Advanced Manufacturing in Switzerland - Research overview - Zenodo

Page created by Kelly Ferguson
 
CONTINUE READING
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Research overview

Advanced Manufacturing
in Switzerland

Schweizerische Akademie der Technischen Wissenschaften
Académie suisse des sciences techniques
Accademia svizzera delle scienze tecniche
Swiss Academy of Engineering Sciences
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Content
 5    Foreword
 7    Introduction
 8    Additive Manufacturing: Definition and icons
 9    Industry 4.0: Definition and icons
10    Overview ETH, Universities and Research Centers
11    Overview Universities of Applied Science

12   Additive Manufacturing
13   CSEM
13 		Empa
15   EPFL
15   ETH Zürich
20   Innocampus
20   Inspire
21   Universität Basel
21   Universität Bern
22   Université de Neuchâtel
24   Universitäts-Kinderspital Zürich
24   Berner Fachhochschule
25   Fachhochschule Nordwestschweiz
26   HES-SO Haute école spécialisée de Suisse occidentale
28   Hochschule Luzern
28   HSR Hochschule für Technik Rapperswil
29   Interstaatliche Hochschule für Technik Buchs
29   SUPSI
31   Zürcher Hochschule für Angewandte Wissenschaften

34     Industry 4.0
35     CSEM
36     EPFL
36     Innocampus
36     Inspire
37     Universität Bern
37     Université de Neuchâtel
39     Universität Zürich
39     Berner Fachhochschule
42     Fachhochschule Nordwestschweiz
44     HES-SO Haute école spécialisée de Suisse occidentale
46     Hochschule Luzern
47     HSR Hochschule für Technik Rapperswil
47     Interstaatliche Hochschule für Technik Buchs
48     SUPSI
50     Zürcher Hochschule für Angewandte Wissenschaften

                                                              3
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Acknowledgment
    SATW would like to thank all participating Universities, Universities of Applied Science and Research Centers
    for the texts and the pictures. Without the great effort of the different institutes, the publication could not
    have been compiled to be such an impressive body of work.

4
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Foreword
Over the past few decades, the Swiss economy has demonstrated high added value com-
bined with high employment in comparison with most other developed countries. Our
industrial sector has grown more quickly than in neighbouring countries and has brought
us prosperity and low unemployment. It has even managed to offset the shock waves
created by the revaluation of the Swiss franc. So nothing is amiss?

Quite the contrary: industrial production is currently in the grip of rapid and fundamental
change, promising high quality and flexibility for products at lower cost (even for small
quantities). This has strengthened the competition, placing the Swiss industrial sector
under growing pressure if it fails to keep up with manufacturing changes. Through this
overview, SATW is aiming to help boost the domestic industry.

Ulrich W. Suter, President of SATW

                                                                                              5
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Swiss Academy of Engineering Sciences (SATW)
    The Swiss Academy of Engineering Sciences (SATW) develops recommendations for action on technical topics
    that are particularly important for Switzerland as a living environment as well as a workplace and research
    environment. It fosters public interest in and understanding of technology, and works toward the prevention
    of and appropriate reaction to cyber security threats as part of its focus on cyber security. A federally recog-
    nized institution, the SATW brings together a large network of experts and professional associations. It is
    politically independent and non-commercial.

6
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Introduction
SATW is convinced that industrial production methods will see fundamental changes
over the coming years. Mastering new production technologies (advanced manufac-
turing) such as additive manufacturing and industry 4.0 will be vital to keep Swiss
production at a competitive level.

New additive manufacturing processes such as 3D printing offer revolutionary oppor-
tunities and have the potential to replace traditional production methods. Industry 4.0
has seen the definition of a new concept for production control and product design,
with the potential for major upheaval.

Both topics are being discussed at conferences, and a number of Swiss research activ-
ities are already focusing on the two areas. SATW aims to help improve coordination
between these activities in order to identify and improve weaknesses.

To this end, SATW has created the “Advanced Manufacturing in Switzerland” research
overview. The activities of its research partners (universities, universities of applied
sciences and research centers) in the fields of additive manufacturing and industry 4.0
were examined in detail, and are presented in this publication and the associated tables.

This publication offers brief texts describing the activities and areas of competence of
the institutes involved, highlighting contributions in the two subject areas of “Addi-
tive Manufacturing” and “Industry 4.0”. Within the thematic groups, the texts are ar-
ranged in alphabetical order by university.

To ensure that the data can be simply and clearly accessed, each institute is assigned
a maximum of six overarching terms from the two subject areas to reflect their activi-
ties and areas of competence. This information can be found in table form (pages 10
and 11) and as striking icons next to the texts themselves. This enables users to system-
atically search the research review for a particular institute, or for stakeholders with
specific interests.

With this publication, SATW is offering an overview of the astonishing number of stake-
holders and the exceptionally wide variety of activities in the sector – we hope you
enjoy reading it.

                                                                                            7
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Additive Manufacturing
Definition
Additive manufacturing describes a large group of manufacturing
procedures which use a 3D model to construct components in lay-        Additive Manufacturing
ers from a formless substance via an automated process. Breaking
a three-dimensional component down into numerous simple
two-dimensional manufacturing steps means that the complexity          Architecture
of a particular component only has a very minor impact on manu-
facturability and production costs. Toolless manufacturing using
an automated process also enables individual parts and small           Bioprinting
batches to be produced economically. The benefits of additive
manufacturing lie in its huge freedom of design for the engineer,
and in its flexibility which for example makes customised products     Data Acquisition
possible.

Typical examples of additive manufacturing of plastic components       Design (part design and optimization)
– also known as 3D printing in the media – are stereolithography
(hardening a photopolymer layer by layer), fused deposition mod-       Economics
elling (polymer melt output from a heated nozzle), and selective       (business models and supply chain)
laser sintering (fusing plastic powder in a powder bed with a laser
beam). For metal parts, selective laser melting and electron beam
melting are used: a laser or an electron beam systematically fuses     Judicial Aspects
metal powder in a powder bed.

The recent explosion of interest in organ printing has led to the      Material (development, qualification, testing)
development of new types of robotic systems for the production
of cell-containing living constructs mimicking the structure of        Process (machine development, software
different tissues and organs, such as blood vessels, nerves, skin,     chain, control systems, simulation)
cornea, cartilage, and bone. However, the use of robotic bioprint-
ers alone is not sufficient for the development of large-scale in-     Small Scale Additive Manufacturing
dustrial organ biofabrication. An absolute prerequisite for suc-       (millimeters and below)
cessful bioprinting is the detailed knowledge of the biology of the
respective tissue or organ. In any case, progress in tissue spheroid
bio fabrication, the emergence of commercial bioprinters and the
development of perfusion bioreactors suitable for organ “print-
ing”, may open new perspectives for the design of fully integrated
organ biofabrication.

8
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Industry 4.0
Definition
The rapid development of microelectronics has meant that tech-
nical systems increasingly possess high-performance sensor and        Data Management and Security
actuator technology: this enables process data to be detected
and can also directly influence the processes themselves. Re-
al-time availability of all relevant information via networking of    Human Machine Interface
all entities involved in value creation and the ability to use data
to define an optimum value creation stream at any time are
viewed as the next steps of industrial (r)evolution. Correspond-      Judicial Aspects
ing national development programmes have been established
under the titles ‘Industry 4.0” (Germany), ‘Industry 2025” (Swit-
zerland), ‘Initiative Smart Industry” (the Netherlands), and the      Networks
‘Industrial Internet Consortium IIC” (USA).

Cyber-physical systems (CPS) are viewed as the building blocks        Process Automation and Control
of this technology. These are characterised by the fact that they
link real (physical) objects and processes with high-performance
embedded ‘minicomputers” which record the process status and          Process Development and Virtual Modelling
can pass it on to higher-level cyber systems at any time via in-
formation networks. This comprehensive linking of systems is
based on the Internet of Things (IoT). In some areas it requires      Quality Control
the development of new, high-performance Industry 4.0 refer-
ence architecture models (RAMI 4.0). Within the resulting smart
factories intelligent products are clearly identifiable, can be lo-   Sensors and Actuators
cated at any time and have a record of their history, current
status and any alternative routes to their target status. This will
also result in changes to production logic.                           Social and environmental impact

Implementing Industry 4.0 platforms will require developments
as regards reference architecture standardisation, command of         Software
complex systems, comprehensive broadband infrastructure, data
security guarantees, legal frameworks, innovative work organi-
sation, and training or further training for employees.

                                                                                                                  9
Advanced Manufacturing in Switzerland - Research overview - Zenodo
Additive Fertigung   Industrie 4.0
Overview ETH, Universities and Research Centers
                                                                       CSEM MEMS
                                                         CSEM Surface Engineering
                                                  CSEM Characterisation/Reliability
                                                                 CSEM Automation
                                                         CSEM Ultra-low-power int.
                                                                    Empa 201 LHPC
                                                                   Empa 204 LAMP
                                                                   Empa 206 LMMN
                                                                   Empa 302 LAWM
                                                                          EPFL IMX
                                                                        ETH Zürich
                                                     ETHZ D ARCH Gramazio-Kohler
                                                                 ETHZ D CHAB IPW
                                                                   ETHZ D HEST IfB
                                                                  ETHZ D INFK AIT
                                                                   ETHZ D INFK IGL
                                                    ETHZ D MATL Complex Materials
                                                                 ETHZ D MATL LNM
                                                                ETHZ D MAVT ADRL
                                                                ETHZ D MAVT IMES
                                                                ETHZ D MAVT EDAC
                                                                  ETHZ D MAVT PDZ
                                                                  ETHZ D MAVT IWF
                                                                 ETHZ D MAVT LTNT
                                                            Innocampus Adv. Man.
                                                         Innocampus Industrie 4.0
                                                                            inspire
                                                                      inspire icams
                                                                       inspire ipdz
                                                                        Unibas PW
                                                                        Unibe AME
                                                                     Unibe ARTORG
                                                                        Unibe ISTB
                                                                       Unine CHYN
                                                                        Unine IIUN
                                                                     Unine LAMUN
                                                                       Unine MAPS
                                                                       Unine [PI]2
                                                                      UZH IUS ITSL
                                                                 UZH OEC IFI IMRG
                                                                         UZH Kispi

      To each institute a maximum of six overarching technical terms – reflecting the activities and expertise of the institute and
      visualized as icons – were assigned from the two subject areas “Additive Manufacturing” and “Industry 4.0”. This information is
      displayed in the table. In the left half of the table the institutes of the ETHs and universities can be found (in alphabetical order);
      in the right half the institutes of the universities of applied science, also in alphabetical order. The highlighted symbols describe
      the activities and competencies of the institutes. An explanation of the symbols can be found in the flaps and on pages 8 and
      9. The order of the institutes corresponds to that of the text contributions (starting on page 13).

      10
Additive Manufacturing   Industry 4.0
Overview Universities of Applied Science
                                              BHF ALPS
                                              BHF HuCE
                                                BHF I3S
                                               BHF I4MI
                                               BHF ICTM
                                                BHF IDT
                                               BHF iREX
                                              BFH RISIS
                                            FHNW KZ4.0
                                             FHNW I4DS
                                               FHNW IA
                                              FHNW IBE
                                              FHNW ICB
                                              FHNW IMA
                                              FHNW IME
                                             FHNW IMVS
                                             FHNW IPPE
                                              FHNW ZEF
                                             HE-Arc Ing
                                            HES-SO IICT
                                           HES-SO inSTI
                                           HES-SO iPrint
                                             HES-SO ISI
                                            HES-SO iSIS
                                            HES-SO SeSi
                                             HSLU CCMS
                                           HSLU Dep Inf
                                                HSR ILT
                                               HSR IPEK
                                               HSR IWK
                                                NTB AM
                                               NTB I4.0
                                           SUPSI ICIMSI
                                            SUPSI IDSIA
                                              SUPSI IMC
                                           SUPSI ISAAC
                                             SUPSI ISEA
                                             SUPSI ISIN
                                           SUPSI ISTePS
                                              SUPSI LCV
                                            ZHAW IAMP
                                              ZHAW IAS
                                             ZHAW ICBT
                                              ZHAW ICP
                                              ZHAW IDP
                                             ZHAW ILGI
                                             ZHAW IMES
                                             ZHAW IMPE
                                              ZHAW IMS
                                              ZHAW INE
                                             ZHAW InES
                                             ZHAW InIT
                                             ZHAW IUNR
                                              ZHAW ZAV
                                              ZHAW ZPP
                                              ZHAW ZSN

                                                                                                   11
Additive Manufacturing

12
100                                            101                                              102
CSEM                                           CSEM                                             Empa
Surface Engineering                            Characterisation and Reliability                 Laboratory for High Performance
                                                                                                Ceramics (201 – LHPC)
Our nanosurface engineering activity de-       In cooperation with the HE-Arc CSEM has
velops solutions at the interface between      developed a Center of Excellent in Charac-       The core activities of the Laboratory for
micro-, nano-, and biotechnologies.            terisation of microstructures and materi-        High Performance Ceramics are the syn-
                                               als. Strong cooperations are underway or         thesis, processing, characterization and
Printable electronics is a set of emerging     in preparation with major partners as EP-        in-depth analyses of advanced ceramic
technologies that includes new materials,      FL-IMT, EMPA, PSI too. The objective is to       materials and composites with tailored
process equipment and devices. The ap-         close the circle of design, fabrication and      structural and functional properties. One
proach is based on additive manufactur-        testing for the task of structural mechani-      key focus area are nanomaterials and ce-
ing and makes large area, lightweight,         cal, electrical and chemical behaviour un-       ramics for energy and environment tech-
flexible, distributed electronics a reality.   der various types of constraints.                nologies with a special focus on fuel cell
Using equipment evolved from the world                                                          and filtration technologies, photocatalyt-
of traditional printing, printed electron-     CSEM is a national innovation accelerator –      ic degradation of pollutants and photo-
ics offers the potential for the large-scale   a catalyst for the transfer of technologies      electric generation of electricity and so-
implementation of devices.                     and know-how from fundamental research           lar fuels, such as hydrogen.
                                               to industry. This role involves four principal
Thin-film solar cells are developed and        tasks: we develop and maintain technology        In cooperation with partners from Empa,
combined with silicon-based cells to cre-      platforms, we integrate and combine tech-        Universities and Industry, we conduct tar-
ate integrated units that may eventually       nologies into workable systems, we mature        geted feasibility studies in our specialized
feature a conversion efficiency of more        those technologies until using them will         processing laboratories to find novel solu-
than 30 percent.                               add value to our industrial clients, then we     tions to problems in the field of structural
                                               support the process of transferring those        and functional ceramic materials.
CSEM is a catalyst for the transfer of tech-   technologies to industry.
nologies and know-how from fundamental                                                          In Additive Manufacturing, we use Selec-
research to industry. This role involves       Our broad field of expertise – microengi-        tive Laser Melting (SLM) and Selective
four principal tasks: we develop and           neering – is a fundamental ingredient of         Laser Sintering (SLS) as well as Fused
maintain technology platforms, we inte-        Swiss.                                           Deposition Modelling (FDM) of ceramic
grate and combine technologies into            www.csem.ch/memsdesign                           materials and functional composite mate-
workable systems, we mature those tech-        www.csem.ch                                      rials. Furthermore, we use reactive tape
nologies until using them will add value                                                        casting technologies in combination with
to our industrial clients, then we support                                                      Laminated Object Manufacturing (LOM) to
the process of transferring those technol-                                                      shape three-dimensional gradient struc-
ogies to industry.                                                                              tures.
                                                                                                www.empa.ch/web/empa/high-performance-
Our broad field of expertise – microengi-                                                       ceramics
neering – is a fundamental ingredient of
Swiss industry.
www.csem.ch/nanosurface
www.csem.ch/thinfilms-PV

                                                                                                                                         13
103                                           104                                            105
Empa                                          Empa                                           Empa
Laboratory for Advanced Materials             Laboratory for Mechanics of Materials          Laboratory for Applied Wood Materials
Processing (204 – LAMP)                       and Nanostructures (206 – LMMN)                (302 – LAWM)

Research in the LAMP focuses on the fol-      The Lab for Mechanics of Materials and Na-     The research groups develop functional
lowing topics:                                nostructures focusses on the synthesis of      wood and cellulose based materials for a
• Production of nanoparticulate powder by     three-dimensionally architectured metals       broad range of applications. They are in-
  RF inductively coupled plasma atomiza-      and ceramics through combination of a)         terested in the 3D printing of lignocellu-
  tion and condensation, spheroidization      galvanoforming with 3D microprinting and       losic materials. A first study has been car-
  and modification of micron-sized pow-       UV-lithography, b) ALD on templated 3D         ried out and reports on the formulation
  ders, transport of flowable and unflowa-    substrates, and c) 3D focused electron/ion     and application of viscoelastic cellulose
  ble powders. Characterization of powders.   beam direct-write CVD & etching.               nanocrystals inks that enable the fabrica-
                                                                                             tion of three-dimensional objects by di-
• Thermodynamics of alloys and compos-        Current research projects are related to       rect ink writing. The work has been car-
  ites for laser melting deposition, model-   the purity and crystallinity of electro-       ried out in collaboration with Prof.
  ling of laser additive manufacturing.       plated alloys, the co-deposition of noble      Jennifer Lewis, Harvard University and
  Real-time in-situ observation of melting    and non-noble elements by focused elec-        Prof. André Studart, ETHZ.
  and solidification by X-ray and neutron     tron beams, the mechanical stability of
  tomography.                                 al-loys, the strength and ductility of 3D      Recently, the lab acquired an own 3D Bio-
                                              galvanoformed parts as well as the inves-      plotter located in Empa’s Coating Compe-
• In-situ real time optical and acoustic      tigation of deposition mechanisms in 3D        tence Center. Here, the goal is to develop
  signal detection, interpretation and        nanoprinting.                                  and investigate hierarchically-structured
  process control of long pulsed laser melt                                                  cellulose-based composites whose micro-
  processes. Real time spectroscopic in-      The activities in additive manufacturing       structures resemble those of biological
  spection of plasma and laser processes.     are performed by two synthesis research        materials exhibiting superior mechanical
  High speed and spectroscopic laser          groups which are supported by two analy-       performance. The developed synthetic
  welding plume characterization.             sis research groups with a large number of     composites will allow us to gain a deeper
                                              cutting-edge analytical techniques rang-       understanding over the structure-property
• Direct metal deposition of silicon from     ing from micromechanical testing, electron     relationships at multiple length scales in
  veryfine powder (< 5 micrometers diame-     microscopy, surface and thin film analysis,    hierarchical architectures, thus providing
  ter).                                       to optical spectroscopy. The close vicinity    guidelines for the fabrication of stronger,
                                              of synthesis and analysis infrastructure en-   tougher and lighter composite materials.
• Focused Electron Beam Induced Process-      ables a rapid material and process develop-    www.empa.ch/web/empa/applied-wood-
  ing (FEBIP) precursor selection for etch-   ment as well as developing tailored materi-    materials
  ing and deposition processes.               al analysis techniques.
www.empa.ch/web/empa/advanced-materials-      www.empa.ch/web/empa/mechanics-of-
processing                                    materials-nanostructures

14
05                                                                                        79
EPFL                                         ETH Zürich                                   ETH Zürich
School of Engineering STI, Institute of      ETH Additive Manufacturing Community         Department of Architecture,
Materials IMX                                                                             Gramazio-Kohler Research
                                             Additive manufacturing (AM) starts to
The IMX hosts 16 laboratories with exper-    fundamentally change research, develop-      The Gramazio and Kohler research groups
tise covering a wide spectrum of materials   ment and production processes, providing     engage in the process of producing digi-
classes and analysis techniques. Research    innovative solutions to various manufac-     tally-controlled, bespoke “leaking form-
at the IMX has broad relevance to manu-      turing challenges. Many research groups      work” elements for non-standard concrete
facturing, with potential applications       at ETH Zurich apply AM technologies and      structures.
ranging from bio- and micro-electronic de-   develop AM platforms for different appli-
vices to automotive, energy, aerospace and   cations.                                     Materials:
even biomedical or recreational applica-                                                  • steel
tions.                                       The AM community connects all research       • concrete
                                             groups at ETH involved in 3D printing. The   gramaziokohler.arch.ethz.ch/web/e/
Research into fundamentals of materials      goal is to interlink research projects, to   forschung/index.html
processing constitutes the core of our       exchange experience and know-how be-
activities in advanced manufacturing. Ac-    tween different users and to foster re-
tivities related to shaping, forming,        search and innovation. The community
joining, casting or net-shape additive       serves as a discussion platform about
manufacturing of 1D to 3 D shapes are        novel developments in infrastructure and
based on research exploring surface phe-     coordinates the equipment accessible to
nomena, microstructural development,         both internal and external partners. For
transient transport phenomena, rheology      additional information on the AM Interest
of solids and fluids, mechanics at several   Group please consult one of the links be-
scales, thermodynamics, kinetics, and at-    low.
omistic simulation. Several research ac-
tivities relate to lean manufacturing in-    A complete list of AM activities at the
cluding sustainable materials processing     ETH Zurich can be found at:
and overall optimization of the economic     www.ethz.ch/de/wirtschaft-gesellschaft/
and environmental impact of products. In     industry-relations.html
parallel, research areas contributing to
the development of new materials have
relevance to manufacturing, as such ma-
terials enables new methods of produc-
tion as well as new products.
imx.epfl.ch

                                                                                                                               15
80                                           81                                            82
ETH Zürich                                   ETH Zürich                                    ETH Zürich
Department of Chemistry and Applied          Department of Health Sciences and             Computer Science Department, Advanced
Biosciences, Institute of Pharmaceutical     Technology, Institute for Biomechanics        Interactive Technologies Lab AIT
Sciences IPW                                 IfB
                                                                                           The Advanced Interactive Technologies
The Institute of Pharmaceutical Sciences     The Institute for Biomeachnics is active      Lab engages in the digital fabrication of
at the Department of Chemistry and Ap-       in the following fields:                      input devices.
plied Biosciences performs research in the   • bioprinting
field of drug-loaded medical devices.        • development of cell friendly bioinks for    Materials:
                                               medical applications                        • polymers
Materials:                                   • biomimetic structures for musculoskel-      • conductive materials
• biodegradable polymers                       etal and cardiovascular regeneration        • flexible materials
• water soluble polymers                     • bioprinting of cellular and acelluar bio-   ait.inf.ethz.ch
www.chab.ethz.ch/forschung/institute-und-      logical tissues on the micro and nano
laboratorien/IPW.html/                         level
                                             • cross-linking chemistry

                                             Materials:
                                             • biopolymers
                                             • titanium
                                             • magnesium
                                             • polymers
                                             • gels
                                             • ceramics
                                             www.biomech.ethz.ch

16
83                                      84                                         85
ETH Zürich                              ETH Zürich                                 ETH Zürich
Computer Science Department,            Department of Materials, Complex           Department of Materials, Laboratory
Interactive Geometry Lab IGL            Materials                                  for Nanometallurgy LNM

The Interactive Geometry Lab performs   Research in the group focuses on the de-   The focus of research is the development
research in the following fields:       velopment of advanced additive manufac-    of novel materials and processes for addi-
• interactive 3D-modelling              turing approaches for the fabrication of   tive manufacturing across length scales.
• simulation of fabricable objects      bio-inspired materials.
                                                                                   Materials:
Materials:                              Materials:                                 • metals
• polymers                              • polymers                                 • polymers
• concrete                              • polymer-based composites                 • fiber composites
• metal                                 • ceramics                                 www.met.mat.ethz.ch/
• wood                                  www.complex.mat.ethz.ch/
• silicone
igl.ethz.ch/

                                                                                                                          17
86                                           87                                           88
ETH Zürich                                   ETH Zürich                                   ETH Zürich
Department of Mechanical and Process         Department of Mechanical and Process         Department of Mechanical and Process
Engineering, Agile and Dexterous             Engineering, Institute for Mechanical        Engineering, Institute of Design,
Robotics Lab ADRL                            Systems, Chair of Mechanics and              Materials and Fabrication, Engineering
                                             Materials IMES                               Design and Computing Laboratory EDAC
Research at the Agile and Dexterous Ro-
botics lab focuses on the following to-      The lab is primarily interested in the de-   The Engineering Design and Computing
pics:                                        velopment of programmable matter. This       Laboratory is active in a variety of topics
• development of “in situ fabricators”       includes research on structured materials    in the field of additive manufacturing:
• autonomous robots for assembly tasks       with tailored mechanical properties.         • design for additive manufacturing
  and digital fabrication in unstructured                                                 • computational design methods for addi-
  environments                               Materials:                                     tive manufacturing
• learning algorithms for robots             • polymers                                   • lattice structures
                                             • polymer composites                         • structural topology optimization
The group does not focus on specific mate-   www.mechmat.ethz.ch/index.html               • shape optimization
rials. Current projects make use of brick,                                                • material optimization
steel and concrete.                                                                       • multi-material design for additive
www.adrl.ethz.ch/doku.php                                                                   manufacturing
                                                                                          • multi-material additive manufacturing
                                                                                            printing

                                                                                          Materials:
                                                                                          • polymers
                                                                                          • Connex 500
                                                                                          • Fortus 400mc polycarbonate
                                                                                          • Uprint SE Plus ABS
                                                                                          www.edac.ethz.ch

18
89                                           90                                            91
ETH Zürich                                   ETH Zürich                                    ETH Zürich
Department of Mechanical and Process         Department of Mechanical and Process          Department of Mechanical and
Engineering, Institute of Design,            Engineering, Institute of Machine Tools       Process Engineering, Laboratory
Materials and Fabrication, Product           and Manufacturing IWF                         of Thermodynamics in Emerging
Development Group Zurich PDZ                                                               Technologies LTNT
                                             The Institute of Machine Tools and Manu-
The Product Development Group Zurich is      facturing is active in a variety of fields    The Laboratory of Thermodynamics in
a leading center for system-oriented         related to additive manufacturing. Its        Emerging Technologies performs research
product development and innovation. The      core competences are:                         in micro- and nanofabrication. Work fo-
aim is to contribute to the innovative ca-   • manufacturing process technology for        cuses on the development and under-
pability and competitiveness of the me-        SLM, SLS and DMD (with and without          standing of new materials and processes
chanical engineering industry. The group       laser)                                      with advanced properties and functional-
engages in a variety of activities around    • process chains for additive manufacturing   ities.
additive manufacturing:                      • development of machines for additive
• general design guidelines                    manufacturing and machine conceptu-         Materials:
• supply chain architecture                    alization                                   • metals
• identification of AM-applications          • development of materials and process        • dielectrics
• design guidelines for specific applica-      windows                                     • semiconductors
  tions                                      • quality management for AM                   www.ltnt.ethz.ch
• combinations of additive and conven-       • process simulation and prediction of part
  tional manufacturing technologies            properties
• criteria for manufacturing strategies
                                             Materials:
Materials:                                   • metals
• steel                                      • polymers
• polymers                                   • ceramic
• composite materials                        www.iwf.mavt.ethz.ch/index_EN
www.pdz.ethz.ch

                                                                                                                                19
106                                           92                                             92
Innocampus                                    Inspire                                        Inspire
Advanced Manufacturing Technologies           Schweizer Kompetenzzentrum für den             Innovation Center for Additive Manu-
AMT                                           Technologietransfer zur MEM-Industrie          facturing, Switzerland icams

Der Forschungsschwerpunkt AMT beinhal-        Die inspire AG ist als strategischer Partner   Das inspire Institut icams beschäftigt
tet die neuen generativen Fertigungsver-      der ETH Zürich das führende Schweizer          sich seit über 20 Jahren mit Forschungs-
fahren (Generative Fertigung / Additive       Kompetenzzentrum für den Technologie-          fragen rund um das Selective Laser Sinte-
Manufacturing: AM). Der Schwerpunkt           transfer zur MEM-Industrie. Sie betreibt       ring und das Selective Laser Melting. Im
liegt dabei auf metallischen Werkstoffen      Forschung für die Industrie, entwickelt        Fokus steht dabei die Weiterentwicklung
und deren Verfahren. Dabei sind das Pul-      modernste Technologien, Methoden und           der Verfahren und Materialien für Anwen-
verbett- sowie das Laser-Cladding-Verfah-     Prozesse und löst Probleme auf allen Wis-      dungen im industriellen Kontext.
ren unsere Vertiefungsrichtungen. Diese       sensgebieten der Produktinnovation und
werden vereinzelt schon jetzt für die Seri-   der Produktionstechnik.                        Die übergeordnete Zielsetzung ist,
enproduktion von Hightech-Bauteilen                                                          Knowhow für geeignete Qualitätssiche-
eingesetzt, z.B. in der Luft- und Raum-       inspire bringt die besten Partner der In-      rungssysteme aufzubauen und die Syste-
fahrt, Energie-, Automobil-, Medizin- und     dustrie und der Hoch- und Fachhochschu-        me so weiter zu entwickeln, dass die her-
Dentaltechnik sowie im Maschinen- und         len für gemeinsame Projekte zusammen           gestellten Bauteile auch qualifiziert
Anlagenbau.                                   und verfügt über die Köpfe, das Wissen         werden können. Der Themenkomplex um-
                                              und die Erfahrung, um Ideen erfolgreich        fasst deshalb die gesamte Prozesskette
Unsere Mission ist es, die generative Fer-    in Innovationen umzusetzen. Wo Neuland         ausgehend vom Pulvermaterial, deren
tigung in der Schweiz im internationalen      beschritten werden soll, punktuell Kom-        chemische Zusammensetzung und deren
Industrie- und Forschungswettbewerb           petenzen in der Technik oder in der Pro-       Prozessierung in einer additiven Ferti-
durch fokussierte Innovation zu stärken.      jektabwicklung fehlen und wo unvorein-         gungsumgebung. Dies umfasst auch die
Dabei konzentriert sich die Innocampus        genommene Urteilskraft gefragt ist, kann       Implementierung geeigneter Monito-
AG in Kooperation mit Partnern auf wich-      inspire neue Lösungen liefern.                 ring-Systeme, welche Auskunft über die
tige spezifische Themen: Die Effizienz-                                                      Integrität des aufgebauten Materials ge-
steigerung, eine höhere Präzision sowie       inspire ist ein durch den Bund gefördertes     ben können. Da die Materialeigenschaften
die Prozesssicherheit gehören zu unseren      Technologiekompetenzzentrum, entstan-          durch den Prozess bestimmt und auch ak-
Kernthemen. Daneben sind Software, Si-        den durch eine gemeinsame Initiative von       tiv beeinflusst werden können, stellt die
cherheit und Konzepte für zukünftige Fer-     Swissmem und der Eidgenössischen Tech-         Charakterisierung mechanischer Eigen-
tigungsverfahren ebenfalls auf unserem        nischen Hochschule Zürich (ETH).               schaften und der Mikrostruktur der aufge-
Forschungsradar. Design- und Topolo-          www.inspire.ethz.ch                            bauten Materialien eine Kernaktivität dar.
gie-Optimierung sowie MI- und CFD-Simu-
lation können bei uns vor dem Aufbau mit                                                     Es werden auch Fragen hinsichtlich zu-
der SLM Anlage durchgeführt werden, die                                                      künftiger Anlagenkonzepte bearbeitet.
Q-Kontrolle erfolgt bei Partnern.
www.innocampus.ch/advanced-manufacturing-                                                    Materialien:
technologies                                                                                 • Metalle
                                                                                             • Polymere
                                                                                             www.inspire.ethz.ch/divisions/inspire_icams/
                                                                                             index_EN

20
93                                            10                                             13
Inspire                                       Universität Basel                              Universität Bern
Produktentwicklung und Konstruktion           Philosophisch-Naturwissenschaftliche           AME GmbH
ipdz                                          Fakultät, Pharmazeutische Wissen-
                                              schaften                                       The AME GmbH strives to apply the unique
Additiv gefertigte Bauteile halten Einzug                                                    qualities of additive manufacturing to the
in Industrie- und Endkundenprodukte. Die      In cooperation with the Biographics Lab-       development of optical elements for Tera-
Produktentwicklung hat dabei die Aufga-       oratory 3R, we develop concepts and            hertz radiation such as waveguides, lenses,
be, durch die Vorteile von additiven Ferti-   tools for in silico drug discovery. The Vir-   mirrors as well as more complex integrated
gungsverfahren und die Kombination mit        tualDesignLab allows for the automated         optical systems. Terahertz radiation lies
anderen Verfahren einen zusätzlichen          simulation and quantification of the bind-     between infrared and microwave radiation
Nutzen zu schaffen.                           ing of small-molecule drug candidates to       on the spectrum of light and promises
                                              their suspected protein targets. It in-        interesting applications in medicine,
Die Gestaltungsfreiheit und Losgrös-          cludes both thermodynamic and kinetic          non-destructive testing and security.
senunabhängigkeit der Verfahren bietet        aspects and considers the physico-chemi-       www.ame-optics.ch
die Möglichkeit, Bauteile an der optimalen    cal properties relevant for adsorption and
Erfüllung der Funktion und den individuel-    distribution of the drug in the systemic
len Kundenbedürfnissen auszurichten. Bei      circulation.
dem Wechsel von einem fertigungs- zu
einem funktionsgerechten Design unter-        The VirtualToxLab is an in silico tool for
stützt die inspire ipdz Firmen von der        predicting the toxic potential (endocrine
Ideenfindung bis zum ersten AM Serien-        and metabolic disruption, some aspects
bauteil und bei der dauerhaften Einbin-       of carcinogenicity and cardiotoxicity) of
dung von additiver Fertigung in den Ent-      drugs, chemicals and natural products.
wicklungsprozess.                             The toxic potential is derived from the
                                              binding affinities (computed by means of
Das Forschungsgebiet des inspire ipdz ist     4D Boltzmann scoring) towards a series of
die Integration der additiven Fertigung in    16 proteins known or suspected to trigger
den Produktentwicklungsprozess:               adverse effects.
• Welches Wissen braucht ein Konstrukteur
  für die Identifizierung von geeigneten      The technology is currently used by some
  AM-Bauteilen und welche Hilfestellungen     80 institutions worldwide (universities,
  braucht er für die Detailkonstruktion?      regulatory bodies, pharmaceutical, cos-
• Wie können additive Fertigungsverfah-       metic and food industry) and the results
  ren mit anderen Verfahren sinnvoll kom-     for over 2,500 tested compounds are
  biniert werden?                             posted in a database.
• Wie kann die additive Fertigung wirt-       www.biograf.ch/images/VTLUserMap.png
  schaftlich in den Produktionsprozess
  eingebunden werden?
www.inspire.ethz.ch/divisions/inspire_pdz/
index_EN

                                                                                                                                     21
12                                              11                                           16
Universität Bern                                Universität Bern                             Université de Neuchâtel
Medizinische Fakultät, Center for Bio-          Medizinische Fakultät, Institut für          Faculté des sciences, Centre for
medical Engineering Research ARTORG             Chirurgische Technologien und                Hydrogeology and Geothermics CHYN
                                                Biomechanik ISTB
Am ARTORG werden neue Anwendungen                                                            Underground resources (groundwater, heat,
von additiven Fertigungsverfahren in der        Im ISTB gibt es zum Thema additive Ferti-    oil, or minerals) are difficult to access.
biomedizinischen Technik und den Life           gung folgende Aktivitäten:                   The estimation of reserves and the design
Sciences vorangetrieben. Dazu steht ein         • Allgemein: An unserem Institut werden in   of optimal exploitation strategies rely
eigenes Medical Rapid Prototyping Lab             zwei Forschungsgruppen (Zheng/Reyes)       on incomplete and indirect underground
mit verschiedenen Drucksystemen zur               neuartige, weitgehend automatische Ver-    structural data (among others drill holes,
Erstellung von Druckmodellen aus medizi-          fahren entwickelt, um aus medizinischen    conceptual geological models) and their
nischen Bilddaten zur Verfügung. Im Be-           Bilddaten (MR/CT) Modelle für den ad-      numerical virtual representations. The
reich der chirurgischen Forschung werden          ditiven Fertigungsprozess zu kreieren.     CHYN is at the forefront of the research in
einerseits bildbasierte, automatische Ver-      • Speziell: Wir werden zeitnah ein Projekt   this field. It develops CAD methods to
fahren entwickelt, mit denen patientenin-         in Kooperation mit zwei schweizerischen    convert field data into 3D volumetric nu-
dividuell gelenkprothetische und dentale          Partnern starten, mit dem Ziel, patien-    merical representations of the under-
Implantate additiv gefertigt werden. An-          tenspezifische, biodegradierbare Or-       ground from the reservoir (kilometres) to
dererseits werden chirurgische Operationen        bital-Implantate zu drucken. Unser         the sample (micrometres) scale. Such al-
anhand virtueller und additiv hergestellter       Beitrag wird dabei zum einen die o.g.      gorithms include interactive 3D modelling
Modelle geplant und durchgeführt. Im Be-          Modellbildung sein, zum anderen wer-       techniques and optimization tools to
reich der medizinischen Robotik wird unter-       den wir uns um die biomechanische          design the best possible exploitation
sucht, wie additiv hergestellte, ultraleichte     “Evaluation” der Implantate kümmern.       method for each case (e.g. optimal pump-
Strukturen realisiert werden können, die        www.istb.unibe.ch/about_us/vision/           ing well placement). Big Data analysis is
mit konventionellen Verfahren gar nicht         index_eng.html                               used to analyse large data sets such as
herstellbar wären. Für Anwendungen in                                                        hyperspectral images of geological out-
der personalisierten Medizin werden ausser-                                                  crops. Such 3D numerical models could be
dem mittels Bioprinting sogenannte Or-                                                       printed in 3D either for communication
gans-on-Chip zur Reproduktion der zellu-                                                     purposes or to conduct physical experi-
lären Mikroumgebung entwickelt. Zudem                                                        ments. The algorithms behind these 3D
werden die Möglichkeiten und Grenzen der                                                     models can be used for a variety of prob-
additiven Fertigung patientenspezifischer                                                    lems linked to additive manufacturing
biodegradierbarer Implantate untersucht.                                                     in which the creation of 3D numerical
www.artorg.unibe.ch                                                                          models is an issue.
                                                                                             www.unine.ch/chyn

22
15                                             17                                            19
Université de Neuchâtel                        Université de Neuchâtel                       Université de Neuchâtel
Faculté des sciences, Computer Science         Faculté des sciences, Institute of            Faculté des lettres et sciences humaines,
Department IIUN                                Biology, Laboratory of Microbiology           Maison d’analyse des processus sociaux
                                               LAMUN                                         MAPS
Members of the Computer Science Depart-
ment are particularly active in the fields     Microorganisms are nature‘s most per-         The MAPS Center for research and teaching
of secure and dependable systems, cloud        formant chemists and as such are the ori-     brings together anthropologists, econo-
computing, distributed data management,        gin and end-point of exploiting raw mate-     mists, geographers, migration scholars,
sensor networks, and the Internet of Things    rials. The Laboratory of Microbiology         political scientists, psychologists and so-
(IoT). They have notably been involved in      develops innovative biotechnological ap-      ciologists working on the issue of “social
half a dozen European projects related to      proaches to harness the power of natural-     innovation”: how innovation develops out
these research domains, which are instru-      ly-occurring microbes for metal exploita-     of social processes and contributes, in
mental for a vision of “Industry 4.0” where    tion and recycling. This can be applied       turn, to societal change. The MAPS’s social
computer systems will automate or control      both at the stages of mining, as well as in   innovation agenda includes both funda-
a large part of manufacturing activities and   the valorization of waste material. The       mental and applied research in areas such
have to face stringent security and depend-    last aspect could be a cornerstone contri-    as innovation policy and regional develop-
ability constraints in distributed settings.   bution to the realization of a sustainable    ment, urban planning and smart cities,
                                               “Circular Economy”.                           technology transfer, citizen sciences, inte-
Most research activities in this domain are                                                  gration and mobility studies, participative
conducted in the context of the recently       The Laboratory also studies biological-       methodologies in institutional manage-
established Centre of Competence in Com-       ly-controlled mineral formation, a process    ment, and educational policy for the pro-
plex Systems and Big Data, jointly run with    that contributes to the generation of         motion of lifelong learning.
the Institute of Information Management.       novel materials or material optimization.
www.unine.ch/iiun                              The approach used is based on the under-      The MAPS‘s competences can contribute to
www.unine.ch/coc-big-data                      standing of the ecology of bacteria and       the development of the Swiss “Additive
                                               fungi in natural environments, and the        Manufacturing” and “Industry 4.0” land-
                                               transfer of this knowledge into manmade       scape in the following areas: new forms of
                                               ecosystems. LAMUN‘s expertise in met-         property rights and management (e.g.
                                               al-mineral-microbe interactions should        “Creative Commons” and “Open Innova-
                                               contribute to the challenges of obtaining     tion”); changing relations to technology in
                                               and recycling raw materials as well as to     sharing economies; emerging practices to
                                               adding value to such materials.               promote ecological and social causes
                                               www.unine.ch/lamun                            (crowdsourcing, responsible innovation);
                                                                                             and new forms of creativity facilitated by
                                                                                             digital environments (e.g. the “makers”
                                                                                             movement).
                                                                                             www.unine.ch/maps

                                                                                                                                      23
18                                              107                                            22
Université de Neuchâtel                         Universitäts-Kinderspital Zürich               Berner Fachhochschule
Faculté de droit, Centre for Intellectual       Department of Pediatric Surgery,               Departement Technik und Informatik,
Property and Innovation [PI]2                   Tissue Biology Research Unit (TBRU)            Institute for Applied Laser, Photonics
                                                                                               and Surface Technologies ALPS
The Centre for Intellectual Property and        The TBRU has developed a new generation
Innovation [PI]2 considers the legal as-        of dermo-epidermal skin substitutes, two       Das ALPS entwickelt Verfahren und Tech-
pects of innovation from 3 angles, in a         of which are presently applied in clinical     niken für die materialsparende Fertigung
holistic and multidisciplinary approach:        trials, and one of which has received the      von Werkstoffen und deren Analyse.
intellectual property (IP), commercial law,     Orphan Drug Designation (ODD), both
and tax law. New approaches to IP owner-        from the EMA and Swissmedic, to treat          Kernkompetenzen:
ship and technology transfer will be nec-       burn injuries. To make this skin more          • Material-Mikrobearbeitung mit ultrakur-
essary as innovation and manufacturing          widely available and to produce it in a          zen Laserpulsen
are ever more collaborative and open.           cost-effective manner, the TBRU has            • Veränderung von Randschichten durch
With regard to “Open Innovation” and            co-developed a device that is capable of         Wärme- oder Laserbehandlung
“Creative Commons”, which will play a           generating tissue-engineered skin in an        • Fasertechnologie, d.h von der Faserher-
major role in the development of “Addi-         automated, additive and standardized             stellung zur Materialbearbeitung
tive Manufacturing” and “Industry 4.0”,         fashion. In a close collaboration with the     • Auftragen von Dünnschichten mit PVD-
the focus is on developing teaching and         Product Development Group of the ETH             und CVD-Methoden
research activities related to the follow-      (Prof. Mirco Meboldt) the TBRU is current-     • Einsatz von Plasmatechnologien für die
ing central issues:                             ly developing an automatic line operation        Oberflächenmodifikation
                                                of its latest generation of pre-vascular-      • Werkstoff- und Oberflächenanalyse
• Management of immaterial goods in par-        ized and pigmented skin substitutes.           • Herstellung von Komponenten mittels
  ticular with regard to patents (including                                                      Selective Laser Melting
  life sciences, bio- and medtech), copy-       Competences of the TBRU
  right, design law, and the rules of origin    • Basic research in skin (cell) biology        Forschungsgruppen
• Clarification of rules dealing with limita-   • Generating complex personalized skin         • Applied Fiber Technology: Erzeugung,
  tions of right holders’ exclusive rights,     • Additive production of human skin              Verstärkung und Transport von kurzen
  in particular relative to private use         • GMP production of skin grafts                  und ultrakurzen Pulsen
• State-of-the-art licensing schemes based      • Conducting clinical trials (on the sponsor   • Laser Sur face Engineer ing: Laser-
  on new business models for “Industry            side)                                          Mikro-Materialbearbeitung mit kurzen
  4.0” and “Additive Manufacturing”             www.skingineering.ch                             und ultrakurzen Laserpulsen
• New counterfeiting and piracy chal-                                                          • Materials Technology and Heat Treat-
  lenges                                                                                         ment: Wärmebehandlung zur Optimierung
• Development of regulations at interna-                                                         von Eigenschaften und Standzeiten bei
  tional level, including an international                                                       der Herstellung von Bauteilen
  private law approach.                                                                        • Plasma Surface Engineering: Einsatz von
www.unine.ch/pi2                                                                                 Plasmatechnologien zum Modifizieren von
www.unine.ch/coc-ip-innovation                                                                   Oberflächen und zur Herstellung dünner
                                                                                                 Schichten
                                                                                               • Thin Films and Surfaces: Herstellung von
                                                                                                 dünnen Schichten und Mikrosystemen
                                                                                               alps.bfh.ch

24
27                                                                                     39
Berner Fachhochschule                       Fachhochschule Nordwestschweiz             Fachhochschule Nordwestschweiz
Departement Technik und Informatik,         Hochschule für Technik, Kompetenz-         Hochschule für Life Sciences, Institute
Institut für Drucktechnologie IDT           zentrum 4.0                                for Chemistry and Bioanalytics ICB

Das IDT entwickelt und optimiert zusam-     Industrie 4.0 ist ein interdisziplinäres   The Institute for Chemistry and Bioana-
men mit Industriepartnern Drucksysteme      Thema, das verschiedenste technische       lytics researches and teaches in the fields
und –verfahren für den funktionalen und     Disziplinen fordert. Die Hochschule für    of biochemistry, bio-analytics, nanotech-
graphischen Druck sowie Dosiertechnolo-     Technik FHNW setzt darum auf eine enge     nology, organic synthesis and process en-
gien für Anwendungen in Biotechnologie,     Zusammenarbeit ihrer Institute. Das ge-    gineering. With their in-depth knowledge
Food und Verfahrenstechnik.                 meinsame “Kompetenzzentrum Industrie       in biomaterials and biology as well as in
                                            4.0” unterstützt Unternehmen aktiv bei     cell-breeding and bacteria-testing, the ICB
Kernkompetenzen                             der Entwicklung und Umsetzung von In-      could bring additive manufacturing struc-
• Fluidmanagement und Mikrodosierung        dustrie-4.0-Konzepten.                     tures into pre-clinical biological conditions
• Beschichten und Funktionalisieren von                                                and study their impact on biology.
  Oberflächen sowie Drucken von Dünn-       Kompetenzen
  schichten (inkl. Pre-/Postprocessing)     • Cyber-physische-Systeme                  This widens the portfolio of research ap-
• Drucken und Härten von UV-Photopoly-      • Internet of Things IoT                   plications for additive manufacturing dra-
  meren                                     • Big Data                                 matically and leads to knowledge in cell
• Generative/additive Verfahren (3D Druck   • 3D-Printing                              and bacteria processing. Together with
  von Food, Polymere, Keramik und Cellu-    • Sensor-Aktor-Systeme                     the IMA, the ICB runs a 3D Bio-Plotter
  lose)                                     • Planungs- und Steuerungssysteme          Lab for processing biomaterials as well as
• Digitaler Grossflächendruck               • Ressourceneffizienz                      for cells and bacteria.
• Entwicklung von Mikroventilen für das     fhnw.ch/technik/industrie40
  Drucken und hochgenaue Dosieren von
  hochviskosen Fluiden
• Kombinierte elektromagnetische, mecha-
  nische und fluidische Simulation (Mul-
  tiphysics) von Ventilen und Drucksyste-
  men
• Messsysteme im Bereich Sensorik
idt.bfh.ch

                                                                                                                                 25
38                                             31                                            40
Fachhochschule Nordwestschweiz                 Fachhochschule Nordwestschweiz                HES-SO Haute école spécialisée de Suisse
Hochschule für Life Sciences, Institute        Hochschule für Technik, Institute for         occidentale
of Medical and Analytical Technologies         Product and Production Engineering            Haute Ecole Arc Ingénierie - HE-Arc
IMA                                            IPPE                                          Ingénierie

The Institute for Medical and Analytical       The FHNW Institute for Product and Pro-       La HE-Arc a 9 groupes directement liés à
Technologies has a long tradition and ex-      duction Engineering performs research and     l’industrie 4.0 et à l’additive manufacturing:
pertise in additive manufacturing (AM).        development in the field of metallic Addi-    • Procédés industriels - Développement et
IMA is a driving force for applied research    tive Manufacturing with special focus on         intégration de solutions cyber-physiques,
in AM for MedTech industries and clinics.      industrial applications such as aeronautics      compétences dans le micro-usinage, la mi-
The institute is well connected throughout     and turbomachinery. It features a Selec-         cro-injection et l’additive manufacturing.
Europe and was involved in several Europe-     tive Laser Melting machine on which parts     • Conception des moyens de production –
an and nationally funded projects.             are 3D-printed in aluminum, steel, and           Approche “micro-manufacturing” et dé-
                                               nickel-based superalloys.                        veloppement de technologies économi-
IMA runs several Selective Laser Melting                                                        quement efficientes et durables.
machines for metals. Beside testing dif-       Competences                                   • Systèmes informatiques embarqués –
ferent metallic materials such as NiTi or      • Additive Manufacturing                         Capteurs/actuateurs embarqués basse
magnesium, IMA is running a qualified AM       • 3D Object Scanning                             consommation et intégration des tech-
process for the production of titanium im-     • Rapid Prototyping                              nologies de communication.
plants.                                        • Material Analysis                           • Analyse de données - Filtrage et prétrai-
                                               fhnw.ch/technik/ippe                             tement des données industrielles remon-
In terms of ceramics, IMA is doing research                                                     tées des capteurs et développement d’al-
with bone replacing materials like Hy-                                                          gorithmes d’analyse prédictive.
droxyapatite and Tricalcium-Phosphate.                                                       • Technologies d‘interaction – Inter-
                                                                                                connexion de l’usine basée sur des archi-
Furthermore, IMA operates different poly-                                                       tectures IoT sécurisées et supervision de
mer machines, either for UV curable acrylic                                                     la production (web et mobile).
multi-materials or as extrusion plotters for                                                 • Mécanique numérique – La “Computa-
ABS, PLA, PCLA or laser sintering machines                                                      tional mechanics” assure une consom-
for PA or TPU.                                                                                  mation réduite des ressources, tout en
                                                                                                maintenant une fabrication précise.
Beside this unique AM and quality exper-                                                     • Métrologie et vision industrielle - Déve-
tise, IMA has established complementary                                                         loppement de solutions d’inspection
knowhow towards industry 4.0. We are de-                                                        intelligentes et automatisées (autodia-
veloping novel AM processes and software                                                        gnostic du procédé de fabrication).
solutions to shift and distribute design                                                     • Imagerie – Réalité augmentée (mainte-
and manufacturing skills to end-users. This                                                     nance préventive des machines ou ate-
allows different industries to develop new                                                      liers) et réalité virtuelle (conception de
business models and new service designs                                                         pièces complexes).
along with AM and digital manufacturing.                                                     • Conception de produits centrée utilisa-
                                                                                                teurs – Mise en place de processus itéra-
                                                                                                tifs pour développer des technologies.
                                                                                             www.he-arc.ch/ingenierie/competences

26
44                                            41                                                45
HES-SO Haute école spécialisée de Suisse      HES-SO Haute école spécialisée de Suisse          HES-SO Haute école spécialisée de Suisse
occidentale                                   occidentale                                       occidentale
Haute école du paysage, d’ingénierie et       Haute école d’ingénierie et d’architecture        HES-SO Valais-Wallis – Haute Ecole
d’architecture de Genève - hepia,             de Fribourg – HEIA-FR, Institut de                d’Ingénierie – HEI, Institut Systèmes
Institut des Sciences et Technologies         Printing iPrint                                   Industriels ISI
Industrielles inSTI
                                              Le point fort de l’institut iPrint est la tech-   L’institut ISI possède un savoir-faire re-
inSTI est le partenaire industriel et de      nologie jet d’encre. Partenaire de l’industrie,   connu dans l’intégration de compétences
recherche de la HES-GE pour toutes les        il contribue à l’innovation technologique,        technologiques de pointe au sein d’un
problématiques de technologies indus-         tant au niveau des matériaux et du dévelop-       même produit. Ses partenaires sont des
trielles. Plus particulièrement, il se dis-   pement instrumental que des procédés.             entreprises actives dans l’électricité, la
tingue sur quatre axes stratégiques liés                                                        mécanique, la production industrielle, les
aux domaines suivants:                        Compétences:                                      sciences de la vie ou la santé.
• Bio-ingénierie                              iPrint dispose d’une dizaine de plateformes
• Eco-ingénierie                              de recherche toutes conçues et développées        Les compétences:
• Mécanique des fluides appliquée aux         par l’institut. L’institut est ainsi à jour en    • Impression 3D de pièces métalliques par
  domaines de l’énergie                       matière de composants, de technologies et           jet de liant sur des lits de poudre (mé-
• Matériaux et nanotechnologies et concep-    est capable d’adapter rapidement sa configu-        thode standard)
  tion microtechniques                        ration aux besoins des différents projets et      • Impression 3D de pièces métalliques par
                                              études de faisabilités. Sa maîtrise de l’im-        jet de solvant sur des lits de granulés
Les compétences:                              pression numérique permet à l’institut iPrint       poudre-polymère (invention HES-SO Va-
Réalisation par impression 3D polymère        de se concentrer sur le progrès des technolo-       lais)
ou résine de maquettes pour le dévelop-       gies en lien avec l’élargissement des champs      • Conception et construction d’imprimantes
pement de systèmes mécaniques en lien         d’application de l’impression jet d’encre.          3D en cours, basée sur des principes no-
avec les axes stratégiques de l’institut,     • Construction des imprimantes                      vateurs
par exemple: système de maintien de           • Compétences dans les domaines suivants:         • Déliantage, frittage et infiltration à haute
composants optiques, modèle aérodyna-         - Jet d’encre graphique et fonctionnel              température pour consolider des pièces
mique pour soufflerie ou encore porte ou-     - 3D Printing (basé à poudres), Multi Jet           denses ou poreuses réalisées par “addi-
til pour machine d’électroérosion. Ces           Modelling, Photopolymer Inkjet                   tive manufacturing”
compétences de fabrication sont complé-       - Electronique imprimée                           • Impression 3D de pièces en matière plas-
tées par celles de scanning 3D et de re-      - Impression en science de la vie (bio-             tique par modélisation par dépôt de fil en
verse engineering (génération de modèle          printing)                                        fusion (méthode standard)
CAO à partir de nuages de points).            • Multicouches fonctionnelles, Pièces             • Demande de brevet européen
                                                 multi matériaux, Structures graduées             EP05109045.4 (2005), 6 publications
Groupes de compétences:                       • Prétraitements et posttraitements des             internationales, 6 présentations aux
Les professeurs Jacques Richard, Georg           surfaces                                         conférences en Suisse et à l’étranger
Wälder et Eric Rosset sont actifs sur les
thèmes de scanning 3D, reverse enginee-       Groupes:                                          Les groupes de compétences:
ring, (JR. Nombreux mandats), fabrica-        • additive manufacturing                          • Groupe “Powder technology and advanced
tion additive et industrie 4.0. (GW: Projet   • électronique imprimée                             materials”
CTI en cours avec GFMS).                      • bioprinting                                     • Groupe “Mechanical Design”
hepia.hesge.ch/fr/rad-et-mandats/             iprint.heia-fr.ch, Fritz Bircher                  www.hevs.ch/fr/rad-instituts/
institut-insti/                               (fritz.bircher@hefr.ch)                           institut-systemes-industriels/

                                                                                                                                           27
You can also read