Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion

Page created by Darrell Becker
 
CONTINUE READING
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Bio für Geos

Vom Molekül zum Mensch

    The Cambrian explosion

      K. R. Johnson and R. K. Stucky: Prehistoric Journey: A history of life on Earth. ISBN
      1-57098-145-4.
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Major transitions
                    History of life
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Major transitions in evolution
Replicating molecules         Populations of molecules in
                              compartments
Independent replicators       Chromosomes
RNA as gene and enzyme        DNA + protein (genetic code)
Prokaryotes                   Eukaryotes
Asexual clones                Sexual populations
Protists                      Animals, plants, fungi (cell differentiation)
Solitary individuals          Colonies (non-reproductive castes)
Primate societies             Human societies (language)

Common feature to many transitions:

Independent replication       replication as part of a larger whole
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Definition des Lebens
• Problematisch:

• Eigenschaften des heutigen Lebens
  – .....

• oder Entstehung des Lebens......
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Ursprung des Lebens: Hypothesen

                           5
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Hypothesen:
Panspermie

Leben hat irgendwo anders als auf Erde angefangen..........(verlegt das Problem nach anderen Ort)

Mikrobentransport durch Meteoriten

z.B. Meteoriten aus Gesteine von Mars sind auf Erde gefunden worden.

                                                                                                   6
                                                              http://www.livescience.com/13363-7-theories-origin-life.html
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Generatio spontanea
• Aristoteles
   – Entstehung des Lebens immer und überall
• ab 17. Jahrhundert:
   – Entdeckung Mikroben
   – 1668 Francesco Redi: Experimente mit Fleisch und Fliegen.
   – 1864 Louis Pasteur.

• Damit entsteht die Frage wie das Leben entstanden
  ist

• http://en.wikipedia.org/wiki/Abiogenesis                  7
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Entstehung des Lebens
• Darwin 1871:
   – in a "warm little pond, with all sorts of ammonia and phosphoric
     salts, lights, heat, electricity, etc. present, so that a protein
     compound was chemically formed ready to undergo still more
     complex changes".
• 1924 Alexander Oparin
   – frühe Erde war anders
   – “primeval soup” in anoxia mit Sonnenlicht

                                                                 8
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Wann und Wie
•   3.9-4.2 Ga, nach Meteoritenregen
•   1. Monomere
•   2. Polymere
•   3. Evolution Polymere zu Zellen

                                       9
Bio für Geos Vom Molekül zum Mensch - The Cambrian explosion
Hypothesen:
Electric spark

Genese Bauelemente für leben (Aminosäure, Zucker, Nukleotiden), aus Wasser, Methan, Ammoniak
und Wasserstoff.................und Schwefel (Parker et al., 2011 orig. Life Evol. Biosph. 2011:201-212)

Urey-Miller experiment 1953 und spätere experimente

Uratmosphäre war aber arm an Wasserstoff......

                                                                                                   10
                                                               http://www.livescience.com/13363-7-theories-origin-life.html
1: Organic molecule synthesis
Life metabolites:
amino acids, nucleic acids..

• Urey - Miller (1953)
  – primordial earth

• Interstellar space
  – meteorites
Ursuppe

• reduzierende Atmosphäre
• + Energie führt zu Monomere
• Monomere konzentrieren sich in bestimmten
  Stellen (z.B. Küsten, Vents..)
• dort bilden sich Polymere
• weitere Entwicklung des Lebens in Ursuppe
                                      12
2: Monomers to polymers
• Probleme mit Ursuppe:
  – Diffusion der Monomere
  – Stabilität der Polymere

• Minerale als Katalysatoren (prebiotische
  Pizza).
Hypothesen:
Community clay:

Alexander Graham Cairns-Smith (University of Glasgow, Scotland)

Tonmineralien führen zur:

- Konzentation organische komponente

- Organisation der Organische Komponente

Hauptrolle DNA: Informationsspeicher - wie Aminosäuren zu
Proteine zu verketten. Tonmineralien könnten am Anfang die
organische Moleküle in Muster organisiert haben; später ist dann
diese Rolle von organische Moleküle übernommen worden

                                                                                              14
                                                          http://www.livescience.com/13363-7-theories-origin-life.html
Hypothesen:

Deep Sea Vents

Vents sind teilweise reich an Wasserstoff, Schwefel und Eisen.

Erlaubt autokatalytische CO2 fixation: chemoautotrophie.

Mineralien könnten organisch Moleküle konzentrieren und kritische Syntheseschritte katalysieren

                                                                                                 15
                                                             http://www.livescience.com/13363-7-theories-origin-life.html
A black smoker: site of origin of chemoautotrophic life ?

Autocatalytic CO2 fixation: energy from oxidation of FeS

   4 HCO3 + 2H+ + 7H2S + 7FeS     (CH2-COO-) + 7FeS2 + 8H2O
   ΔG = -429 kJ/mol
Hypothesen:
Chilly start

Die Sonne war vor 3 Ga weniger hell als Heute

Eis schützt fragile organisch Komponente für UV und Kosmische Strahlung

Molekülen leben langer bei niedrige Temperaturen so dass Schlüsselreaktionen auftreten können.

                                                                                                17
                                                            http://www.livescience.com/13363-7-theories-origin-life.html
3: Replicating molecules
• Spiegelmann (1970) and others
  – RNA self assembly
  – self replication (< 10 bases)
  – Zn catalysed assembly (< 40 bases)
  – < 1% errors
RNA evolution

RNA in vitro:
      RNA template, ribonucleotides, replicase enzyme
      few replication errors, selection on replication speed
      evolution: 4000 nucleotides to 50, against inhibition
B
                                            U   A
                                           G     A
                                           C    G

                                                       Ribozymen
                                            A   U
                                           U    A
                                           U    A
                                           G    C
                                           U    A
                                           U    G
                                            A   U
                                                U
                                           G    U
     E´                                    C    G
                                           U    A
                                   A       C     A                                           B
                                                  U
                                       G         G    A           ppp G
                        5´- G                        G A                A                                 A - 3´
                                GUUCAUGU        GGUU     G A A U OH       GACC                GCAACUU

                  3´- C U U A U A A G U A C G       CCAG
                                                           AG
                                                                 UUUG
                                                                        A       G
                                                                                    UUGG      UGUUGAA
                                                                                                      G G - 5´
                                                                            A          G      G
                                                                                      U
                                                                                       A      C
                                                            E´                          A    U
                                                                                        G    C
                                                                                        U    G
          E                                                                            U
                                                                                        U     A
                                                                                        G     U
                                                                                        A     U
                                                                                        C     G
                                                                                        A     U
                                                                                        A     U
                                                                                        G     C
                                                                                        A     U
                                                                                        U     A
                                                                                        U     A
                                                                                        C     G
A´                                                                                     A       G
                                                                                         A   U
                                                                                                                   20
                  Lincoln, T. A. and Joyce, G. F., 2009. Self-sustained replication of an RNA enzyme. Science 323, 1229-1232

              U   A                       C     G                       U       G                     U    G
replicating RNA enzymes that differ in the re-       amplification. Each replicator w

                                  A                                                                      B
                                                              A             B

Selbstreplikation
                                   A                 B
       E’
A + B → E (=AB)                             E´                                       E´

       E
A’ + B’ → E’                                                            E                                5´- G
                                                                                                                 GUU

                                                                                                   3´- C U U A U A A
                                                                   E´
A,B,A’,B’ oligonucleotide
substrates
                                                 E                                        E

                                       B´                A´

                                                                  B´            A´

                                  C
Hyperzyclus
                        322                                     I. SCHEURING ET AL.

                                       Figure 1. Hypercyclic coupling of autocatalytic replicators I1 ,. . . ,I4 .

                        the cycle assists the replication of I1 (Eigen and Schuster, 1979) (Fig. 1). The chem-
                        ical nature of the help given to the next member of the hypercycle can be direct
Scheuring, I. Czárán, T.catalysis.
                         Szabó, P. Each  member
                                    Károlyi, G. andcarries two genes:
                                                     Toroczkai,          oneSpatial
                                                                 Z., 2003.   for theModels
                                                                                     replication, the other
                                                                                            of Prebiotic    for the Soup Before Pizza?
                                                                                                         Evolution:  22
                        catalytic
Origins of Life and Evolution      help.
                               of the    There is: coexistence
                                      Biosphere    The Journal inof the
                                                                     thenon-spatial model
                                                                         International      of hypercycle:
                                                                                       Society  for the Studyallofthe
                                                                                                                   the Origin of Life 33,
                        replicators persist in the system and, given an unlimited supply of monomers, the
319-355, 10.1023/A:1025742505324.
                        total concentration of the macromolecules admits hyperbolic growth. The problem
                        with this model is its vulnerability to the invasion of two kinds of parasitic mutants:
Hyperzyclus Parasiten
            SPATIAL MODELS OF PREBIOTIC EVOLUTION: SOUP BEFORE PIZZA?                           323

        Figure 2. Parasites of the hypercycle. P1 : selfish parasite; P2 : shortcut parasite.
                                                                                                  23

and Hogeweg, 1991) that the macromolecules can help each other’s replication
if they happen to be neighbours on a square lattice representing a mineral sur-
Replication
• Replicator: self copying entity
  – not imply natural selection
• Indefinite hereditary replicator
  – indefinite number of states
  – each state can be replicated
     • Nucleic acid molecules (language, music)

• Nucleic acid molecules basis of life
Chicken -egg problem
• Amount of information transmitted
  – limited by replication accuracy
  – today: genetically programmed enzymes
  – not a primitive state

  – RNA world - Ribozymes           C       G

     • 4 nucleotides (C/G, A/U)
                                        A       U
     • D-anti ribose
     •P                    Why ?        G       C
Chemical selection
• Prebiotic pizza
   – keeps reactants in each other’s
     proximity
   – gene interaction only with
     neighbours
       • directly by influencing each others
         replication
       • indirectly by catalysing steps of
         metabolism
   – gene interaction is molecular co-
     operation: fitter in struggle for
     monomers
   – may produce e.g., isoprenoid lipids
4: Protobiont formation:
             compartimentation
 • Like prebiotic pizza
 • Enables liberation from surface
 • Needs membrane
                                                 Glucose phosphate

Liposomes:
                                                          Glucose phosphate
                                                                     Phosphorylase
can be self replicating
                                                                Starch
may self metabolise                          Phosphate              Amylase
                                                               Maltose

                                                              Maltose

   but only small molecules (CO2, H2S) pass membrane
First organism:

Based on Early Earth Environment
This organism is referred to as the Universal or Common
Ancestor. It would have had the following characteristics
because of the environment in which it evolved:

    •it would have been anaerobic

    •it would have been hyperthermophilic and halophilic

    •it would have been a chemolithoautotroph, obtaining
    both energy and carbon from inorganic sources, using H2
    or reduced sulfur compounds as electron donors and
    CO2 or oxidized sulfur as electron acceptors to provide
    energy and fixing CO2 as their carbon source.
RNA genes to DNA chromosomes
 • Single gene
   – A, B faster reproduction than AB
 • Chromosome
   – if AB metabolically linked: stay together
   – no gene competition in cell
 • DNA
   – more stable (deoxR-T)
   – (but RNA needed for protein synthesis)
Life ?
• Two way interaction:

  – metabolism supply monomers from which
    replicators are made
  – replicators alter the kinds of chemical
    reactions occurring in metabolism
Major transitions in evolution
Replicating molecules     Populations of molecules in
                          compartments
Independent replicators   Chromosomes
RNA as gene and enzyme    DNA + protein (genetic code)
Prokaryotes               Eukaryotes
Asexual clones            Sexual populations
Protists                  Animals, plants, fungi (cell differentiation)
Solitary individuals      Colonies (non-reproductive castes)
Primate societies         Human societies (language)
Origin of the genetic code
• One of most perplexing problems

• Why 4 nucleotides (G C A U/T)?

• Why triplets, 20 amino acids etc.

• Minimise the load
Major transitions in evolution
Replicating molecules     Populations of molecules in
                          compartments
Independent replicators   Chromosomes
RNA as gene and enzyme    DNA + protein (genetic code)
Prokaryotes               Eukaryotes
Asexual clones            Sexual populations
Protists                  Animals, plants, fungi (cell differentiation)
Solitary individuals      Colonies (non-reproductive castes)
Primate societies         Human societies (language)
The three Domains

        http://www.kheper.auz.com/gaia/biosphere/kingdoms.htm#five kingdoms
Aerobic α (purple bact.)   Bacterial diversity
      Mitochondria

                                                         O2 phototrophs
 Nitrosomonas                                                   chloroplasts
 NH4+ to NO2-

γ: Includes H2S Chemo-phototrophs                        E.g., TBC, Lepra,
                                                         botulism, streptomycin

                                                                     Syphilis,
                                                                     Lyme
                                      Animal parasites
Archaea
• Extremophiles   -   PCR
• Normal environments
• Membrane lipids
         O

     O O
                       “Normal” bacteria
     O                 and eukaryotes
HO

                       Thermophilic bacteria

     O
                       Archaea
     O
HO
Membrane lipids of Archaea

 Crenarchaeota                           Euryarchaeota
(a.o.hyperthermophiles)          (a.o. halophiles, methanogens)

                                    OH
Prokaryote limitations
• Limited size of single chromosome
• limited size multicellular structures (filaments)
• limited cellular differentiation (akinetes)

                           Anabaena
Another perplexing problem

                – loss outer cell wall -
                  phagocytosis
                – incorporation of organelles
                  - symbiosis
                – development of mitosis
                    • multiple replication origins
                      allowing for more DNA
                    • microtubules /
                      cytoskeleton
                – development of internal
                  membranes
                    • nucleus, ER, Golgi app.
Eukaryote origin

                                             algal diversity

Transfer of symbiont genes to host nucleus
The three Domains
4 domains?
                     + nucleocytoplasmic large DNA virus (NCLDV)

Boyer, M. Madoui, M. -A. Gimenez, G. La Scola, B. and Raoult, D., 2010. Phylogenetic and
phyletic studies of informational genes in genomes highlight existence of a 4th domain of life
including giant viruses. PloS One 5, e15530.                                                     45
4 domains ?

              46
Archaea

Green and purple nonsulphur
bacteria
Important
Common ancestor theory
Trichomonadida
                       Diplomonadida

                                                                                                                                  Mycobionta
Eukaryote

                                                                                             Rhodobionta
                                                                                 Strameno-

                                                                                                                     Myxobionta
                                                        Euglenozoa

                                                                                   phyles
                                                                     Alveolata

                                                                                                                                               Animalia
phylogeny
(tentative)

Trypanosoma

Vesicles, alveoli                                                                                          Chloro-
                                                                                                           bionta
below outer membrane

No mitochondria
Plastid diversity
Euglenozoa

        Glucose polymer
Alveolata: ciliates
Alveolata: dinoflagellates

      Many toxic species
Stramenophyles: Diatoms

Silica wall
Several toxic species
Chlorophytes: Volvox
    Cellular differentiation

                   http://protist.i.hosei.ac.jp/PDB/Images/Chlorophyta/Volvox/
Okt 2005
J. Eukar. Microbiol. 52(5): 399-451. New Classification of Eukaryotes

• Amoebozoa
    – a.o. Heliozoa
• Ophistokonta
    – a.o. Fungi, Metazoa
• Rhizaria
    – a.o. Foraminifera, Radiolaria
• Archaeoplastida
    – a.o. Rhodophyceae, Chloroplastida
        • Chlorophyta, Prasinophytae…….: all plants
• Chromalveolata
    – a.o. Haptophyta, Stramenophyles, Alveolata
        • Coccolitophorids, diatoms, brown algae, dinozoa, cilliata…..
• Excavata
    – a.o. Euglenozoa                         Blue: multicellular lineages
Major transitions in evolution
Replicating molecules     Populations of molecules in
                          compartments
Independent replicators   Chromosomes
RNA as gene and enzyme    DNA + protein (genetic code)
Prokaryotes               Eukaryotes
Asexual clones            Sexual populations
Protists                  Animals, plants, fungi (cell differentiation)
Solitary individuals      Colonies (non-reproductive castes)
Primate societies         Human societies (language)

                                             http://www.msu.edu/course/lbs/148h/fall2003/
Choanoflagellates
     No or primitive cellular
     differentiation

                          Proterospongia
                          collar and amoeboid cells

       http://microscope.mbl.edu/reflections/baypaul/microscope/general/page_01.htm
The Ancestral Metazoan (3)
•   It is believed that flagellate protozoans formed a colonial ring of organisms, termed a blastaea.
    Development progressed with increasing division of labour to eventually produce a truly multicellular
    organism with differentiated cells [Barnes, 1989]. .

    The 'blastaea model' of metazoan evolution, derived from a colonial Choanoflagellate.
Early embryonic life

Animal phylogeny
Development of tissues
Porifera

Copyright 1994–2001 by The University of California Museum of Paleontology, Berkeley, and the Regents of the University of California.
Sponge anatomy

      No real tissues
      cellular differentiation
Radiata: e.g. Cnidaria
Cnidaria

   Fungiid Coral from Indonesia                       Cubozoan

http://www.ucmp.berkeley.edu/cnidaria/cnidaria.html
Platyhelminthes

Multicalyx sp. (Trematoda)   Polycladid flatworm
Bilateralia: Flatworm
Protostomata
Protostomata: in developing embryo, mouth forms
from first indentation on ball of cells; nervous system
and digestive system cross. Subdivided into two major
groups, the Lophophorates and the Schizocoels.
 Lophophorates
 ! Bryozoa, Brachiopoda,
 Phoronida
 Schizocoels
 ! Mollusca , Annelida, Arthropoda

                              Deuterostomata
 Deuterostomata. In the developing embryo
 the anus forms from first indentation on ball
 of cells and mouth breaks hrough at another
 location; nervous system lies at the back side
 (dorsal), digestive system in front; the
 systems do not cross. Coelom forms from
 pockets in the gut.

 Chordata, Hemichordata (a.o. graptolites),
 Echinodermata
Deuterostomata
           Secondary radial symmetry
Chordate characters

    Chorda dorsalis

                      biosci.usc.edu/courses/2002-spring/ documents/bisc113-caron_041902.pdf
Chordate characters

bones, teeth-cores, jaws, neural system
Tunicate
Tunicate                 Lancelet
                                         Tentacles

                                         Mouth

                                                 Pharyngeal slits
                                                  Atrium
                                                     Intertestine
           Dorsal hollow nerve cord                      Atriopore
                                                      Segmental muscles
                                                              Anus
                                                       Tail
                       Chorda dorsalis
The amniotic egg
Mammal evolution
Primate evolution
Human evolution
Schritte:
•   entstehung des lebens - eukaryote Zelle   •   Beine
•   mehrzelligkeit                            •   Eier
•   Zelldifferenzierung                       •   Milchdrüsen
•   Gewebebildung                             •   Daumen
•   Laterale symmetrie                        •
•   Mesoderm und Coelom
•   2 öffnungen mund/anus
•   Chorda, Schwanz....
•   Kopf, Vertebrae
•   Kiefer
•   Lunge

                                                        83
Early life

http://cas.bellarmine.edu/tietjen/Ecology/early_animal_evolution.htm
Currently described species
proportion of the global total
64.3
You can also read