from shipping activities. (lead provider: TNO, NL)
P R O D U C T S : D A I LY A N A LY S E S A N D F O R E C A S T Atmosphere Monitoring • Over Europe, a multi-model ensemble is used to deliver forecasts (with uncertainty). • It has now 9 operational members (CHIMERE, DEHM, EMEP, EURAD, GEM-AQ, LOTOS-EUROS, MATCH, MOCAGE, SILAM) and 2 more are ramping up (MONARCH, MINNI). • Effectively, the “Premier League” for air quality models in Europe, leveraging on national efforts and expertise in 10 EU Member States. • 10km by design.
PRODUCTS FOR POLICY USERS Atmosphere Monitoring Annual Air Quality (interim) assessment reports, includes analysis of key episodes and effect Air Control Toolbox (ACT) of natural contributions for Co-designed with EU Member States supporting reporting activities in MS. and operated using one of the ensemble members (CHIMERE, Ineris, FR) For major European cities Daily analysis of local versus large scale contribution to air pollutant concentrations. http://policy.atmosphere.copernicus.eu
Supplementary products Atmosphere Monitoring Greenhouse gas fluxes (CO2, CH4, N2O) Climate forcings Solar radiation
D O C U M E N TAT I O N & Q U A L I T Y C O N T R O L Atmosphere Monitoring Ozone free troposphere 2013-2018 CAMS provides detailed information about how its products are produced and what the quality is.
CAMS: a mainstream information source on air Copernicus EU quality free and open source of big data for local Copernicus ECMWF applications @CopernicusEU @CopernicusECMWF @VHPeuch @copernicusecmwf Atmosphere Monitoring Copernicus EU Copernicus ECMWF www.copernicus.eu atmosphere.copernicus.eu
Plans and expectations for the new CAMS CO2 service Atmosphere Monitoring Richard Engelen Deputy Director of CAMS Project Coordinator of CoCO2
Some context Atmosphere The 2019 Refinement to the 2006 IPCC Guidelines for National Monitoring Greenhouse Gas Inventories acknowledged the complementary capability offered by the monitoring of greenhouse gas emissions through in situ and satellite observations. The European Green Deal plans to make the EU's economy sustainable. This can be done by turning climate and environmental challenges into opportunities and making the transition just and inclusive for all. Ursula von der Leyen: “You should explore ways in which we can make the most of our assets to deliver on climate objectives, including the use of Copernicus to monitor CO2 emissions.“
UNFCCC- National Inventory Reports Atmosphere Monitoring Total emissions by pollutant, sector, country and year are reported to the UNFCCC following strict IPCC guidelines. These guidelines have been agreed internationally at high political level. 3
Is this information sufficient for monitoring our climate goals? Atmosphere Monitoring The nationally reported emissions are: • based on internationally agreed guidelines • accurate, especially for Annex I countries • split out by sector But: • lag in time (~2 years) • have no detailed spatial information • have no detailed temporal information To achieve a more detailed and timely monitoring of emissions in support of climate mitigation actions, we need additional information. 4
Current advances - gridded emission data & use of timely information Atmosphere Monitoring There is more detailed emission information available, both in space and time, which can be used to provide gridded maps. However, individual countries use different methodologies, which results in globally inconsistent maps. Much effort goes into harmonizing these grid maps by, for instance, the Joint Research Centre (JRC) and the Copernicus Atmosphere Monitoring CAMS - BSC Service. 2020 5
Difficult sectors - Agriculture, Forestry, and Land Use (AFOLU) Atmosphere Monitoring While uncertainties in national reported fossil fuel emissions tend to be small, certainly within Europe, this is not the case for other sectors. Emissions from the AFOLU sector are much harder to estimate, but account for about 25% of the total greenhouse gas emissions. They also provide good options for mitigation and are therefore important to monitor. 6
Challenges of observation-based emission monitoring Atmosphere Satellites do not measure emissions directly; they measure the impact Monitoring of emissions on the atmosphere. Satellites see only the total impact of anthropogenic and natural effects. Earth System models are used to translate the observations into emission estimates.
Proposed Copernicus Monitoring & Verification Support capacity Atmosphere Monitoring The added value of the CO2MVS will not be in the replacement of the current national annual-mean emission estimates reported to the UNFCCC, but in providing more detailed and more timely information in support of climate mitigation and adaptation actions. Combining information from a multitude of sources will deliver relevant emission data in a much more timely, detailed and consistent way than is currently available through the national reporting.
User engagement – co-design of service portfolio Atmosphere Monitoring Supporting countries UNFCCC depending on their Official reporting needs. National Priors Copernicus inventory CO2MVS capacity agencies Synergetic National exchange observation- based monitoring Observation-based added-value information Working with users to understand their requirements and together build the added value of the CO2MVS.
Roadmap Atmosphere Monitoring CO2 Monitoring Task Force Launch of the CO2 2nd global Sentinel stocktake constellation 1st global stocktake 2018 2020 2022 2024 2026 2028 2015 Prototyping activities including Copernicus service in full relevant CO2 satellite missions MRD operations using CO2 Sentinels from international space and international virtual agencies constellation R&D Support Actions
Examples of where we are today Atmosphere Monitoring Fluxes of carbon dioxide from managed ecosystems estimated by national inventories compared to atmospheric inverse modelling UNFCCC In-situ based estimates Satellite based estimates Frédéric Chevallier, LCSE Comparing Sentinel-5p satellite observations with model simulated observations to detect methane hotspots. Jérôme Barré, ECMWF
CONCLUSIONS Atmosphere Monitoring • Plan is to ramp-up the anthropogenic CO2 emissions monitoring & verification support capacity (CO2MVS) in CAMS to be operational in 2026 • Aim of the CO2MVS capacity is to support the European Commission and EU member states with monitoring the anthropogenic impact on atmospheric CO2 concentrations • The exact product portfolio will be co-designed with member states and other user communities • The service provision and its continual development will be distributed over European partners as is already the case for CAMS and C3S
Tour du magasin des produits de CAMS (ADS) et Outils d'assitance aux utilisateurs Anabelle Guillory User Services ECMWF Atmosphere Monitoring Remerciements: Miha Razinger
TOUR de l ’A D S Atmosphere Monitoring Qu’est ce que l’ADS? L’ADS en quelques chiffres Que trouve-t-on dans l’ADS? Comment accéder et télécharger les données?
https://ads.atmosphere.copernicus.eu Atmosphere Monitoring L'Atmosphere Data Store (ADS) remplace le catalogue de produits CAMS comme point principal d'accès à toutes les données CAMS (guichet unique!)
L e s r o u a g e s d e l ’A D S Atmosphere Monitoring L'ADS est un système de données et d'informations, modulaire et distribué qui donne accès à tous les ensembles de données CAMS via des interfaces Web et API unifiées. Plus tard, l’ADS offrira aussi des capacités de traitement de données en ligne (toolbox).
construit sur le succès de la grande soeur: la CDS Atmosphere Monitoring https://cds.climate.copernicus.eu
L’A D S en quelques nombres Atmosphere Monitoring • ADS lancé en juin 2020 • 11 ensembles de données publiés, 2 autres sont presque prêts • volume total de données publiées ~ 1,5 PB, avec 120 TB de disques, le reste sur bandes • plus de 5600 utilisateurs enregistrés dans 148 pays • 150 utilisateurs actifs/jour • ~25 000 requêtes/jour • en moyenne 1,5 TB de données par jour
Catalogue de produits disponibles Atmosphere Monitoring
Ensembles de données à venir Atmosphere Monitoring • Réanalyses européennes de la qualité de l’air (European air quality reanalyses) • Inventaires européens des émissions (European emission inventories) • Émissions de feux de biomasse (Fire emissions)
Comment accéder aux données? Atmosphere Monitoring 1 Inscription (unique, immédiate et gratuite) 2 Chercher dans le catalogue
Comment accéder aux données? Atmosphere Monitoring 3 Remplir le formulaire de téléchargement en ligne
Comment accéder aux données? Atmosphere Monitoring 3 Remplir le formulaire de téléchargement en ligne
Comment accéder aux données? Atmosphere Monitoring 3 Remplir le formulaire de téléchargement en ligne
Comment accéder aux données? Atmosphere Monitoring 3 Remplir le formulaire de téléchargement en ligne 4 Télécharger les données pour les utiliser
Parcours d'assistance aux utilisateurs Atmosphere Monitoring https://atmosphere.copernicus.eu/help-and-support Copernicus Knowledge Base (CKB), un ensemble de documents et de lignes directrices dont la qualité est contrôlée, revus et Copernicus User Forum, une plate- vérifiés par des experts, mis à jour forme permettant aux utilisateurs régulièrement. du CAMS de partager et d'apprendre de l'expérience Secure Enquiry Web Portal, d'autres utilisateurs et experts. Permettant aux utilisateurs du Également l'endroit pour surveiller CAMS de soulever toute question les dernières annonces de CAMS. restée sans réponse, d'envoyer des commentaires, des besoins et de surveiller le statut de leur https://ads.atmosphere.copernicus.eu demande : support.ecmwf.int
Parcours d’assistance aux utilisateurs ADS Atmosphere Monitoring
‘Watch’ CAMS FORUM Announcements Atmosphere Monitoring
En résumé Atmosphere Monitoring L’ADS, c’est simple comme Bonjour! Et les données sont librement accessibles et réutilisables https://ads.atmosphere.copernicus.eu N’hésitez pas à utiliser les outils d’assistance (CKB, Forum) Pensez que nous sommes à votre écoute pour vous aider Et tout ça, c’est gratuit!
Solar Radiation service update – New algorithms APNG, SEVIRI, Himawari, GOES & future ideas M. Schroedter-Homscheidt, F. Azam, J. Betcke (DLR - Institute of Networked Energy Systems) Atmosphere Monitoring N. Hanrieder, S. Wilbert (DLR – Institute for Solar Research) L. Saboret, E. Wey (Transvalor) M. Lefèvre, Y.-M. Saint-Drenan (Armines/Mines ParisTech) A. Arola, M. Pittkänen (FMI)
The CAMS radiation service principle Atmosphere Monitoring Heliosat-4 clouds and McClear from physical approaches, satellite fast radiative transfer © EUMETSAT/DLR irradiance, cloud free irradiance method papers Qu et al., Contrib. Atm. Phys., 2017 Lefèvre et al., Atm. Meas. Tech., 2013 Gschwind et al., Contrib. Atm. Phys., 2019 © MEEO
W h a t i s t h e t e m p o r a l a n d s p a t i a l r e s o l u t i o n ? Atmosphere Monitoring Not easy to answer Variable Data Temporal Spatial resolution sources resolution as input data has Aerosols properties CAMS 3h 0.8° until 20 June 2016, various temporal and and type 0.4° since 21 June 2016 Cloud properties APOLLO 15 min 3 to 10 km spatial resolutions. and type (DLR) Total column CAMS 3h 0.8° until 20 June 2016, content in ozone 0.4° since 21 June 2016 And solar geometry Total column water CAMS 3h 0.8° until 20 June 2016, requires 1 min steps. vapour content 0.4° since 21 June 2016 Ground albedo MODIS Climatology of 6 km (MPT) monthly values Two answers: a) Use the on-the-fly time series access at the user‘s location of interest. The CAMS Radiation Services does all interpolation steps for you. b) Agree on a gridded data set with one realisation of many possible temporal and spatial resolutions.
Time series on -the-fly and gridded data Atmosphere Monitoring On-the-fly time series processing via gridded data CAMS ADS or the CRS portal • 15 min temporal resolution • global, diffuse, direct and direct normal irradiation • 2005-2020 • time series 2004 onwards • 0.2° gridded data 1 min, 15 min, 1 hour, 1 day, 1 month temporal resolution • any point within satellite field of view • interactive and OGC script access possible • transparent access to all input data used if 1 min is selected
Extended routine validation Atmosphere Monitoring Evolution of the number of stations used for each product 2014 onwards New activities: • chapter on station data where we observe quality issues • chapter on station instrumentation used • multi-annual cycle comparisons for each quarter • station-wise detailed validation reports as annex
Method updates Atmosphere Monitoring • using C47R1 aerosols and replacing C46R1 period by new aerosols • SEVIRI calibration update following Meirink et al. (KNMI) • extension of COT LUTs instead of clipping at 0.5 • probabilistic cloud threshold in cloud masks, 1% cloud probability as a very strict selection best optimum to fulfill solar energy user needs • Radiative transfer models: point source, no circum solar radiation, will generate negative bias against ground observations • User standard: WMO CIMO Guide (2008): …(half-angle 2.5 deg)” • This we should fulfill…
How do make results fit to pyrheliometes ? Atmosphere All cases including clear sky All cloudy cases Monitoring Thin ice cloud cases Thin ice cloud cases + adding circumsolar DIR 60 min SAT vs. ground, Cabauw, 2015 cloud modification factor e.g. Shiaobara & Asano (1994), Kinne et al. (1997) empirically derived: optimum apparent COT modification factor for optically thin, non-cirrus clouds
Evaluation results – MSG-SEVIRI Atmosphere 15 Monitoring GHI relative bias error [%] 10 Study design: 5 hourly evaluation; all days of 2015 0 CAMS operational (incl. bias correction, V3.2) ADR JOR OUJ TN ZAG PAL GOB GHA MIS TAN CAB CAM CAR LIN CNR CAI ERF vs. -5 APOLLO_NG/Heliosat-4(DLR), -10 no bias correction applied -15 CAMS, biascorr APOLLO_NG/H4(DLR), no biascorr Experimental version as basis for CAMS Radiation Service v4.0 25 GHI relative RMSE [%] Thanks to BSRN & EnerMENA station teams 20 for providing their data. 15 10 5 0 TN ADR JOR OUJ ZAG GOB PAL TAN GHA MIS CAB ERF CAM CAR CNR CAI LIN CAMS, biascorr APOLLO_NG/H4(DLR), no biascorr
Worldwide validation of new scheme Atmosphere Monitoring MSG-like or improved satellites now available 25.1.2018, 1200 UTC
Evaluation results – Himawari-8 Atmosphere Monitoring Study design: hourly evaluation; 6 days/month – each 5/10/15/20/25/30 of each month in 2018 APOLLO_NG/Heliosat-4(DLR), no bias correction applied Hourly GHI and DIR validation for HIMAWARI -8 for the year 2018 - outliers COC and LEA are mixed pixels at the coastline. Station LEA does not provide enough DIR observations and is excluded.
Evaluation results – GOES-16 Atmosphere Monitoring Study design: hourly evaluation; 6 days/month – each 5/10/15/20/25/30 of each month in 2018 APOLLO_NG/Heliosat-4(DLR), no bias correction applied Hourly GHI and DIR validation for GOES-16 for the year 2018 – long snowy season increases all metrics in BON, BOS, FPE, SXF in 2018; DRA affected by parallax effects in broken cloud conditions
Conclusions Atmosphere Monitoring The CAMS Radiation Service provides solar irradiation • at the point of interest • as a time series in the requested temporal resolution • easy access as the spatio-temporal interpolation challenge is solved for the user • one gridded dataset available as well – ADS integration will provide more options for users • traceable data generation, open information on quality control • lot‘s of details available in validation reports and User Guide • A new CAMS Radiation Service V4 will be released soon. • using C47R1 aerosols and replacing C46R1 period by new aerosols • update in SEVIRI calibration • probabilistic cloud masks of APOLLO_NG • no COD clipping for small values anymore • direct irradiance will fit better to pyheliometer observations • Preparations for Himawari-8 and GOES were done with very nice validation results.
Contact point & references Atmosphere Monitoring • general inquiries and user requests: copernicus-support@ecmwf.int • specific for the Solar Radiation Service team: marion.schroedter-homscheidt@dlr.de • User‘s Guide at http://atmosphere.copernicus.eu/documentation • Heliosat-4 method: Qu et al., Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method, MetZet, 2017 • McClear method: Lefèvre et al., McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions, AMT, 2013 & Gschwind et al., Improving the McClear model estimating the downwelling solar radiation at ground level in cloud-free conditions – McClear-v3, Contrib. Atm. Phys./Meteorol. Z., 2019 • UV and broadband irradiation evaluation: Quarterly validation reports at https://atmosphere.copernicus.eu/supplementary-services
You can also read