www.kit.edu - RESEARCH REPORT 2015 2016 - cedim (kit)
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Content 3 Content Imprint...................................................................................................................................... 5 Preface...................................................................................................................................... 6 Vorwort..................................................................................................................................... 8 I. FDA Activities............................................................................................................10 FDA Reports............................................................................................................................ 10 CEDIM Investigations on the 2015 Nepal Earthquake........................................................................... 10 Severe Thunderstorm Episode May/June 2016 Germany...................................................................... 13 Hurricane Matthew, September 2016.................................................................................................. 15 Short Reports.......................................................................................................................... 17 Earthquake Amatrice 2016.................................................................................................................. 17 Excessive Rain in Southern Germany, 19. - 21. November 2015........................................................... 18 Lefkada Earthquake Greece 2015........................................................................................................ 20 Illapel Earthquake Chile 2015.............................................................................................................. 21 II. Research....................................................................................................................22 CEDIM Projects........................................................................................................................ 22 Crowdsourcing - Using Social Media for Rapid Damage Assessment.................................................... 22 Improving Communication with the Public during Disaster Situations.................................................. 23 Towards the Development of a Global Tsunami Risk Model.................................................................. 25 The Web Service “Wettergefahren-Frühwarnung”/ Weather Hazards - Early Warning.......................... 27 ATMO Forensic Prediction and Analysis - Winter Storms in Germany.................................................... 29 New CEDIM Projects................................................................................................................ 31 Resilience of Cities in the Course of Time............................................................................................. 31 Critical Social Interactions in Case of Emergency - Vulnerabilitiy of the Chilean Street Network to Social Interaction in Case of Emergency of Natural Disasters.............................................. 32 Effects of Extreme Events on EMI-Systems........................................................................................... 33 Energy Risks toward 2025................................................................................................................... 34 Earthquake Aftershock Modeling........................................................................................................ 36 Loss Estimation and Analysis................................................................................................................ 37
4 Content III. Cooperations and Outreach...................................................................................39 Research Institutions................................................................................................................ 39 University of Adelaide.......................................................................................................................... 39 Institute for Environmental Studies, VU University Amsterdam............................................................. 39 Deltares............................................................................................................................................... 39 Insurance Industry................................................................................................................... 39 Willis Research Network (WRN)........................................................................................................... 39 Sparkassenversicherung SV.................................................................................................................. 40 International Programs............................................................................................................ 41 IRDR International Center of Excellence............................................................................................... 41 WMO’s High Impact Weather Project HIWeather................................................................................. 41 CEDIM and the World Bank & GFDRR (Global Facility for Disaster Reduction and Recovery)..................................................................................................................................... 41 GADRI................................................................................................................................................. 42 Spin-Off Company Risklayer................................................................................................................ 42 Outreach................................................................................................................................. 42 European Geosciences Union (EGU)..................................................................................................... 42 Earth System Knowledge Platform ESKP.............................................................................................. 43 Media Presence (Television, Radio, Print).................................................................................... 43 FDA and Short Reports........................................................................................................................ 44 CEDIM at the “The Change Agenda” Symposium in Oxford, England.................................................. 44 Networking Initiative at KIT...................................................................................................... 44 Strategic Workshops on „Risks, Catastrophes and Security”................................................................. 44 IV. Publications 2015 and 2016....................................................................................46 Articles in Journals and Books 2015..................................................................................................... 46 Articles in Journals and Books 2016..................................................................................................... 47 Conference Abstracts 2015................................................................................................................. 48 Conference Abstracts 2016................................................................................................................. 49 CEDIM Reports 2015........................................................................................................................... 50 CEDIM Reports 2016........................................................................................................................... 50
Content 5 Imprint CEDIM Research Report 2015 - 2016 Editors: Prof. Dr. Michael Kunz Dr. André Dittrich tech. Assistant: Johannes Hilpert DOI: 10.5445/IR/1000069933 State: June 2017 CEDIM Cover picture: Devastated street in Braunsbach, Germany after flood events end of Center for Disaster Management and May and beginning of June 2016. Risk Reduction Technology Image by Dr. Andreas Kron Hermann-von-Helmholtz-Platz 1 Captured 7 June 2016 76344 Eggenstein-Leopoldshafen, Germany info@cedim.de Printed by: Systemedia GmbH, Wurmberg
6 Preface Preface The Center for Disaster Management and Risk and flow velocity to draw conclusions about the Reduction Technology (CEDIM) is an interdiscipli- temporal sequence of the event by combining nary research institution in the field of disaster direct observations, statements of individuals management. After 10 years of successful coop- affected, and video analyses. After Hurricane eration with the Deutsches GeoForschungsZen- Matthew on 16 September 2016, which caused trum Potsdam (GFZ), the Karlsruhe Institute of more than 1000 fatalities in Haiti alone, its me- Technology (KIT) became solely responsible for teorological background and socioeconomic ef- CEDIM in January 2016. At present, 16 KIT insti- fects were analysed. tutes participate in CEDIM. This report provides an overview of the research work and activities In addition to these broad forensic analyses, CE- of CEDIM during 2015 and 2016. DIM researchers have examined further extreme events and disasters primarily disciplinarily, which For several years, CEDIM’s research has focused are also described briefly in Chapter I. This in- on Forensic Disaster Analyses (FDA)1 in near-real- cludes the earthquake in Amatrice (Italy) in Au- time. The objectives of this new research are to gust 2016, with an estimated damage of 2.6 assess a disaster directly after its occurrence, an- billion USD, the heavy rain episode of Novem- alyse its effects, track its temporal development, ber 2016 in Germany, the weaker earthquake and identify the factors most relevant to its impli- on Lefkada (Greece) in November 2015 and in cations. In the course of a CEDIM FDA-Task Force the same month, the heavy Mw=8.3 earthquake Activity, reports with different foci are written in Illapel (Chile), where the new Tsunami-model contemporaneously, i.e., a few days to weeks TsuKIT was applied for the first time. In addition after the disaster occurs. In some cases, specific to these CEDIM short reports, 131 reports about field studies on site complement these analyses. forthcoming extreme or unusual weather events worldwide were published on the web portal, Various CEDIM FDA activities have been per- “Wettergefahren-Frühwarnung.” formed in the last two years, and are described in detail in Chapter I. A team of researchers ana- Different CEDIM projects constitute the scien- lysed the effects on various regions of the severe tific basis of the FDA activities, where methods earthquake in Nepal on 25 August 2015, as well have been developed or improved during the as the intensity and frequency of the aftershocks. last years to help analyse disasters in near-real- During three field studies (June and November time, and which are applied in the case of an 2015; April 2016), different surveys were con- FDA activity (Chapter II). Within the scope of a ducted on site to shed light on the situation in project on crowdsourcing, natural disasters are the emergency shelters, establish criteria for an detected, located, and classified in real-time via evacuation, and evaluate existing information a self-developed software and taxonomy using gaps for the public. On this basis, a conceptual social media posts. Based on past FDA activities, model was constructed to assess the vulnerability a further CEDIM project investigated factors that of critical infrastructures and the emergency shel- hamper effective communication during disas- ters, and for emergency planning purposes. With ters and lead to significant information gaps, respect to the thunderstorm episode in Germany and identified the primary reasons for these during May/June 2016, which lasted almost two situations. Two further projects are designed to weeks and caused heavy flooding in many local- estimate the risk of winter storms and tsunamis ities (e.g., Braunsbach and Simbach), CEDIM’s using probabilistic methods. While in the case of research focused on analyses of the probability winter storms, a simplified approach is used that of comparable events in the long-term. Through estimates damage by means of the intensity and surveys in several municipalities affected, CEDIM spatial expansion of an event, combined with researchers estimated runoff, flood wave height, data about residential buildings, the estimation of the risk of a tsunami is based on the com- putation of wave propagation using up-to-date 1 The term “Forensic Investigation of Disasters” (FORIN) has already been coined in 2010 in connection with natural dis- parallel processing hardware. asters by the international research programme IRDR/ICSU (Integrated Research on Disaster Risk / International Council Forensic Disaster Analyses also are a focus of for Science). IRDR, with its forensic approach, follows up on the current funding phase 2016-2018. There- the question of how natural hazards turn into disasters – or not. fore, the research approach has been developed
Preface 7 further by integrating social science studies and tional and international research landscape and sharpening the profile to include society’s areas is visible widely to various user groups, such as of demand of energy, mobility, and information. the insurance industry, relief organizations, and The objectives of the new CEDIM projects, which governmental institutions. With its new focus, began at the end of 2016 and also are introduced CEDIM contributes to all three of society’s areas briefly in Chapter II, are to scrutinize changes in of demand—energy, mobility, and information— risk and resilience attributable to social change, identified by the KIT umbrella strategy 2025, and especially concerning energy, mobility, and sup- is thereby in an excellent position to continue to ply systems, and critical infrastructures in urban pool risk research at KIT. For this reason, CEDIM, areas. Work on the effects of natural hazards and together with the KIT-Center Climate and Envi- social interactions on the street network of Chile, ronment, has begun a process to improve the in- post-disaster rapid loss estimation, and the mod- tegration and networking of the various research elling of aftershocks complement these projects. activities at KIT in the fields of Risks, Catastro- phes, and Security, and to develop a common Several new collaborations were established in strategy. the last two years with international research centers, such as the University of Adelaide, the Michael Kunz VU university of Amsterdam, and Deltares, an Stefan Hinz independent institute that focuses on water re- Franz Nestmann search. Close connections continue with the insurance industry, especially with the Willis Re- search Network (WRN), where CEDIM is involved in a Flagship Project to develop a hail risk model for Europe and Australia. Further, CEDIM has de- veloped risk models for both types of hazards, hail and flood, for the Sparkassenversicherung SV. CEDIM also has joined various national and international programs: the IRDR International Center of Excellence on Critical Infrastructures and Strategic Planning established in 2015, the new 10-years-program High Impact Weather of the World Meteorological Organization (WMO), and different programs of the World Bank and the Global Facility for Disaster Reduction and Recovery (GFDRR). Since 2016, CEDIM has been a member of the newly founded network, the Global Alliance of Disaster Research Institute (GADRI). Outreach is another important pillar of CEDIM. This is being promoted actively, for example, in its own session at the European Geoscience Union (EGU), by several articles on the website Earth System Knowledge Platform (ESKP: www. eskp.de), as well as by numerous contributions in high-ranking media (e.g., New York Times, Die Zeit, FAZ, ARD, ZDF, ARTE, Deutschlandradio, and others). James Daniell, a CEDIM researcher, con- tributed an article, “Natural Disasters since 1900: Over 8 Million Deaths and 7 Trillion US Dollars damage,” that garnered the highest number of quotations for the KIT in 2016. A summary of these activities is provided in Chapter III. With its near-real-time analyses of major dis- asters, a research program that addresses new topics repeatedly, and its active public relations, CEDIM is now established successfully in the na-
8 Vorwort Vorwort Das Center for Disaster Management and Risk zung der Resilienz kritischer Infrastrukturen, für Reduction Technology (CEDIM) ist eine interdiszi- die Notfallvorsorge und die Vulnerabilität inner- plinäre Forschungseinrichtung im Bereich des Ka- halb der Notunterkünfte. Bezüglich der fast zwei tastrophenmanagements. Nach über 10 Jahren Wochen andauernden Gewitterepisode im Mai/ erfolgreicher Kooperation mit dem Deutschen Juni 2016 in Deutschland mit schweren Über- GeoForschungsZentrum Potsdam (GFZ) ist CE- schwemmungen vieler Ortschaften (beispielswei- DIM im Januar 2016 in die alleinige Verantwor- se Braunsbach und Simbach) konzentrierten sich tung des Karlsruher Instituts für Technologie (KIT) die Forschungsarbeiten von CEDIM vor allem auf übergegangen. Derzeit sind daran 16 Institute Analysen der Wahrscheinlichkeit vergleichbarer des KIT beteiligt. Der vorliegende Bericht gibt ei- Ereignisse in einem langzeitlichen Kontext. Bei Er- nen Überblick über die Forschungsarbeiten und hebungen vor Ort in mehreren betroffenen Kom- Aktivitäten von CEDIM in den Jahren 2015 und munen konnten Wissenschaftler des CEDIM aus 2016. der Kombination von direkten Beobachtungen, Aussagen von Betroffenen und Videoanalysen Seit einigen Jahren liegt der Schwerpunkt der Abfluss, Scheitelhöhe und Strömungsgeschwin- Forschungsarbeiten von CEDIM auf forensischen digkeit schätzen und Rückschlüsse auf die Er- Katastrophenanalysen in Nahe-Echtzeit (Foren- eignisgenese ziehen. Nach Hurrikan Matthew sic Disaster Analysis, FDA)1. Die Ziele dieses For- im September 2016 mit über 1000 Todesopfern schungsansatzes sind es, unmittelbar nach dem allein in Haiti wurden in einer weiteren FDA Akti- Eintreten einer Katastrophe diese zu bewerten, vität sowohl die meteorologischen Hintergründe die Folgen abzuschätzen, die zeitliche Entwick- als auch die sozioökonomischen Auswirkungen lung nachzuverfolgen und die wichtigsten Fak- dieser Katastrophe analysiert. toren zu identifizieren, die für die Auswirkungen maßgeblich sind. Im Rahmen einer CEDIM FDA- Neben den breit angelegten forensischen Ana- Task Force Aktivität werden zeitnah, also wenige lysen untersuchten CEDIM Wissenschaftler Stunden bis Tage/Wochen nach dem Eintreten weitere Extremereignisse und Katastrophen einer Katastrophe, Berichte mit unterschied- vor allem disziplinär, die ebenfalls in Kapitel I lichen Schwerpunkten verfasst. In einigen Fällen kurz dargestellt sind. Hierzu zählen das Erdbe- werden diese Analysen ergänzt durch spezifische ben von Amatrice (Italien) im August 2016 mit Feldeinsätze vor Ort. einem geschätzten Schaden von 2,6 Mrd. $, die Starkniederschlagsepisode im November 2016 in Auch in den vergangenen beiden Jahren kam es Deutschland, das schwächere Erdbeben auf Lef- zu mehreren CEDIM FDA Aktivitäten, die aus- kada (Griechenland) im November 2015 sowie führlich in Kapitel I beschrieben sind. So analy- das schwere Mw=8,3 Erdbeben in Illapel (Chile) sierte ein Team von Wissenschaftlern nach dem im gleichen Monat, bei dem erstmalig auch das schweren Erdbeben in Nepal am 25. April 2015 eigene Tsunami-Modell TsuKIT zum Einsatz kam. detailliert die damit verbundenen Auswirkungen Neben diesen CEDIM Kurzberichten wurden wei- in verschiedenen Regionen und die Intensität und tere 131 Berichte zu bevorstehenden extremen Häufigkeit von Nachbeben. Bei insgesamt drei oder ungewöhnlichen Wetterereignissen welt- Feldeinsätzen (Juni und November 2015; April weit verfasst und über das Webportal „Wetter- 2016) wurden verschiedene Befragungen vor Ort gefahren-Frühwarnung“ veröffentlicht. durchgeführt, um die Situation in den Notunter- künften näher zu beleuchten, Entscheidungskri- Die wissenschaftliche Basis der FDA-Aktivitäten terien für eine Evakuierung nachzubilden und bilden verschiedene CEDIM-Projekte, deren Ziel bestehende Informationsdefizite der Bevölke- es ist, Methoden zu entwickeln oder zu verbes- rung zu eruieren. Darauf aufbauend wurde ein sern, mit denen Katastrophen im Rahmen einer konzeptionelles Modell erstellt für die Abschät- FDA Aktivität zeitnah analysiert werden können (Kapitel II). Im Rahmen eines Projekts zu Crowd- sourcing werden Naturkatastrophen in Echtzeit 1 Der Begriff “Forensic Investigation of Disasters” (FORIN) im Zusammenhang mit Naturkatastrophen wurde im Jahr mit Hilfe einer eigens entwickelten Software und 2010 durch das internationale Forschungsprogramm IRDR/ Taxonomie aus Beiträgen sozialer Medien detek- ICSU (Integrated Research on Disaster Risk / International tiert, verortet und klassifiziert. In einem weiteren Council for Science) geprägt. IRDR untersucht mit Hilfe des CEDIM-Projekt wird aus vergangenen FDA Aktivi- forensischen Ansatzes, wie aus Extremereignissen Katastro- phen werden oder nicht. täten untersucht, welche Faktoren eine effektive
Vorwort 9 Kommunikation während einer Katastrophensi- Impact Weather der World Meteorological Orga- tuation erschweren und welche maßgeblichen nization (WMO) und an verschiedenen Program- Informationslücken aus welchen Gründen vor- men der World Bank und der Global Facility for herrschen. Zwei weitere Projekte haben zum Ziel, Disaster Reduction and Recovery (GFDRR). Seit das Risiko durch Winterstürme und Tsunamis mit 2016 ist CEDIM außerdem Mitglied des neu ge- probabilistischen Methoden zu schätzen. Wäh- gründeten Netzwerks Global Alliance of Disaster rend im Fall von Winterstürmen ein vereinfach- Research Institute (GADRI). ter Ansatz zum Tragen kommt, mit dem aus der Intensität und räumlichen Ausdehnung eines Weiterhin ist die Außendarstellung eine wichtige Sturms zusammen mit Daten über Wohngebäu- Säule von CEDIM. Dies wird aktiv befördert etwa de auf den Schaden geschlossen wird, erfolgt bei durch eine eigene Session bei der European Geo- der Risikoschätzung von Tsunamis eine genaue science Union (EGU), durch vielfältige Artikel bei Berechnung der Wellenausbreitung mit Hilfe der Internetpräsenz Earth System Knowledge neuester Hardware zur Parallelprozessierung. Platform (ESKP; www.eskp.de) sowie durch zahl- reiche Beiträge in hochrangigen Medien (z.B. Forensische Katastrophenanalysen stehen auch New York Times, Die Zeit, FAZ, ARD, ZDF, ARTE, im Mittelpunkt der aktuellen Förderphase 2016- Deutschlandradio u.a.). Auch die Presseinforma- 2018. Dabei wurde der Forschungsansatz wei- tion, die im vergangenen Jahr die meisten Zitie- terentwickelt - durch verstärkte Integration rungen für das KIT insgesamt einbrachte, war gesellschaftlicher und sozialwissenschaftlicher von einem Wissenschaftler von CEDIM („Bilanz Fragestellungen und durch eine Profilschärfung von Naturkatastrophen seit 1900: acht Millionen auf die gesellschaftlichen Bedarfsfelder Energie, Tote, sieben Billionen Dollar Schaden“ von James Mobilität und Information. Die erst Ende 2016 Daniell). All diese Aktivitäten sind in Kapitel III zu- begonnenen neuen CEDIM Projekte, die eben- sammengefasst. falls in Kapitel II kurz vorgestellt werden, haben zum Ziel, die mit dem gesellschaftlichen Wan- Mit seinen zeitnahen Analysen zu Katastrophen, del verbundenen Änderungen des Risikos und einem Forschungsprogramm, das immer wieder der Resilienz näher zu untersuchen, insbeson- neue Themenfelder federführend erschließt, und dere hinsichtlich von Energie-, Mobilitäts- und der aktiven Öffentlichkeitsarbeit hat sich CEDIM Versorgungssystemen bzw. urbanen kritischen erfolgreich in der nationalen und internationalen Infrastrukturen. Ergänzt werden diese Projekte Forschungslandschaft etabliert und ist weithin durch Arbeiten über die Auswirkungen von Na- sichtbar bei verschiedenen Nutzergruppen wie turgefahren und sozialen Interaktionen auf die Versicherungen, Hilfsorganisationen oder staatli- Funktionalität des Straßennetzwerkes von Chile, chen Einrichtungen. Durch die neue Ausrichtung durch schnelle Schadenschätzung nach Natur- trägt CEDIM außerdem zu allen drei gesellschaft- katastrophen und durch die Modellierung von lich relevanten Bedarfsfeldern der KIT Dachstra- Nachbeben. tegie 2025, Energie, Mobilität und Information, bei und ist damit bestens aufgestellt, die Risiko- In den vergangenen beiden Jahren wurden meh- forschung am KIT weiter zu bündeln. Gemein- rere neue Kooperationen mit verschiedenen in- sam mit dem KIT-Zentrum Klima und Umwelt hat ternationalen Forschungseinrichtungen etabliert, CEDIM daher auch im vergangenen Jahr einen etwa mit der Universität Adelaide, der VU Univer- Prozess angestoßen, die am KIT bestehenden sität Amsterdam oder Deltares, einem unabhän- und breit gestreuten Forschungsaktivitäten zu gigen Institut mit Schwerpunkt in der Wasserfor- den Themenfeldern Risiken, Katastrophen und schung. Enge Verbindungen bestehen nach wie Sicherheit besser zu vernetzen und eine gemein- vor mit der Versicherungsindustrie, insbesondere same Strategie zu entwickeln. mit dem Willis Research Network (WRN), bei dem CEDIM in einem sog. „Flagship Project“ an der Michael Kunz Entwicklung eines Hagelrisikomodells für Euro- Stefan Hinz pa und Australien beteiligt ist. Weiterhin erstellt Franz Nestmann CEDIM für die Sparkassenversicherung SV eigene Risikomodelle für die beiden Gefährdungsarten Hagel und Hochwasser. Außerdem ist CEDIM verschiedenen nationalen und internationalen Programmen beigetreten: dem in 2015 einge- richteten IRDR International Center of Excellence zu kritischen Infrastrukturen und strategischer Planung, dem neuen 10-Jahres Programm High
10 FDA Reports I. FDA Activities FDA Reports CEDIM Investigations on the 2015 Nepal Earthquake Trevor Girard, Bijan Khazai, Geophysical Institute (GPI) Sebnem Duzgun Middle East Technical University, Department of Mining Engineering, Ankara Introduction combined research on communication issues and road blockages due to landslides Following the devastating 7.8 magnitude Gorkha Earthquake on 25 April 2015 and its aftershocks, Aims / Objective approximately 2.3 million people were displaced. A team of CEDIM researchers responded to the Through multiple field investigations, the CE- April 2015 Nepal Earthquakes by producing DIM team pursued a better understanding of valuable reports within days and weeks of the the post-disaster situation in Nepal and aimed to disaster and executing two separate field inves- develop and test conceptual models on the as- tigations within months. Four consecutive FDA sessment of critical infrastructure vulnerabilities reports were issued on April 27th, May 5th, May following earthquake triggered landslides, emer- 12th and July 15th. gent issues and vulnerability factors in temporary shelters, and the communication behaviour of A CEDIM research team carried out field inves- the earthquake affected communities and local tigations in Nepal to examine shelter protec- government, respectively. tion options and information needs following the devastating Nepal Earthquake. In an initial field survey from June 6 – 20th 2015, CEDIM researchers carried out a household level survey of displaced populations to analyse the shelter response situation and decision factors influenc- ing displaced households in seeking shelter and temporary housing. The team conducted 284 household surveys in 177 locations spanning 27 Municipalities/VDCs and 7 districts. In a second three-week mission starting on November 11th 2015, a survey of 420 individuals investigated the information seeking and communication behaviour of earthquake affected communities. In a third mission from April 20-30th 2016, one year after the devastation, a team of CEDIM re- Fig. 1: People from Ree and Lapa VDC Dhading searchers, including Dr. Bijan Khazai, Mr. Trevor whose villages were destroyed by landslides are Girard and Prof. Dr. H. Sebnem Duzgun con- sheltering on the hills near the district capital ducted another 45 interviews with government Dhading Besi (Photo: J. Anhorn). officials, police, and news media broadcasters to examine the key issues in the recovery process, Project status including breakdowns in the disaster information communication chain. In September 2016, the Shelter field investigations CEDIM team supported by Utsav Upreti and Shy- am Thapa from AAROH, an experienced Nepali Individuals in urban and rural areas of Nepal NGO, launched a new round of surveys which sought different shelter options from spontane- ous tent camps close to their homes, to scattered
FDA Reports 11 unofficial shelter areas to designated official contact local government offices than anyone shelter sites (Figure 1). The Gorkha earthquake else. Hence, the local government plays a critical created an unprecedented need for emergency role in addressing the issues of all households. shelter as well as temporary and transitional It is important however, that the government housing. The purpose of the study was to better reaches out to those vulnerable groups men- understand the factors that increase vulnerabil- tioned above to ensure their particular needs are ity to being displaced from a disaster event. The met, as well as those isolated in rural areas who research team investigated the emergent issues may have limited capacity to communicate their with respect to decision processes of displaced needs. households seeking shelter and temporary hous- ing. The household shelter survey (HSS) conduct- Disaster communication field investigations ed about 6 weeks after the earthquake across 7 of the most affected districts has revealed several A key focus of the interviews, particularly in the factors that aggravate population displacement. 2016 field investigations, were on disaster re- These include insufficient protection from heat sponse information and communication related and inclement weather (flooding from heavy questions. In total, 401 individuals and 20 local rains); emotional difficulties; issues with privacy officials participated in the quantitative survey including access to safe sanitation; and social and 25 key informants in the qualitative inter- difficulties including experiencing discrimination views. The results provided evidence of patterns and crime. in the information seeking and communication behaviour of the different types of respondents. While confirming the importance of social media to those with internet access, the survey revealed that individuals from rural areas and women in general have disproportionately lower access to the internet than those from urban areas and men, respectively. The findings provide evidence to support the use of local government officials and radio stations to communicate with individu- als who lack internet access. It was also observed that some forms of ICT, such as television, were more vulnerable to im- pacts than others like smartphones and mobile Fig. 2: Destroyed homes after the earthquake in phones. The information sources which proved Bhaktapur, Nepal. (Foto: S. Duzgun/KIT). to be most useful after the earthquake were radio, friends/family, and government officials To understand the factors that aggravate disas- (Figure 3). Challenges to obtaining information ter displacement, it is necessary to consider the in the first week after the earthquake were as- process of displacement holistically. The physi- sociated with a lack of access to communication cal impact of a hazard often will lead directly to channels, issues with disaster message content population displacement. However, factors such and not knowing what information was avail- as proximity of shelter site to damaged homes, able or where to find it. In contrast, the big- fear of aftershocks and landslides and the up- gest challenge to collecting information about coming monsoon influenced people’s decision to impacts and relief efforts for key informants- seek different shelter options. In addition, socio- was blocked roads. Since officials rely on face- economic vulnerability can exacerbate the sever- to-face communication in Nepal, blocked roads ity of disaster displacement in different ways. We prevented those in the disaster communication found that among the displaced population, the system from travelling to meet one another. elderly, female-headed households, people with disabilities, and some ethnic groups were more An official flow of disaster response information adversely affected through increased vulnerabil- was also observed in Nepal for the dissemination ity to violence, discrimination, inadequate shelter of information about aid. The official flow used or other hazards. In particular, displaced house- two-way channels of communication over one- holds in settlements whose homes and liveli- way channels, which is critical to seeking feedback hoods were wiped out by landslides are at risk from communities. Overall, individuals trusted of long-term displacement. We found that when government officials more than other agencies, households have issues, they are more likely to and expected officials to warn them of future risks.
12 FDA Reports Finally, the surveys and interviews identified lo- power and maintenance equipment were major cal and district officials, police, radio stations obstacles to road clearance. Some remote vil- and emergent groups to be key actors in disaster lages were inaccessible for up to 10 months fol- communication. lowing the earthquake, but for the urban areas that were interviewed the road blockages were cleared within the first month following the earthquake. However, during this time prices of commodities doubled due to the double impact of road disruptions by the earthquake, and the fuel blockade. It was also found that the relief ef- forts and recovery activities were considerably af- fected by road blockages due to landslides. One of the major roads connecting Nepal to China has still not come back to its original service due to intense and large landslides triggered by the earthquake. Fig. 3: Best information sources before and after the 2015 Gorkha Earthquake. Outlook Critical Infrastructure Vulnerability The CEDIM team presented the results of their research at the International Conference on CEDIM researchers also investigated the role of Earthquake Engineering and Post Disaster Recon- accessibility and disruptions in transportation in struction Planning in Bhaktapur, Nepal. The team the recovery process. Adverse conditions created plans to continue its research collaborations with by India’s September blockade of transportation local Nepali organizations such as the National networks across the India-Nepal border, created Society for Earthquake Technology (NSET) and a second wave of disruptions for delivery of fuel, Kathmandu Living Labs (KLL). By transferring the food and goods following the widespread road knowledge gained by the in-depth research to disruptions caused by the earthquake and sub- these local organizations who are already work- sequent landslides. CEDIM researchers found ing with government authorities, the research the average response time to clear roads due to can help influence local disaster risk reduction medium-size and large landslides was 1-2 and initiatives. 5-7 days, respectively, but lack of skilled human Die Untersuchung des Erdbebens in Gorkha tel genutzt wurden. Interviews mit Regierungs- (Nepal) 2015 durch CEDIM beamten, Polizisten und Nachrichtendiensten wurden im April 2016 durchgeführt, um die Durch das verheerende Erdbeben der Stärke 7,8 Bewältigung der Katastrophe einschließlich der in Gorkha, Nepal am 25. April 2015 und den Schwierigkeiten in der Katastrophenkommuni- zahlreichen Nachbeben in den Folgewochen kation zu beleuchten. Die Interviews halfen un- wurden etwa 2,3 Millionen Menschen aus ihren ter anderem den CEDIM Wissenschaftlern, die Häusern vertrieben. Bei verschiedenen Feldein- verschiedenen Katastropheninformationen und sätzen hat ein Forscherteam des CEDIM in Nepal Kommunikationssysteme, die in Nepal nach dem die Vor- und Nachteile innerhalb der unterschied- Erdbeben etabliert wurden, mosaikartig zusam- lichen Notunterkünfte sowie den Informations- menzusetzen. Außerdem hat das interdisziplinä- bedarf der Menschen in Notsituationen unter- re CEDIM Wissenschaftlerteam untersucht, wel- sucht. Bereits im Juni 2015 wurde eine Umfrage che Rolle beim Wiederaufbau die Zugänglichkeit vor Ort durchgeführt, um Information über die bzw. Zerstörung der Transportwege gespielt hat. Situation in den Notunter-künften zu erhalten So haben nicht nur die Zerstörungen durch die und um mehr über Entscheidungskriterien bei Erdbeben und Hangrutschungen zu erheblichen der Auswahl der Notunterkünfte bzw. kurzzei- Schwierigkeiten bei der Versorgung der Bevöl- tigen Unterkünften zu erfahren. In einer weite- kerung geführt, sondern auch die indische Blo- ren Umfrage im November 2015 ging es insbe- ckade der indisch-nepalesischen Grenze brachte sondere darum, zu erfahren, wie die Menschen die Lieferung von Treibstoff, Lebensmitteln und nach Informationen über die Katastrophenlage weiterer Güter erheblich ins Stocken. gesucht haben und welche Kommunikationsmit-
FDA Reports 13 Severe Thunderstorm Episode May/June 2016 Germany Michael Kunz, David Piper, Bernhard Mühr, Florian Ehmele, Susanna Mohr Institute of Meteorology and Climate Research (IMK) James Daniell Geophysical Institute (GPI) Andreas Kron Institute for Water and River Basin Management (IWG) During an FDA activity, CEDIM researchers fo- cused on the meteorological aspects of the event, especially on the analysis of the persistency of specific weather patterns, and estimated inunda- tion and runoff in Braunsbach from two surveys. Atmospheric conditions Prior to the thunderstorm episode, moist and warm subtropical air masses were advected to- wards Germany, where insolation additionally led to instability. The remarkable length of the storm episode can be attributed to a strong high-pres- sure ridge flanked by two low-pressure troughs persisting over several days. Moreover, the wind speed was unusually low allowing for thunder- storms to become almost stationary, yielding lo- cally extreme rain accumulations. Fig. 1: Weather phenomena associated with severe convective storms between 26 May and Hydrological and hydraulic aspects 9 June 2016 collected from various sources of information (European Severe Weather Da- During two field trips of CEDIM researchers, over tabase, newspaper articles, weather services; 700 recordings were made of water heights with Piper et al., 2016). 450 points used in the end to derive the inun- dation at each building in Braunsbach affected Introduction by flooding. In the catchment of the Schlossbach like in several other creeks struck by the thun- During a two-week period in May and June derstorms, driftwood and floating debris was 2016, large parts of Germany were repeatedly washed into the v-shaped valley and caused a affected by severe thunderstorms (Fig. 1). jam in a culvert upstream of Braunsbach. The Extreme rain exceeding 100 mm within 1-2 following runoff was dammed up and released hours led to dramatic rise of water levels of spontaneously comparable to a dike breach. Ve- various creeks. On 29 May, a flash flood with a locities of 10-15 ms-1 were estimated upstream wave height of up to 3.5 m damaged around 80 between Orlach and Braunsbach from a combi- buildings in Braunsbach (Baden-Württemberg; nation of video, local estimates from vegetation Fig. 2). Only three days later, an extreme flood and from local people. struck the town of Simbach (Bavaria). The Ahr valley (Rhineland-Palatinate) experienced heavy In Braunsbach, the Orlacher and Schlossbach rain events even on multiple days leading to the creeks provided the most severe flooding of the worst flood ever reported. According to extreme town, with velocities of 7-10 ms-1. The observed value analyses for 24-hour and 7-day rain totals, flood wave in the Schlossbach reached heights return periods exceeded 200 years or even more of 3.5 m scouring a new pathway in the built-up in several regions. Around 7,000+ structures area of Braunsbach as well as overtopping the were affected in some way, leading to total dam- street causing high velocity flooding down the age in the order of € 1.2 bn, mostly due to a few very steep slope, affecting many buildings on major business losses (GDV, 2016; www.gdv.de). the ground flood and flooding cellars. While the
14 FDA Reports Orlacher Bach is designed upstream to accom- modate flows of 15-20 m³s-1, more than 80 m³s-1 were estimated. Additional runoff of 20 m³s-1 at Schlossbach contributed to the flash flood. Both estimates are consistent with a flat area check. Assuming a height of 110 mm on average across the 6.4 km² catchment, the total water volume affecting Braunsbach is estimated to 700,000 m³. The mass of debris from upstream land- slides, hydraulic effects, road washouts and sedi- ment transport contributed greatly to the impact downstream in Braunsbach. Persistence of weather and atmospheric patters To put the 2016 thunderstorm episode in the historical context, the probability of different atmospheric patterns were statistically assessed (Piper et al., 2016) with respect to a 55-year ref- Fig. 2: Structural damage in Braunsbach after erence period. It was found that clusters of 10 the 29 May 2016 flash flood (Image credit: consecutive days exhibiting extreme precipitation James. E. Daniell). anywhere in Germany have occurred only three times before (exceedance of the 99.9% percen- 55-year reference period. Furthermore, the ap- tile; REGNIE data provided by German Weather plication of a new weather pattern method that Service DWD). Similar results were obtained re- allows us to determine the potential for thunder- garding compound events with low atmospheric storms to occur yielded a cluster of 11 consecu- stability and weak mid-troposphere flow. A 13- tive convective days. Evaluating the entire refer- day cluster for that combination, as observed ence period statistically results in a probability of in 2016, has been found only twice during the less than 1% for such a cluster as observed in 2016. Die schwere Gewitterepisode im Mai/Juni schwindigkeit schätzen. Ein geschätzter Ab- 2016 in Deutschland flusswert von fast 100 m³s-1 in Braunsbach erklärt die schweren Auswirkungen mit 80 Während einer fast 15-tägigen Episode vom zum Teil erheblich beschädigten Gebäuden. 26. Mai bis 9. Juni 2016 kam es in Deutsch- Die Wahrscheinlichkeit für das Auftreten ei- land zu einer außergewöhnlich großen Zahl von ner Gewitterepisode vergleichbar zu der in schweren Gewittern, die mit schweren Nie- 2016 ist sehr gering. Cluster mit 10 aufein- derschlägen, teilweise auch mit Hagel und ander folgenden Tagen, an denen in einer be- Tornados, verbunden waren. Die schwersten liebigen Region in Deutschland Extremnieder- Hochwasser und Sturzfluten ereigneten sich in schlägen fielen, wurden in einem 55-jährigen Braunsbach (29. Mai) und in Simbach/Inn (1. Juni). Kontrollzeitraum nur dreimal registriert. Ähn- Bei Erhebungen vor Ort in und um Braunsbach liches gilt für die Kombination von geringer ließen sich aus der Kombination von direkten atmosphärischer Stabilität und geringer Wind- Beobachtungen, Aussagen von Betroffenen geschwindigkeit bzw. gewitterförderlichen und Videoanalysen, der Abfluss, die Schei- Großwetterlagen. telhöhe des Abflusses und die Strömungsge-
FDA Reports 15 Hurricane Matthew, September 2016 Bernhard Mühr, Jan Wandel, Michael Kunz Institute of Meteorology and Climate Research (IMK) Introduction On 23 September 2016, hurricane Matthew arose from a tropical wave west of West Africa. Travelling westward, the area of deep convection organized into a tropical storm on 28 Septem- ber 2016 and was named “Matthew”. While in- tensifying into a category 1 hurricane, Matthew continued its westerly track and moved over the easterly Caribbean. The hurricane showed a rap- Fig. 1: Devastation in Haiti after Matthew has id intensification and deepened from a category made landfall. Image source: Engineers Without 2 into a category 5 hurricane (highest category Borders. on the Saffir-Simpson hurricane wind scale) with- in just 15 hours. 1-minute sustained wind speeds ricane Matthew struck South Carolina, USA, increased from 85 kt (157 kph) to 140 kt (259 near McCleanville on 8 October 2016, 15 UTC. kph). The hurricane kept category-5-intensity for Measurements with satellite and satellite based a few hours only and then became upper cat- precipitation radar showed values of more than egory 4. Matthew changed its track following a 200 mm all along Matthew’s path through the northerly direction, and on 4 October 2016 the Caribbean to the Bahamas. When Matthew was storm’s centre crossed Haiti’s coastline. After rag- in its rapid intensification stage, precipitation ing through the Bahamas Matthew followed the amounts exceeding 625 mm have been derived. coastline of Florida into a north westerly direc- Over land and along the south coast of Haiti and tion. Being a category 3 hurricane, its centre was the Dominican Republic the widespread rainfall very close to the coast but stayed offshore, shift- amounts were 400-500 mm. Hourly rain rates ing along Georgia’s Atlantic coast before making were as high as 229 mm in the inner rain bands. landfall in South Carolina for a short while as a category 1 storm on 8 October 2016. The next Matthew also brought extremely large volumes day, Matthew followed a track into an easterly of rain to the Southeast of the USA and set nu- direction away from the US-coast and lost hur- merous new records. Torrential rain fell from ricane status. Florida all the way up to Virginia and even across parts of eastern Canada. These regions not only With Matthew being a hurricane of the highest saw coastal floods, but many of the rivers had category, affecting many countries and causing new all-time high water levels causing severe billions of US$ of damage and many casualties, flooding. CEDIM started an FDA activity to investigate the hazard in terms of both meteorological and so- Loss analysis cioeconomic aspects in near real-time. Matthew claimed many fatalities reported from Track of Matthew, wind and precipitation the United States (46), the Dominican Republic (4), Colombia (1) and St. Vincent and the Gren- Matthew set many new records for intensity, adines (1). But most of all, Hurricane Matthew longevity and landfall. During its lifetime, Mat- has left behind widespread destruction across thew had multiple (4) landfalls, in Haiti, Cuba, Haiti and the death toll rose to more than 1000. the Bahamas and in South Carolina (USA). The first and most fatal landfall was near Les An- For the US, Matthew is the most expensive Atlantic glais in Haiti as a category 4 storm on 4 October hurricane since Sandy in 2012, causing an overall 2016 around 11 UTC with maximum sustained loss of more than $ 15 bn. In total, 26 Million peo- winds of 125 kt (232 kph).The next two landfalls ple were affected by the hurricane in the US. For took place in Cuba (near Juaco, 5 October 2016, the Bahamas Matthew likely was responsible for 00 UTC as category 4) and on the Bahamas the largest insured losses from a hurricane ever. (close to Freeport, 07 October 2016, 00 UTC, as In Haiti, these losses were in the order of $ 2 bn. category 4). Finally, the centre of category-1-hur-
16 FDA Reports Further reading http://www.wettergefahren-fruehwarnung.de/ http://www.cedim.de/download/FDA_mat- Ereignis/20161004_e.html thew_2016_report1_update2.pdf Fig. 2: Satellite image, 06 October 2016, 08:37 UTC. (Image credit: NASA GSFC GOES Project). Hurrikan "Matthew", September 2016 ne in Haiti. Sturm und sintflutartige Regenfälle führten zu großen Überschwemmungen. In den Mit Hurrikan “Matthew” zog Ende September betroffenen Staaten kam es zu umfangreichen / Anfang Oktober 2016 ein tropischer Wirbel- Evakuierungsmaßnahmen. Hurrikan Matthew sturm über den Atlantik und durch die Karibik, war eines der teuersten Naturereignisse für die der sich in vielerlei Hinsicht als ungewöhnlich USA mit Schäden von mehr als 15 Mrd. $. Auch erwies. Er hinterließ nicht nur ein Schneise der auf den Bahamas sorgte Matthew für größere Verwüstung, sondern stellte in Bezug auf Inten- versicherte Schäden als je ein Hurrikan zuvor. sität, Langlebigkeit und der Übertritte auf Land Angesichts der Intensität des Wirbelsturms, sei- zahlreiche neue Rekorde auf. Matthew erreich- ner Zugbahn, und seines enormen Schadenspo- te die höchste Wirbelsturm-Intensität, soweit tentials startete CEDIM eine FDA - Aktivität. In südlich gelang das keinem Hurrikan zuvor (100 Nahe-Echtzeit wurden dabei sowohl die meteo- km nördlich von Kolumbien). Matthew trat ins- rologischen Hintergründe als auch die sozioöko- gesamt 4 Mal auf Land über (Haiti, Kuba, Baha- nomischen Auswirkungen analysiert. mas, USA). Entlang seiner Zugbahn forderte der Hurrikan viele Todesopfer, mehr als 1000 allei-
Short Reports 17 Short Reports Earthquake Amatrice 2016 James Daniell, Andreas Schäfer Geophysical Institute (GPI) Bernhard Mühr Institute of Meteorology and Climate Research (IMK) Antonios Pomonis World Bank, Social, Urban, Rural & Resilience (GSURR) A reduced FDA activity was undertaken post- earthquake for the 2016 Amatrice earthquake. Significant damage was seen in the epicentral area caused by one of the largest earthquakes of the last 50 years in Italy. The earthquake caused about 295 fatalities and an estimated loss of about $ 2.58 bn, however with the recent aftershocks, the loss bill has been put at much higher with damage now in Nor- cia and other more densely populated regions in October 2016 and January 2017 earthquake sequences. In the August quakes, most affect- ed were the towns of Amatrice and Accumoli. In contrast to the L’Aquila earthquake in 2009, the 2016 event was not preceded by a signifi- cant swarm activity, which lasted in 2009 for Fig.1: Buildings per town vs. intensity bounds as several months and caused wide-spread discus- collected from census data for this earthquake sions about earthquake predictability, awareness in August showing the small town nature. and public warning. The earthquake sequence of 2009 not only shares common characteristics Being August, the population of the mountain with the 2016 events but also those in 1997, top towns would have been higher than at the the Umbria Marche earthquake sequence, just census, with unknown numbers of people stay- 35 km north of Amatrice. This was significantly ing in hotels, hostels, with family and other lo- similar to the 2016 but caused only 11 fatalities. cations throughout the region. The region is a bit poorer than most in Italy with around likely $ Two key historical events occurred around this lo- 2.5-3 bn stock exposed in the intensities over VII. cation, including the 1639 earthquakes in Octo- It is important to note that this is a replacement ber where great damage occurred and buildings cost as many older masonry buildings may have and livestock were greatly affected and over 500 become dilapidated over the years. Many build- deaths and 800,000 crowns of building damage ings in the mountains stay vacant during other were seen. Similarly in January 1703, much dam- times. It can be seen that the population is likely age in Amatrice and Accumoli was seen with underestimated by 3+ times perhaps using build- 2000+ deaths and over 1.4 m crowns in dam- ing ratios from the V-VI region. The GDP in the ages. region over intensity VI is ca. $ 3.3 bn. The Capi- tal stock over VI is in the order of $ 18 bn. Intensities reached VIII-IX on the MMI scale – very well built structures received slight damage, The affected area was sparsely populated and whereas older buildings suffered great damage. mountainous, and is around 40 km to the North The damage seen corresponds to VIII and per- of the city of L’Aquila that was devastated in the haps very isolated VIII-IX locations on the MMI April 2009 earthquake of similar magnitude. scale. From north to south, within a distance of about
18 Short Reports 15 km, the worst affected were the villages of The October and January earthquake events in- Pescara del Tronto (part of the Arquata del Tronto cluding an avalanche caused damage and deaths commune) – population 135, Accumoli – popu- that are still being evaluated. lation 670 and Amatrice – population 2650 (incl. the surrounding villages). All three villages were situated on steep mountain ridges where slope instabilities and ground motion amplification can cause excess damage as has been seen in past events in Italy (e.g. 1976 Friuli and 1980 Irpinia). Inspection of damage photos suggests that Pescara del Tronto and Amatrice were dev- astated, losing a large proportion of their mostly residential building stock. In Amatrice there is a distinct new part of the village, with large pub- lic buildings and other facilities that is appar- ently less affected. The overwhelming majority of the buildings that collapsed were 2 to 4 story unreinforced stone masonry constructions with wooden floors. Some severe damage to rein- forced concrete or hybrid construction buildings has also been seen, but it is limited in number, e.g. the Hotel Roma in Amatrice. Most of the masonry buildings are very old (built prior to 1920) and in need of substantial strengthening. Fig.2: GDP per capita per province as a percent- This is a common problem in most of Italy’s old age of national, showing the disparity in income rural settlements. In the affected villages most of across the region. Amatrice in Rieti is a poorer these buildings collapsed either partly or entirely region than many in Italy. and very few will be salvaged. Das Amatrice Erdbeben 2016 erreichten VIII – IX auf der Modified Mercalli Sca- le (MMI), bei welchen sogar sehr stabil gebaute Das Erdbeben in Amatrice, Italien, am 24. Au- Gebäude leichtere Schäden davontragen. Ältere gust 2016 um 1:36 UTC mit einer Magnitu- Gebäude erlitten hingegen sehr starke Schäden. de von 6,0 verursachte ca. 295 Todesfälle und Am stärksten wurden die Ortschaften Amat- einen geschätzten ökonomischen Schaden rice und Accumoli getroffen. Dieses gebirgige von 2,58 Mrd. $. In Anbetracht der folgenden Gebiet ist nur dünn besiedelt und liegt knapp Sequenzen an Nachbeben bis in den Janu- 40 km nördlich der Stadt L‘Aquila, die im April ar 2017 hinein, liegt der tatsächliche Schaden 2009 von einem Erdbeben ähnlicher Magnitude aber noch höher. Das Beben trat in einer Tie- zerstört wurde. fe von etwa 4,2 km auf und die Intensitäten Excessive Rain in Southern Germany, 19th to 21st of November 2015 Bernhard Mühr, Florian Becker, Michael Kunz Institute of Meteorology and Climate Research (IMK) Introduction 48-hour precipitation all-time records at some locations, no major flooding emerged. This fact An extreme rain event occurred in November is even more surprising since the rain event was 2015 and mainly affected the southern parts of widespread and ranked in second place for any Germany (Baden-Württemberg and Bavaria). De- day since 1951 in respect of the entire area of the spite rain amounts that exceeded previous 24- or Baden-Württemberg and for a 48 hours period.
You can also read