Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Bio für Geos Vom Molekül zum Mensch The Cambrian explosion K. R. Johnson and R. K. Stucky: Prehistoric Journey: A history of life on Earth. ISBN 1-57098-145-4.
Major transitions in evolution Replicating molecules Populations of molecules in compartments Independent replicators Chromosomes RNA as gene and enzyme DNA + protein (genetic code) Prokaryotes Eukaryotes Asexual clones Sexual populations Protists Animals, plants, fungi (cell differentiation) Solitary individuals Colonies (non-reproductive castes) Primate societies Human societies (language) Common feature to many transitions: Independent replication replication as part of a larger whole
Definition des Lebens • Problematisch: • Eigenschaften des heutigen Lebens – ..... • oder Entstehung des Lebens......
Hypothesen: Panspermie Leben hat irgendwo anders als auf Erde angefangen..........(verlegt das Problem nach anderen Ort) Mikrobentransport durch Meteoriten z.B. Meteoriten aus Gesteine von Mars sind auf Erde gefunden worden. 6 http://www.livescience.com/13363-7-theories-origin-life.html
Generatio spontanea • Aristoteles – Entstehung des Lebens immer und überall • ab 17. Jahrhundert: – Entdeckung Mikroben – 1668 Francesco Redi: Experimente mit Fleisch und Fliegen. – 1864 Louis Pasteur. • Damit entsteht die Frage wie das Leben entstanden ist • http://en.wikipedia.org/wiki/Abiogenesis 7
Entstehung des Lebens • Darwin 1871: – in a "warm little pond, with all sorts of ammonia and phosphoric salts, lights, heat, electricity, etc. present, so that a protein compound was chemically formed ready to undergo still more complex changes". • 1924 Alexander Oparin – frühe Erde war anders – “primeval soup” in anoxia mit Sonnenlicht 8
Wann und Wie • 3.9-4.2 Ga, nach Meteoritenregen • 1. Monomere • 2. Polymere • 3. Evolution Polymere zu Zellen 9
Hypothesen: Electric spark Genese Bauelemente für leben (Aminosäure, Zucker, Nukleotiden), aus Wasser, Methan, Ammoniak und Wasserstoff.................und Schwefel (Parker et al., 2011 orig. Life Evol. Biosph. 2011:201-212) Urey-Miller experiment 1953 und spätere experimente Uratmosphäre war aber arm an Wasserstoff...... 10 http://www.livescience.com/13363-7-theories-origin-life.html
1: Organic molecule synthesis Life metabolites: amino acids, nucleic acids.. • Urey - Miller (1953) – primordial earth • Interstellar space – meteorites
Ursuppe • reduzierende Atmosphäre • + Energie führt zu Monomere • Monomere konzentrieren sich in bestimmten Stellen (z.B. Küsten, Vents..) • dort bilden sich Polymere • weitere Entwicklung des Lebens in Ursuppe 12
2: Monomers to polymers • Probleme mit Ursuppe: – Diffusion der Monomere – Stabilität der Polymere • Minerale als Katalysatoren (prebiotische Pizza).
Hypothesen: Community clay: Alexander Graham Cairns-Smith (University of Glasgow, Scotland) Tonmineralien führen zur: - Konzentation organische komponente - Organisation der Organische Komponente Hauptrolle DNA: Informationsspeicher - wie Aminosäuren zu Proteine zu verketten. Tonmineralien könnten am Anfang die organische Moleküle in Muster organisiert haben; später ist dann diese Rolle von organische Moleküle übernommen worden 14 http://www.livescience.com/13363-7-theories-origin-life.html
Hypothesen: Deep Sea Vents Vents sind teilweise reich an Wasserstoff, Schwefel und Eisen. Erlaubt autokatalytische CO2 fixation: chemoautotrophie. Mineralien könnten organisch Moleküle konzentrieren und kritische Syntheseschritte katalysieren 15 http://www.livescience.com/13363-7-theories-origin-life.html
A black smoker: site of origin of chemoautotrophic life ? Autocatalytic CO2 fixation: energy from oxidation of FeS 4 HCO3 + 2H+ + 7H2S + 7FeS (CH2-COO-) + 7FeS2 + 8H2O ΔG = -429 kJ/mol
Hypothesen: Chilly start Die Sonne war vor 3 Ga weniger hell als Heute Eis schützt fragile organisch Komponente für UV und Kosmische Strahlung Molekülen leben langer bei niedrige Temperaturen so dass Schlüsselreaktionen auftreten können. 17 http://www.livescience.com/13363-7-theories-origin-life.html
3: Replicating molecules • Spiegelmann (1970) and others – RNA self assembly – self replication (< 10 bases) – Zn catalysed assembly (< 40 bases) – < 1% errors
RNA evolution RNA in vitro: RNA template, ribonucleotides, replicase enzyme few replication errors, selection on replication speed evolution: 4000 nucleotides to 50, against inhibition
B U A G A C G Ribozymen A U U A U A G C U A U G A U U G U E´ C G U A A C A B U G G A ppp G 5´- G G A A A - 3´ GUUCAUGU GGUU G A A U OH GACC GCAACUU 3´- C U U A U A A G U A C G CCAG AG UUUG A G UUGG UGUUGAA G G - 5´ A G G U A C E´ A U G C U G E U U A G U A U C G A U A U G C A U U A U A C G A´ A G A U 20 Lincoln, T. A. and Joyce, G. F., 2009. Self-sustained replication of an RNA enzyme. Science 323, 1229-1232 U A C G U G U G
replicating RNA enzymes that differ in the re- amplification. Each replicator w A B A B Selbstreplikation A B E’ A + B → E (=AB) E´ E´ E A’ + B’ → E’ E 5´- G GUU 3´- C U U A U A A E´ A,B,A’,B’ oligonucleotide substrates E E B´ A´ B´ A´ C
Hyperzyclus 322 I. SCHEURING ET AL. Figure 1. Hypercyclic coupling of autocatalytic replicators I1 ,. . . ,I4 . the cycle assists the replication of I1 (Eigen and Schuster, 1979) (Fig. 1). The chem- ical nature of the help given to the next member of the hypercycle can be direct Scheuring, I. Czárán, T.catalysis. Szabó, P. Each member Károlyi, G. andcarries two genes: Toroczkai, oneSpatial Z., 2003. for theModels replication, the other of Prebiotic for the Soup Before Pizza? Evolution: 22 catalytic Origins of Life and Evolution help. of the There is: coexistence Biosphere The Journal inof the thenon-spatial model International of hypercycle: Society for the Studyallofthe the Origin of Life 33, replicators persist in the system and, given an unlimited supply of monomers, the 319-355, 10.1023/A:1025742505324. total concentration of the macromolecules admits hyperbolic growth. The problem with this model is its vulnerability to the invasion of two kinds of parasitic mutants:
Hyperzyclus Parasiten SPATIAL MODELS OF PREBIOTIC EVOLUTION: SOUP BEFORE PIZZA? 323 Figure 2. Parasites of the hypercycle. P1 : selfish parasite; P2 : shortcut parasite. 23 and Hogeweg, 1991) that the macromolecules can help each other’s replication if they happen to be neighbours on a square lattice representing a mineral sur-
Replication • Replicator: self copying entity – not imply natural selection • Indefinite hereditary replicator – indefinite number of states – each state can be replicated • Nucleic acid molecules (language, music) • Nucleic acid molecules basis of life
Chicken -egg problem • Amount of information transmitted – limited by replication accuracy – today: genetically programmed enzymes – not a primitive state – RNA world - Ribozymes C G • 4 nucleotides (C/G, A/U) A U • D-anti ribose •P Why ? G C
Chemical selection • Prebiotic pizza – keeps reactants in each other’s proximity – gene interaction only with neighbours • directly by influencing each others replication • indirectly by catalysing steps of metabolism – gene interaction is molecular co- operation: fitter in struggle for monomers – may produce e.g., isoprenoid lipids
4: Protobiont formation: compartimentation • Like prebiotic pizza • Enables liberation from surface • Needs membrane Glucose phosphate Liposomes: Glucose phosphate Phosphorylase can be self replicating Starch may self metabolise Phosphate Amylase Maltose Maltose but only small molecules (CO2, H2S) pass membrane
First organism: Based on Early Earth Environment This organism is referred to as the Universal or Common Ancestor. It would have had the following characteristics because of the environment in which it evolved: •it would have been anaerobic •it would have been hyperthermophilic and halophilic •it would have been a chemolithoautotroph, obtaining both energy and carbon from inorganic sources, using H2 or reduced sulfur compounds as electron donors and CO2 or oxidized sulfur as electron acceptors to provide energy and fixing CO2 as their carbon source.
RNA genes to DNA chromosomes • Single gene – A, B faster reproduction than AB • Chromosome – if AB metabolically linked: stay together – no gene competition in cell • DNA – more stable (deoxR-T) – (but RNA needed for protein synthesis)
Life ? • Two way interaction: – metabolism supply monomers from which replicators are made – replicators alter the kinds of chemical reactions occurring in metabolism
Major transitions in evolution Replicating molecules Populations of molecules in compartments Independent replicators Chromosomes RNA as gene and enzyme DNA + protein (genetic code) Prokaryotes Eukaryotes Asexual clones Sexual populations Protists Animals, plants, fungi (cell differentiation) Solitary individuals Colonies (non-reproductive castes) Primate societies Human societies (language)
Origin of the genetic code • One of most perplexing problems • Why 4 nucleotides (G C A U/T)? • Why triplets, 20 amino acids etc. • Minimise the load
Major transitions in evolution Replicating molecules Populations of molecules in compartments Independent replicators Chromosomes RNA as gene and enzyme DNA + protein (genetic code) Prokaryotes Eukaryotes Asexual clones Sexual populations Protists Animals, plants, fungi (cell differentiation) Solitary individuals Colonies (non-reproductive castes) Primate societies Human societies (language)
The three Domains http://www.kheper.auz.com/gaia/biosphere/kingdoms.htm#five kingdoms
Aerobic α (purple bact.) Bacterial diversity Mitochondria O2 phototrophs Nitrosomonas chloroplasts NH4+ to NO2- γ: Includes H2S Chemo-phototrophs E.g., TBC, Lepra, botulism, streptomycin Syphilis, Lyme Animal parasites
Archaea • Extremophiles - PCR • Normal environments • Membrane lipids O O O “Normal” bacteria O and eukaryotes HO Thermophilic bacteria O Archaea O HO
Membrane lipids of Archaea Crenarchaeota Euryarchaeota (a.o.hyperthermophiles) (a.o. halophiles, methanogens) OH
Prokaryote limitations • Limited size of single chromosome • limited size multicellular structures (filaments) • limited cellular differentiation (akinetes) Anabaena
Another perplexing problem – loss outer cell wall - phagocytosis – incorporation of organelles - symbiosis – development of mitosis • multiple replication origins allowing for more DNA • microtubules / cytoskeleton – development of internal membranes • nucleus, ER, Golgi app.
Eukaryote origin algal diversity Transfer of symbiont genes to host nucleus
The three Domains
4 domains? + nucleocytoplasmic large DNA virus (NCLDV) Boyer, M. Madoui, M. -A. Gimenez, G. La Scola, B. and Raoult, D., 2010. Phylogenetic and phyletic studies of informational genes in genomes highlight existence of a 4th domain of life including giant viruses. PloS One 5, e15530. 45
4 domains ? 46
Archaea Green and purple nonsulphur bacteria
Important
Common ancestor theory
Trichomonadida Diplomonadida Mycobionta Eukaryote Rhodobionta Strameno- Myxobionta Euglenozoa phyles Alveolata Animalia phylogeny (tentative) Trypanosoma Vesicles, alveoli Chloro- bionta below outer membrane No mitochondria
Plastid diversity
Euglenozoa Glucose polymer
Alveolata: ciliates
Alveolata: dinoflagellates Many toxic species
Stramenophyles: Diatoms Silica wall Several toxic species
Chlorophytes: Volvox Cellular differentiation http://protist.i.hosei.ac.jp/PDB/Images/Chlorophyta/Volvox/
Okt 2005 J. Eukar. Microbiol. 52(5): 399-451. New Classification of Eukaryotes • Amoebozoa – a.o. Heliozoa • Ophistokonta – a.o. Fungi, Metazoa • Rhizaria – a.o. Foraminifera, Radiolaria • Archaeoplastida – a.o. Rhodophyceae, Chloroplastida • Chlorophyta, Prasinophytae…….: all plants • Chromalveolata – a.o. Haptophyta, Stramenophyles, Alveolata • Coccolitophorids, diatoms, brown algae, dinozoa, cilliata….. • Excavata – a.o. Euglenozoa Blue: multicellular lineages
Major transitions in evolution Replicating molecules Populations of molecules in compartments Independent replicators Chromosomes RNA as gene and enzyme DNA + protein (genetic code) Prokaryotes Eukaryotes Asexual clones Sexual populations Protists Animals, plants, fungi (cell differentiation) Solitary individuals Colonies (non-reproductive castes) Primate societies Human societies (language) http://www.msu.edu/course/lbs/148h/fall2003/
Choanoflagellates No or primitive cellular differentiation Proterospongia collar and amoeboid cells http://microscope.mbl.edu/reflections/baypaul/microscope/general/page_01.htm
The Ancestral Metazoan (3) • It is believed that flagellate protozoans formed a colonial ring of organisms, termed a blastaea. Development progressed with increasing division of labour to eventually produce a truly multicellular organism with differentiated cells [Barnes, 1989]. . The 'blastaea model' of metazoan evolution, derived from a colonial Choanoflagellate.
Early embryonic life Animal phylogeny
Development of tissues
Porifera Copyright 1994–2001 by The University of California Museum of Paleontology, Berkeley, and the Regents of the University of California.
Sponge anatomy No real tissues cellular differentiation
Radiata: e.g. Cnidaria
Cnidaria Fungiid Coral from Indonesia Cubozoan http://www.ucmp.berkeley.edu/cnidaria/cnidaria.html
Platyhelminthes Multicalyx sp. (Trematoda) Polycladid flatworm
Bilateralia: Flatworm
Protostomata Protostomata: in developing embryo, mouth forms from first indentation on ball of cells; nervous system and digestive system cross. Subdivided into two major groups, the Lophophorates and the Schizocoels. Lophophorates ! Bryozoa, Brachiopoda, Phoronida Schizocoels ! Mollusca , Annelida, Arthropoda Deuterostomata Deuterostomata. In the developing embryo the anus forms from first indentation on ball of cells and mouth breaks hrough at another location; nervous system lies at the back side (dorsal), digestive system in front; the systems do not cross. Coelom forms from pockets in the gut. Chordata, Hemichordata (a.o. graptolites), Echinodermata
Deuterostomata Secondary radial symmetry
Chordate characters Chorda dorsalis biosci.usc.edu/courses/2002-spring/ documents/bisc113-caron_041902.pdf
Chordate characters bones, teeth-cores, jaws, neural system
Tunicate
Tunicate Lancelet Tentacles Mouth Pharyngeal slits Atrium Intertestine Dorsal hollow nerve cord Atriopore Segmental muscles Anus Tail Chorda dorsalis
The amniotic egg
Mammal evolution
Primate evolution
Human evolution
Schritte: • entstehung des lebens - eukaryote Zelle • Beine • mehrzelligkeit • Eier • Zelldifferenzierung • Milchdrüsen • Gewebebildung • Daumen • Laterale symmetrie • • Mesoderm und Coelom • 2 öffnungen mund/anus • Chorda, Schwanz.... • Kopf, Vertebrae • Kiefer • Lunge 83
Early life http://cas.bellarmine.edu/tietjen/Ecology/early_animal_evolution.htm
Currently described species proportion of the global total
64.3
You can also read